*> \brief CGESVD computes the singular value decomposition (SVD) for GE matrices * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CGESVD + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, * WORK, LWORK, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBU, JOBVT * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N * .. * .. Array Arguments .. * REAL RWORK( * ), S( * ) * COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGESVD computes the singular value decomposition (SVD) of a complex *> M-by-N matrix A, optionally computing the left and/or right singular *> vectors. The SVD is written *> *> A = U * SIGMA * conjugate-transpose(V) *> *> where SIGMA is an M-by-N matrix which is zero except for its *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA *> are the singular values of A; they are real and non-negative, and *> are returned in descending order. The first min(m,n) columns of *> U and V are the left and right singular vectors of A. *> *> Note that the routine returns V**H, not V. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU *> \verbatim *> JOBU is CHARACTER*1 *> Specifies options for computing all or part of the matrix U: *> = 'A': all M columns of U are returned in array U: *> = 'S': the first min(m,n) columns of U (the left singular *> vectors) are returned in the array U; *> = 'O': the first min(m,n) columns of U (the left singular *> vectors) are overwritten on the array A; *> = 'N': no columns of U (no left singular vectors) are *> computed. *> \endverbatim *> *> \param[in] JOBVT *> \verbatim *> JOBVT is CHARACTER*1 *> Specifies options for computing all or part of the matrix *> V**H: *> = 'A': all N rows of V**H are returned in the array VT; *> = 'S': the first min(m,n) rows of V**H (the right singular *> vectors) are returned in the array VT; *> = 'O': the first min(m,n) rows of V**H (the right singular *> vectors) are overwritten on the array A; *> = 'N': no rows of V**H (no right singular vectors) are *> computed. *> *> JOBVT and JOBU cannot both be 'O'. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the input matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the input matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, *> if JOBU = 'O', A is overwritten with the first min(m,n) *> columns of U (the left singular vectors, *> stored columnwise); *> if JOBVT = 'O', A is overwritten with the first min(m,n) *> rows of V**H (the right singular vectors, *> stored rowwise); *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A *> are destroyed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension (min(M,N)) *> The singular values of A, sorted so that S(i) >= S(i+1). *> \endverbatim *> *> \param[out] U *> \verbatim *> U is COMPLEX array, dimension (LDU,UCOL) *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. *> If JOBU = 'A', U contains the M-by-M unitary matrix U; *> if JOBU = 'S', U contains the first min(m,n) columns of U *> (the left singular vectors, stored columnwise); *> if JOBU = 'N' or 'O', U is not referenced. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= 1; if *> JOBU = 'S' or 'A', LDU >= M. *> \endverbatim *> *> \param[out] VT *> \verbatim *> VT is COMPLEX array, dimension (LDVT,N) *> If JOBVT = 'A', VT contains the N-by-N unitary matrix *> V**H; *> if JOBVT = 'S', VT contains the first min(m,n) rows of *> V**H (the right singular vectors, stored rowwise); *> if JOBVT = 'N' or 'O', VT is not referenced. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> The leading dimension of the array VT. LDVT >= 1; if *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)). *> For good performance, LWORK should generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (5*min(M,N)) *> On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the *> unconverged superdiagonal elements of an upper bidiagonal *> matrix B whose diagonal is in S (not necessarily sorted). *> B satisfies A = U * B * VT, so it has the same singular *> values as A, and singular vectors related by U and VT. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if CBDSQR did not converge, INFO specifies how many *> superdiagonals of an intermediate bidiagonal form B *> did not converge to zero. See the description of RWORK *> above for details. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date April 2012 * *> \ingroup complexGEsing * * ===================================================================== SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, $ WORK, LWORK, RWORK, INFO ) * * -- LAPACK driver routine (version 3.6.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * April 2012 * * .. Scalar Arguments .. CHARACTER JOBU, JOBVT INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N * .. * .. Array Arguments .. REAL RWORK( * ), S( * ) COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), $ CONE = ( 1.0E0, 0.0E0 ) ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS, $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS INTEGER BLK, CHUNK, I, IE, IERR, IR, IRWORK, ISCL, $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU, $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU, $ NRVT, WRKBL INTEGER LWORK_CGEQRF, LWORK_CUNGQR_N, LWORK_CUNGQR_M, $ LWORK_CGEBRD, LWORK_CUNGBR_P, LWORK_CUNGBR_Q, $ LWORK_CGELQF, LWORK_CUNGLQ_N, LWORK_CUNGLQ_M REAL ANRM, BIGNUM, EPS, SMLNUM * .. * .. Local Arrays .. REAL DUM( 1 ) COMPLEX CDUM( 1 ) * .. * .. External Subroutines .. EXTERNAL CBDSQR, CGEBRD, CGELQF, CGEMM, CGEQRF, CLACPY, $ CLASCL, CLASET, CUNGBR, CUNGLQ, CUNGQR, CUNMBR, $ SLASCL, XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL CLANGE, SLAMCH EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 MINMN = MIN( M, N ) WNTUA = LSAME( JOBU, 'A' ) WNTUS = LSAME( JOBU, 'S' ) WNTUAS = WNTUA .OR. WNTUS WNTUO = LSAME( JOBU, 'O' ) WNTUN = LSAME( JOBU, 'N' ) WNTVA = LSAME( JOBVT, 'A' ) WNTVS = LSAME( JOBVT, 'S' ) WNTVAS = WNTVA .OR. WNTVS WNTVO = LSAME( JOBVT, 'O' ) WNTVN = LSAME( JOBVT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) * IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN INFO = -1 ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR. $ ( WNTVO .AND. WNTUO ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN INFO = -9 ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR. $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN INFO = -11 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * CWorkspace refers to complex workspace, and RWorkspace to * real workspace. NB refers to the optimal block size for the * immediately following subroutine, as returned by ILAENV.) * IF( INFO.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 IF( M.GE.N .AND. MINMN.GT.0 ) THEN * * Space needed for ZBDSQR is BDSPAC = 5*N * MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 ) * Compute space needed for CGEQRF CALL CGEQRF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR ) LWORK_CGEQRF = INT( CDUM(1) ) * Compute space needed for CUNGQR CALL CUNGQR( M, N, N, A, LDA, CDUM(1), CDUM(1), -1, IERR ) LWORK_CUNGQR_N = INT( CDUM(1) ) CALL CUNGQR( M, M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR ) LWORK_CUNGQR_M = INT( CDUM(1) ) * Compute space needed for CGEBRD CALL CGEBRD( N, N, A, LDA, S, DUM(1), CDUM(1), $ CDUM(1), CDUM(1), -1, IERR ) LWORK_CGEBRD = INT( CDUM(1) ) * Compute space needed for CUNGBR CALL CUNGBR( 'P', N, N, N, A, LDA, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_P = INT( CDUM(1) ) CALL CUNGBR( 'Q', N, N, N, A, LDA, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_Q = INT( CDUM(1) ) * MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 ) IF( M.GE.MNTHR ) THEN IF( WNTUN ) THEN * * Path 1 (M much larger than N, JOBU='N') * MAXWRK = N + LWORK_CGEQRF MAXWRK = MAX( MAXWRK, 2*N+LWORK_CGEBRD ) IF( WNTVO .OR. WNTVAS ) $ MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_P ) MINWRK = 3*N ELSE IF( WNTUO .AND. WNTVN ) THEN * * Path 2 (M much larger than N, JOBU='O', JOBVT='N') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) MAXWRK = MAX( N*N+WRKBL, N*N+M*N ) MINWRK = 2*N + M ELSE IF( WNTUO .AND. WNTVAS ) THEN * * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or * 'A') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P ) MAXWRK = MAX( N*N+WRKBL, N*N+M*N ) MINWRK = 2*N + M ELSE IF( WNTUS .AND. WNTVN ) THEN * * Path 4 (M much larger than N, JOBU='S', JOBVT='N') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) MAXWRK = N*N + WRKBL MINWRK = 2*N + M ELSE IF( WNTUS .AND. WNTVO ) THEN * * Path 5 (M much larger than N, JOBU='S', JOBVT='O') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P ) MAXWRK = 2*N*N + WRKBL MINWRK = 2*N + M ELSE IF( WNTUS .AND. WNTVAS ) THEN * * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or * 'A') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P ) MAXWRK = N*N + WRKBL MINWRK = 2*N + M ELSE IF( WNTUA .AND. WNTVN ) THEN * * Path 7 (M much larger than N, JOBU='A', JOBVT='N') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) MAXWRK = N*N + WRKBL MINWRK = 2*N + M ELSE IF( WNTUA .AND. WNTVO ) THEN * * Path 8 (M much larger than N, JOBU='A', JOBVT='O') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P ) MAXWRK = 2*N*N + WRKBL MINWRK = 2*N + M ELSE IF( WNTUA .AND. WNTVAS ) THEN * * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or * 'A') * WRKBL = N + LWORK_CGEQRF WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M ) WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q ) WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P ) MAXWRK = N*N + WRKBL MINWRK = 2*N + M END IF ELSE * * Path 10 (M at least N, but not much larger) * CALL CGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1), $ CDUM(1), CDUM(1), -1, IERR ) LWORK_CGEBRD = INT( CDUM(1) ) MAXWRK = 2*N + LWORK_CGEBRD IF( WNTUS .OR. WNTUO ) THEN CALL CUNGBR( 'Q', M, N, N, A, LDA, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_Q = INT( CDUM(1) ) MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_Q ) END IF IF( WNTUA ) THEN CALL CUNGBR( 'Q', M, M, N, A, LDA, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_Q = INT( CDUM(1) ) MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_Q ) END IF IF( .NOT.WNTVN ) THEN MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_P ) END IF MINWRK = 2*N + M END IF ELSE IF( MINMN.GT.0 ) THEN * * Space needed for CBDSQR is BDSPAC = 5*M * MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 ) * Compute space needed for CGELQF CALL CGELQF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR ) LWORK_CGELQF = INT( CDUM(1) ) * Compute space needed for CUNGLQ CALL CUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1), -1, $ IERR ) LWORK_CUNGLQ_N = INT( CDUM(1) ) CALL CUNGLQ( M, N, M, A, LDA, CDUM(1), CDUM(1), -1, IERR ) LWORK_CUNGLQ_M = INT( CDUM(1) ) * Compute space needed for CGEBRD CALL CGEBRD( M, M, A, LDA, S, DUM(1), CDUM(1), $ CDUM(1), CDUM(1), -1, IERR ) LWORK_CGEBRD = INT( CDUM(1) ) * Compute space needed for CUNGBR P CALL CUNGBR( 'P', M, M, M, A, N, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_P = INT( CDUM(1) ) * Compute space needed for CUNGBR Q CALL CUNGBR( 'Q', M, M, M, A, N, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_Q = INT( CDUM(1) ) IF( N.GE.MNTHR ) THEN IF( WNTVN ) THEN * * Path 1t(N much larger than M, JOBVT='N') * MAXWRK = M + LWORK_CGELQF MAXWRK = MAX( MAXWRK, 2*M+LWORK_CGEBRD ) IF( WNTUO .OR. WNTUAS ) $ MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_Q ) MINWRK = 3*M ELSE IF( WNTVO .AND. WNTUN ) THEN * * Path 2t(N much larger than M, JOBU='N', JOBVT='O') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) MAXWRK = MAX( M*M+WRKBL, M*M+M*N ) MINWRK = 2*M + N ELSE IF( WNTVO .AND. WNTUAS ) THEN * * Path 3t(N much larger than M, JOBU='S' or 'A', * JOBVT='O') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q ) MAXWRK = MAX( M*M+WRKBL, M*M+M*N ) MINWRK = 2*M + N ELSE IF( WNTVS .AND. WNTUN ) THEN * * Path 4t(N much larger than M, JOBU='N', JOBVT='S') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) MAXWRK = M*M + WRKBL MINWRK = 2*M + N ELSE IF( WNTVS .AND. WNTUO ) THEN * * Path 5t(N much larger than M, JOBU='O', JOBVT='S') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q ) MAXWRK = 2*M*M + WRKBL MINWRK = 2*M + N ELSE IF( WNTVS .AND. WNTUAS ) THEN * * Path 6t(N much larger than M, JOBU='S' or 'A', * JOBVT='S') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q ) MAXWRK = M*M + WRKBL MINWRK = 2*M + N ELSE IF( WNTVA .AND. WNTUN ) THEN * * Path 7t(N much larger than M, JOBU='N', JOBVT='A') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) MAXWRK = M*M + WRKBL MINWRK = 2*M + N ELSE IF( WNTVA .AND. WNTUO ) THEN * * Path 8t(N much larger than M, JOBU='O', JOBVT='A') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q ) MAXWRK = 2*M*M + WRKBL MINWRK = 2*M + N ELSE IF( WNTVA .AND. WNTUAS ) THEN * * Path 9t(N much larger than M, JOBU='S' or 'A', * JOBVT='A') * WRKBL = M + LWORK_CGELQF WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N ) WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P ) WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q ) MAXWRK = M*M + WRKBL MINWRK = 2*M + N END IF ELSE * * Path 10t(N greater than M, but not much larger) * CALL CGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1), $ CDUM(1), CDUM(1), -1, IERR ) LWORK_CGEBRD = INT( CDUM(1) ) MAXWRK = 2*M + LWORK_CGEBRD IF( WNTVS .OR. WNTVO ) THEN * Compute space needed for CUNGBR P CALL CUNGBR( 'P', M, N, M, A, N, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_P = INT( CDUM(1) ) MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_P ) END IF IF( WNTVA ) THEN CALL CUNGBR( 'P', N, N, M, A, N, CDUM(1), $ CDUM(1), -1, IERR ) LWORK_CUNGBR_P = INT( CDUM(1) ) MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_P ) END IF IF( .NOT.WNTUN ) THEN MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_Q ) END IF MINWRK = 2*M + N END IF END IF MAXWRK = MAX( MINWRK, MAXWRK ) WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGESVD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) THEN RETURN END IF * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = CLANGE( 'M', M, N, A, LDA, DUM ) ISCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ISCL = 1 CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR ) ELSE IF( ANRM.GT.BIGNUM ) THEN ISCL = 1 CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR ) END IF * IF( M.GE.N ) THEN * * A has at least as many rows as columns. If A has sufficiently * more rows than columns, first reduce using the QR * decomposition (if sufficient workspace available) * IF( M.GE.MNTHR ) THEN * IF( WNTUN ) THEN * * Path 1 (M much larger than N, JOBU='N') * No left singular vectors to be computed * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: need 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Zero out below R * IF( N .GT. 1 ) THEN CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ), $ LDA ) END IF IE = 1 ITAUQ = 1 ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in A * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) NCVT = 0 IF( WNTVO .OR. WNTVAS ) THEN * * If right singular vectors desired, generate P'. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) NCVT = N END IF IRWORK = IE + N * * Perform bidiagonal QR iteration, computing right * singular vectors of A in A if desired * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, NCVT, 0, 0, S, RWORK( IE ), A, LDA, $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO ) * * If right singular vectors desired in VT, copy them there * IF( WNTVAS ) $ CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT ) * ELSE IF( WNTUO .AND. WNTVN ) THEN * * Path 2 (M much larger than N, JOBU='O', JOBVT='N') * N left singular vectors to be overwritten on A and * no right singular vectors to be computed * IF( LWORK.GE.N*N+3*N ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN * * WORK(IU) is LDA by N, WORK(IR) is LDA by N * LDWRKU = LDA LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN * * WORK(IU) is LDA by N, WORK(IR) is N by N * LDWRKU = LDA LDWRKR = N ELSE * * WORK(IU) is LDWRKU by N, WORK(IR) is N by N * LDWRKU = ( LWORK-N*N ) / N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IR) and zero out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IR+1 ), LDWRKR ) * * Generate Q in A * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing R * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) * (RWorkspace: need 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) * (CWorkspace: need N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, 1, $ WORK( IR ), LDWRKR, CDUM, 1, $ RWORK( IRWORK ), INFO ) IU = ITAUQ * * Multiply Q in A by left singular vectors of R in * WORK(IR), storing result in WORK(IU) and copying to A * (CWorkspace: need N*N+N, prefer N*N+M*N) * (RWorkspace: 0) * DO 10 I = 1, M, LDWRKU CHUNK = MIN( M-I+1, LDWRKU ) CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ), $ LDA, WORK( IR ), LDWRKR, CZERO, $ WORK( IU ), LDWRKU ) CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU, $ A( I, 1 ), LDA ) 10 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * IE = 1 ITAUQ = 1 ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize A * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) * (RWorkspace: N) * CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing A * (CWorkspace: need 3*N, prefer 2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A * (CWorkspace: need 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, 1, $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTUO .AND. WNTVAS ) THEN * * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') * N left singular vectors to be overwritten on A and * N right singular vectors to be computed in VT * IF( LWORK.GE.N*N+3*N ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by N * LDWRKU = LDA LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is N by N * LDWRKU = LDA LDWRKR = N ELSE * * WORK(IU) is LDWRKU by N and WORK(IR) is N by N * LDWRKU = ( LWORK-N*N ) / N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to VT, zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ VT( 2, 1 ), LDVT ) * * Generate Q in A * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT, copying result to WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR ) * * Generate left vectors bidiagonalizing R in WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing R in VT * (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) and computing right * singular vectors of R in VT * (CWorkspace: need N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT, $ LDVT, WORK( IR ), LDWRKR, CDUM, 1, $ RWORK( IRWORK ), INFO ) IU = ITAUQ * * Multiply Q in A by left singular vectors of R in * WORK(IR), storing result in WORK(IU) and copying to A * (CWorkspace: need N*N+N, prefer N*N+M*N) * (RWorkspace: 0) * DO 20 I = 1, M, LDWRKU CHUNK = MIN( M-I+1, LDWRKU ) CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ), $ LDA, WORK( IR ), LDWRKR, CZERO, $ WORK( IU ), LDWRKU ) CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU, $ A( I, 1 ), LDA ) 20 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to VT, zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ VT( 2, 1 ), LDVT ) * * Generate Q in A * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: N) * CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in A by left vectors bidiagonalizing R * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT, $ WORK( ITAUQ ), A, LDA, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing R in VT * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT, $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ), $ INFO ) * END IF * ELSE IF( WNTUS ) THEN * IF( WNTVN ) THEN * * Path 4 (M much larger than N, JOBU='S', JOBVT='N') * N left singular vectors to be computed in U and * no right singular vectors to be computed * IF( LWORK.GE.N*N+3*N ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IR) is LDA by N * LDWRKR = LDA ELSE * * WORK(IR) is N by N * LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IR), zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), $ LDWRKR ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IR+1 ), LDWRKR ) * * Generate Q in A * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing R in WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) * (CWorkspace: need N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, $ 1, WORK( IR ), LDWRKR, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply Q in A by left singular vectors of R in * WORK(IR), storing result in U * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA, $ WORK( IR ), LDWRKR, CZERO, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * IF( N .GT. 1 ) THEN CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ A( 2, 1 ), LDA ) END IF * * Bidiagonalize R in A * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left vectors bidiagonalizing R * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) * END IF * ELSE IF( WNTVO ) THEN * * Path 5 (M much larger than N, JOBU='S', JOBVT='O') * N left singular vectors to be computed in U and * N right singular vectors to be overwritten on A * IF( LWORK.GE.2*N*N+3*N ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is N by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = N ELSE * * WORK(IU) is N by N and WORK(IR) is N by N * LDWRKU = N IR = IU + LDWRKU*N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IU+1 ), LDWRKU ) * * Generate Q in A * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to * WORK(IR) * (CWorkspace: need 2*N*N+3*N, * prefer 2*N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate left bidiagonalizing vectors in WORK(IU) * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in WORK(IR) * (CWorkspace: need 2*N*N+3*N-1, * prefer 2*N*N+2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in WORK(IR) * (CWorkspace: need 2*N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), $ WORK( IR ), LDWRKR, WORK( IU ), $ LDWRKU, CDUM, 1, RWORK( IRWORK ), $ INFO ) * * Multiply Q in A by left singular vectors of R in * WORK(IU), storing result in U * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA, $ WORK( IU ), LDWRKU, CZERO, U, LDU ) * * Copy right singular vectors of R to A * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CLACPY( 'F', N, N, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * IF( N .GT. 1 ) THEN CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ A( 2, 1 ), LDA ) END IF * * Bidiagonalize R in A * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left vectors bidiagonalizing R * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing R in A * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in A * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A, $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) * END IF * ELSE IF( WNTVAS ) THEN * * Path 6 (M much larger than N, JOBU='S', JOBVT='S' * or 'A') * N left singular vectors to be computed in U and * N right singular vectors to be computed in VT * IF( LWORK.GE.N*N+3*N ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IU) is LDA by N * LDWRKU = LDA ELSE * * WORK(IU) is N by N * LDWRKU = N END IF ITAU = IU + LDWRKU*N IWORK = ITAU + N * * Compute A=Q*R * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IU+1 ), LDWRKU ) * * Generate Q in A * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to VT * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT, $ LDVT ) * * Generate left bidiagonalizing vectors in WORK(IU) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (CWorkspace: need N*N+3*N-1, * prefer N*N+2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in VT * (CWorkspace: need N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT, $ LDVT, WORK( IU ), LDWRKU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply Q in A by left singular vectors of R in * WORK(IU), storing result in U * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA, $ WORK( IU ), LDWRKU, CZERO, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to VT, zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ VT( 2, 1 ), LDVT ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in VT * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT, $ LDVT, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * END IF * ELSE IF( WNTUA ) THEN * IF( WNTVN ) THEN * * Path 7 (M much larger than N, JOBU='A', JOBVT='N') * M left singular vectors to be computed in U and * no right singular vectors to be computed * IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IR) is LDA by N * LDWRKR = LDA ELSE * * WORK(IR) is N by N * LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Copy R to WORK(IR), zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), $ LDWRKR ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IR+1 ), LDWRKR ) * * Generate Q in U * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) * (RWorkspace: 0) * CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in WORK(IR) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) * (CWorkspace: need N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, $ 1, WORK( IR ), LDWRKR, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply Q in U by left singular vectors of R in * WORK(IR), storing result in A * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU, $ WORK( IR ), LDWRKR, CZERO, A, LDA ) * * Copy left singular vectors of A from A to U * CALL CLACPY( 'F', M, N, A, LDA, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need N+M, prefer N+M*NB) * (RWorkspace: 0) * CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * IF( N .GT. 1 ) THEN CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ A( 2, 1 ), LDA ) END IF * * Bidiagonalize R in A * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in A * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) * END IF * ELSE IF( WNTVO ) THEN * * Path 8 (M much larger than N, JOBU='A', JOBVT='O') * M left singular vectors to be computed in U and * N right singular vectors to be overwritten on A * IF( LWORK.GE.2*N*N+MAX( N+M, 3*N ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is N by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = N ELSE * * WORK(IU) is N by N and WORK(IR) is N by N * LDWRKU = N IR = IU + LDWRKU*N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB) * (RWorkspace: 0) * CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IU+1 ), LDWRKU ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to * WORK(IR) * (CWorkspace: need 2*N*N+3*N, * prefer 2*N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate left bidiagonalizing vectors in WORK(IU) * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in WORK(IR) * (CWorkspace: need 2*N*N+3*N-1, * prefer 2*N*N+2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in WORK(IR) * (CWorkspace: need 2*N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), $ WORK( IR ), LDWRKR, WORK( IU ), $ LDWRKU, CDUM, 1, RWORK( IRWORK ), $ INFO ) * * Multiply Q in U by left singular vectors of R in * WORK(IU), storing result in A * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU, $ WORK( IU ), LDWRKU, CZERO, A, LDA ) * * Copy left singular vectors of A from A to U * CALL CLACPY( 'F', M, N, A, LDA, U, LDU ) * * Copy right singular vectors of R from WORK(IR) to A * CALL CLACPY( 'F', N, N, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need N+M, prefer N+M*NB) * (RWorkspace: 0) * CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * IF( N .GT. 1 ) THEN CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ A( 2, 1 ), LDA ) END IF * * Bidiagonalize R in A * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in A * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in A * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in A * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A, $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) * END IF * ELSE IF( WNTVAS ) THEN * * Path 9 (M much larger than N, JOBU='A', JOBVT='S' * or 'A') * M left singular vectors to be computed in U and * N right singular vectors to be computed in VT * IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IU) is LDA by N * LDWRKU = LDA ELSE * * WORK(IU) is N by N * LDWRKU = N END IF ITAU = IU + LDWRKU*N IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) * (RWorkspace: 0) * CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IU+1 ), LDWRKU ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to VT * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT, $ LDVT ) * * Generate left bidiagonalizing vectors in WORK(IU) * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (CWorkspace: need N*N+3*N-1, * prefer N*N+2*N+(N-1)*NB) * (RWorkspace: need 0) * CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in VT * (CWorkspace: need N*N) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT, $ LDVT, WORK( IU ), LDWRKU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply Q in U by left singular vectors of R in * WORK(IU), storing result in A * (CWorkspace: need N*N) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU, $ WORK( IU ), LDWRKU, CZERO, A, LDA ) * * Copy left singular vectors of A from A to U * CALL CLACPY( 'F', M, N, A, LDA, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: 0) * CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (CWorkspace: need N+M, prefer N+M*NB) * (RWorkspace: 0) * CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R from A to VT, zeroing out below it * CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, $ VT( 2, 1 ), LDVT ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT * (CWorkspace: need 3*N, prefer 2*N+2*N*NB) * (RWorkspace: need N) * CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in VT * (CWorkspace: need 2*N+M, prefer 2*N+M*NB) * (RWorkspace: 0) * CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT, $ LDVT, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * END IF * END IF * ELSE * * M .LT. MNTHR * * Path 10 (M at least N, but not much larger) * Reduce to bidiagonal form without QR decomposition * IE = 1 ITAUQ = 1 ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize A * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) * (RWorkspace: need N) * CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) IF( WNTUAS ) THEN * * If left singular vectors desired in U, copy result to U * and generate left bidiagonalizing vectors in U * (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB) * (RWorkspace: 0) * CALL CLACPY( 'L', M, N, A, LDA, U, LDU ) IF( WNTUS ) $ NCU = N IF( WNTUA ) $ NCU = M CALL CUNGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVAS ) THEN * * If right singular vectors desired in VT, copy result to * VT and generate right bidiagonalizing vectors in VT * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT ) CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTUO ) THEN * * If left singular vectors desired in A, generate left * bidiagonalizing vectors in A * (CWorkspace: need 3*N, prefer 2*N+N*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVO ) THEN * * If right singular vectors desired in A, generate right * bidiagonalizing vectors in A * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IRWORK = IE + N IF( WNTUAS .OR. WNTUO ) $ NRU = M IF( WNTUN ) $ NRU = 0 IF( WNTVAS .OR. WNTVO ) $ NCVT = N IF( WNTVN ) $ NCVT = 0 IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT, $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in A * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), A, $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) ELSE * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in A and computing right singular * vectors in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT, $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ), $ INFO ) END IF * END IF * ELSE * * A has more columns than rows. If A has sufficiently more * columns than rows, first reduce using the LQ decomposition (if * sufficient workspace available) * IF( N.GE.MNTHR ) THEN * IF( WNTVN ) THEN * * Path 1t(N much larger than M, JOBVT='N') * No right singular vectors to be computed * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Zero out above L * CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ), $ LDA ) IE = 1 ITAUQ = 1 ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in A * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) IF( WNTUO .OR. WNTUAS ) THEN * * If left singular vectors desired, generate Q * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IRWORK = IE + M NRU = 0 IF( WNTUO .OR. WNTUAS ) $ NRU = M * * Perform bidiagonal QR iteration, computing left singular * vectors of A in A if desired * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, 0, NRU, 0, S, RWORK( IE ), CDUM, 1, $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO ) * * If left singular vectors desired in U, copy them there * IF( WNTUAS ) $ CALL CLACPY( 'F', M, M, A, LDA, U, LDU ) * ELSE IF( WNTVO .AND. WNTUN ) THEN * * Path 2t(N much larger than M, JOBU='N', JOBVT='O') * M right singular vectors to be overwritten on A and * no left singular vectors to be computed * IF( LWORK.GE.M*M+3*M ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by M * LDWRKU = LDA CHUNK = N LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is M by M * LDWRKU = LDA CHUNK = N LDWRKR = M ELSE * * WORK(IU) is M by CHUNK and WORK(IR) is M by M * LDWRKU = M CHUNK = ( LWORK-M*M ) / M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IR) and zero out above it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IR+LDWRKR ), LDWRKR ) * * Generate Q in A * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IR) * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing L * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of L in WORK(IR) * (CWorkspace: need M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ), $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1, $ RWORK( IRWORK ), INFO ) IU = ITAUQ * * Multiply right singular vectors of L in WORK(IR) by Q * in A, storing result in WORK(IU) and copying to A * (CWorkspace: need M*M+M, prefer M*M+M*N) * (RWorkspace: 0) * DO 30 I = 1, N, CHUNK BLK = MIN( N-I+1, CHUNK ) CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ), $ LDWRKR, A( 1, I ), LDA, CZERO, $ WORK( IU ), LDWRKU ) CALL CLACPY( 'F', M, BLK, WORK( IU ), LDWRKU, $ A( 1, I ), LDA ) 30 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * IE = 1 ITAUQ = 1 ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize A * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) * (RWorkspace: need M) * CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing A * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of A in A * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'L', M, N, 0, 0, S, RWORK( IE ), A, LDA, $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTVO .AND. WNTUAS ) THEN * * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') * M right singular vectors to be overwritten on A and * M left singular vectors to be computed in U * IF( LWORK.GE.M*M+3*M ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by M * LDWRKU = LDA CHUNK = N LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is M by M * LDWRKU = LDA CHUNK = N LDWRKR = M ELSE * * WORK(IU) is M by CHUNK and WORK(IR) is M by M * LDWRKU = M CHUNK = ( LWORK-M*M ) / M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing about above it * CALL CLACPY( 'L', M, M, A, LDA, U, LDU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ), $ LDU ) * * Generate Q in A * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U, copying result to WORK(IR) * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR ) * * Generate right vectors bidiagonalizing L in WORK(IR) * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing L in U * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in U, and computing right * singular vectors of L in WORK(IR) * (CWorkspace: need M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ), $ WORK( IR ), LDWRKR, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) IU = ITAUQ * * Multiply right singular vectors of L in WORK(IR) by Q * in A, storing result in WORK(IU) and copying to A * (CWorkspace: need M*M+M, prefer M*M+M*N)) * (RWorkspace: 0) * DO 40 I = 1, N, CHUNK BLK = MIN( N-I+1, CHUNK ) CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ), $ LDWRKR, A( 1, I ), LDA, CZERO, $ WORK( IU ), LDWRKU ) CALL CLACPY( 'F', M, BLK, WORK( IU ), LDWRKU, $ A( 1, I ), LDA ) 40 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, U, LDU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ), $ LDU ) * * Generate Q in A * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right vectors bidiagonalizing L by Q in A * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU, $ WORK( ITAUP ), A, LDA, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing L in U * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in A * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), A, LDA, $ U, LDU, CDUM, 1, RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTVS ) THEN * IF( WNTUN ) THEN * * Path 4t(N much larger than M, JOBU='N', JOBVT='S') * M right singular vectors to be computed in VT and * no left singular vectors to be computed * IF( LWORK.GE.M*M+3*M ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IR) is LDA by M * LDWRKR = LDA ELSE * * WORK(IR) is M by M * LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IR), zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ), $ LDWRKR ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IR+LDWRKR ), LDWRKR ) * * Generate Q in A * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IR) * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing L in * WORK(IR) * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of L in WORK(IR) * (CWorkspace: need M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ), $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IR) by * Q in A, storing result in VT * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ), $ LDWRKR, A, LDA, CZERO, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy result to VT * CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ A( 1, 2 ), LDA ) * * Bidiagonalize L in A * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right vectors bidiagonalizing L by Q in VT * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT, $ LDVT, CDUM, 1, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTUO ) THEN * * Path 5t(N much larger than M, JOBU='O', JOBVT='S') * M right singular vectors to be computed in VT and * M left singular vectors to be overwritten on A * IF( LWORK.GE.2*M*M+3*M ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is LDA by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is M by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = M ELSE * * WORK(IU) is M by M and WORK(IR) is M by M * LDWRKU = M IR = IU + LDWRKU*M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out below it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IU+LDWRKU ), LDWRKU ) * * Generate Q in A * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to * WORK(IR) * (CWorkspace: need 2*M*M+3*M, * prefer 2*M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate right bidiagonalizing vectors in WORK(IU) * (CWorkspace: need 2*M*M+3*M-1, * prefer 2*M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in WORK(IR) * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in WORK(IR) and computing * right singular vectors of L in WORK(IU) * (CWorkspace: need 2*M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ), $ WORK( IU ), LDWRKU, WORK( IR ), $ LDWRKR, CDUM, 1, RWORK( IRWORK ), $ INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in A, storing result in VT * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ), $ LDWRKU, A, LDA, CZERO, VT, LDVT ) * * Copy left singular vectors of L to A * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CLACPY( 'F', M, M, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ A( 1, 2 ), LDA ) * * Bidiagonalize L in A * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right vectors bidiagonalizing L by Q in VT * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors of L in A * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT, $ LDVT, A, LDA, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTUAS ) THEN * * Path 6t(N much larger than M, JOBU='S' or 'A', * JOBVT='S') * M right singular vectors to be computed in VT and * M left singular vectors to be computed in U * IF( LWORK.GE.M*M+3*M ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IU) is LDA by N * LDWRKU = LDA ELSE * * WORK(IU) is LDA by M * LDWRKU = M END IF ITAU = IU + LDWRKU*M IWORK = ITAU + M * * Compute A=L*Q * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IU+LDWRKU ), LDWRKU ) * * Generate Q in A * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to U * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, U, $ LDU ) * * Generate right bidiagonalizing vectors in WORK(IU) * (CWorkspace: need M*M+3*M-1, * prefer M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in U and computing right * singular vectors of L in WORK(IU) * (CWorkspace: need M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ), $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in A, storing result in VT * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ), $ LDWRKU, A, LDA, CZERO, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, U, LDU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ U( 1, 2 ), LDU ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in U by Q * in VT * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT, $ LDVT, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * END IF * ELSE IF( WNTVA ) THEN * IF( WNTUN ) THEN * * Path 7t(N much larger than M, JOBU='N', JOBVT='A') * N right singular vectors to be computed in VT and * no left singular vectors to be computed * IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IR) is LDA by M * LDWRKR = LDA ELSE * * WORK(IR) is M by M * LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Copy L to WORK(IR), zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ), $ LDWRKR ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IR+LDWRKR ), LDWRKR ) * * Generate Q in VT * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) * (RWorkspace: 0) * CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IR) * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in WORK(IR) * (CWorkspace: need M*M+3*M-1, * prefer M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of L in WORK(IR) * (CWorkspace: need M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ), $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IR) by * Q in VT, storing result in A * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ), $ LDWRKR, VT, LDVT, CZERO, A, LDA ) * * Copy right singular vectors of A from A to VT * CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need M+N, prefer M+N*NB) * (RWorkspace: 0) * CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ A( 1, 2 ), LDA ) * * Bidiagonalize L in A * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in A by Q * in VT * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT, $ LDVT, CDUM, 1, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTUO ) THEN * * Path 8t(N much larger than M, JOBU='O', JOBVT='A') * N right singular vectors to be computed in VT and * M left singular vectors to be overwritten on A * IF( LWORK.GE.2*M*M+MAX( N+M, 3*M ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is LDA by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is M by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = M ELSE * * WORK(IU) is M by M and WORK(IR) is M by M * LDWRKU = M IR = IU + LDWRKU*M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB) * (RWorkspace: 0) * CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IU+LDWRKU ), LDWRKU ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to * WORK(IR) * (CWorkspace: need 2*M*M+3*M, * prefer 2*M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate right bidiagonalizing vectors in WORK(IU) * (CWorkspace: need 2*M*M+3*M-1, * prefer 2*M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in WORK(IR) * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in WORK(IR) and computing * right singular vectors of L in WORK(IU) * (CWorkspace: need 2*M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ), $ WORK( IU ), LDWRKU, WORK( IR ), $ LDWRKR, CDUM, 1, RWORK( IRWORK ), $ INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in VT, storing result in A * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ), $ LDWRKU, VT, LDVT, CZERO, A, LDA ) * * Copy right singular vectors of A from A to VT * CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT ) * * Copy left singular vectors of A from WORK(IR) to A * CALL CLACPY( 'F', M, M, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need M+N, prefer M+N*NB) * (RWorkspace: 0) * CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ A( 1, 2 ), LDA ) * * Bidiagonalize L in A * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in A by Q * in VT * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in A * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT, $ LDVT, A, LDA, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * ELSE IF( WNTUAS ) THEN * * Path 9t(N much larger than M, JOBU='S' or 'A', * JOBVT='A') * N right singular vectors to be computed in VT and * M left singular vectors to be computed in U * IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IU) is LDA by M * LDWRKU = LDA ELSE * * WORK(IU) is M by M * LDWRKU = M END IF ITAU = IU + LDWRKU*M IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) * (RWorkspace: 0) * CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( IU+LDWRKU ), LDWRKU ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to U * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S, $ RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, U, $ LDU ) * * Generate right bidiagonalizing vectors in WORK(IU) * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in U and computing right * singular vectors of L in WORK(IU) * (CWorkspace: need M*M) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ), $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in VT, storing result in A * (CWorkspace: need M*M) * (RWorkspace: 0) * CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ), $ LDWRKU, VT, LDVT, CZERO, A, LDA ) * * Copy right singular vectors of A from A to VT * CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (CWorkspace: need 2*M, prefer M+M*NB) * (RWorkspace: 0) * CALL CGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (CWorkspace: need M+N, prefer M+N*NB) * (RWorkspace: 0) * CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing out above it * CALL CLACPY( 'L', M, M, A, LDA, U, LDU ) CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, $ U( 1, 2 ), LDU ) IE = 1 ITAUQ = ITAU ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U * (CWorkspace: need 3*M, prefer 2*M+2*M*NB) * (RWorkspace: need M) * CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in U by Q * in VT * (CWorkspace: need 2*M+N, prefer 2*M+N*NB) * (RWorkspace: 0) * CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IRWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT, $ LDVT, U, LDU, CDUM, 1, $ RWORK( IRWORK ), INFO ) * END IF * END IF * END IF * ELSE * * N .LT. MNTHR * * Path 10t(N greater than M, but not much larger) * Reduce to bidiagonal form without LQ decomposition * IE = 1 ITAUQ = 1 ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize A * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) * (RWorkspace: M) * CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) IF( WNTUAS ) THEN * * If left singular vectors desired in U, copy result to U * and generate left bidiagonalizing vectors in U * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CLACPY( 'L', M, M, A, LDA, U, LDU ) CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVAS ) THEN * * If right singular vectors desired in VT, copy result to * VT and generate right bidiagonalizing vectors in VT * (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB) * (RWorkspace: 0) * CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT ) IF( WNTVA ) $ NRVT = N IF( WNTVS ) $ NRVT = M CALL CUNGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTUO ) THEN * * If left singular vectors desired in A, generate left * bidiagonalizing vectors in A * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) * (RWorkspace: 0) * CALL CUNGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVO ) THEN * * If right singular vectors desired in A, generate right * bidiagonalizing vectors in A * (CWorkspace: need 3*M, prefer 2*M+M*NB) * (RWorkspace: 0) * CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IRWORK = IE + M IF( WNTUAS .OR. WNTUO ) $ NRU = M IF( WNTUN ) $ NRU = 0 IF( WNTVAS .OR. WNTVO ) $ NCVT = N IF( WNTVN ) $ NCVT = 0 IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT, $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in A * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), A, $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ), $ INFO ) ELSE * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in A and computing right singular * vectors in VT * (CWorkspace: 0) * (RWorkspace: need BDSPAC) * CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT, $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ), $ INFO ) END IF * END IF * END IF * * Undo scaling if necessary * IF( ISCL.EQ.1 ) THEN IF( ANRM.GT.BIGNUM ) $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN, $ IERR ) IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM ) $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1, $ RWORK( IE ), MINMN, IERR ) IF( ANRM.LT.SMLNUM ) $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN, $ IERR ) IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM ) $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1, $ RWORK( IE ), MINMN, IERR ) END IF * * Return optimal workspace in WORK(1) * WORK( 1 ) = MAXWRK * RETURN * * End of CGESVD * END