*> \brief \b CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGERQ2 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGERQ2 computes an RQ factorization of a complex m by n matrix A:
*> A = R * Q.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the m by n matrix A.
*> On exit, if m <= n, the upper triangle of the subarray
*> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
*> if m >= n, the elements on and above the (m-n)-th subdiagonal
*> contain the m by n upper trapezoidal matrix R; the remaining
*> elements, with the array TAU, represent the unitary matrix
*> Q as a product of elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (M)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
*> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, K
COMPLEX ALPHA
* ..
* .. External Subroutines ..
EXTERNAL CLACGV, CLARF, CLARFG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGERQ2', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO 10 I = K, 1, -1
*
* Generate elementary reflector H(i) to annihilate
* A(m-k+i,1:n-k+i-1)
*
CALL CLACGV( N-K+I, A( M-K+I, 1 ), LDA )
ALPHA = A( M-K+I, N-K+I )
CALL CLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA,
$ TAU( I ) )
*
* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
*
A( M-K+I, N-K+I ) = ONE
CALL CLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
$ TAU( I ), A, LDA, WORK )
A( M-K+I, N-K+I ) = ALPHA
CALL CLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
10 CONTINUE
RETURN
*
* End of CGERQ2
*
END