From ccc590feb796758192b9183b425b3ff7d623acff Mon Sep 17 00:00:00 2001 From: igor175 Date: Fri, 12 Apr 2013 20:06:18 +0000 Subject: added test routines (c,z)chkhe_rook.f and (c,z)drvhe_rook.f for Hermitian factorization routines with rook pivoting algorithm --- TESTING/LIN/zhet01_rook.f | 239 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 239 insertions(+) create mode 100644 TESTING/LIN/zhet01_rook.f (limited to 'TESTING/LIN/zhet01_rook.f') diff --git a/TESTING/LIN/zhet01_rook.f b/TESTING/LIN/zhet01_rook.f new file mode 100644 index 00000000..36041ab0 --- /dev/null +++ b/TESTING/LIN/zhet01_rook.f @@ -0,0 +1,239 @@ +*> \brief \b ZHET01_ROOK +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, +* RWORK, RESID ) +* +* .. Scalar Arguments .. +* CHARACTER UPLO +* INTEGER LDA, LDAFAC, LDC, N +* DOUBLE PRECISION RESID +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION RWORK( * ) +* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZHET01_ROOK reconstructs a complex Hermitian indefinite matrix A from its +*> block L*D*L' or U*D*U' factorization and computes the residual +*> norm( C - A ) / ( N * norm(A) * EPS ), +*> where C is the reconstructed matrix, EPS is the machine epsilon, +*> L' is the transpose of L, and U' is the transpose of U. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> Specifies whether the upper or lower triangular part of the +*> complex Hermitian matrix A is stored: +*> = 'U': Upper triangular +*> = 'L': Lower triangular +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of rows and columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is COMPLEX*16 array, dimension (LDA,N) +*> The original complex Hermitian matrix A. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N) +*> \endverbatim +*> +*> \param[in] AFAC +*> \verbatim +*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) +*> The factored form of the matrix A. AFAC contains the block +*> diagonal matrix D and the multipliers used to obtain the +*> factor L or U from the block L*D*L' or U*D*U' factorization +*> as computed by CSYTRF_ROOK. +*> \endverbatim +*> +*> \param[in] LDAFAC +*> \verbatim +*> LDAFAC is INTEGER +*> The leading dimension of the array AFAC. LDAFAC >= max(1,N). +*> \endverbatim +*> +*> \param[in] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (N) +*> The pivot indices from CSYTRF_ROOK. +*> \endverbatim +*> +*> \param[out] C +*> \verbatim +*> C is COMPLEX*16 array, dimension (LDC,N) +*> \endverbatim +*> +*> \param[in] LDC +*> \verbatim +*> LDC is INTEGER +*> The leading dimension of the array C. LDC >= max(1,N). +*> \endverbatim +*> +*> \param[out] RWORK +*> \verbatim +*> RWORK is DOUBLE PRECISION array, dimension (N) +*> \endverbatim +*> +*> \param[out] RESID +*> \verbatim +*> RESID is DOUBLE PRECISION +*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) +*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date April 2013 +* +*> \ingroup complex16_lin +* +* ===================================================================== + SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, + $ LDC, RWORK, RESID ) +* +* -- LAPACK test routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER LDA, LDAFAC, LDC, N + DOUBLE PRECISION RESID +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION RWORK( * ) + COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) + COMPLEX*16 CZERO, CONE + PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), + $ CONE = ( 1.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + INTEGER I, INFO, J + DOUBLE PRECISION ANORM, EPS +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION ZLANHE, DLAMCH + EXTERNAL LSAME, ZLANHE, DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL ZLASET, ZLAVHE_ROOK +* .. +* .. Intrinsic Functions .. + INTRINSIC DIMAG, DBLE +* .. +* .. Executable Statements .. +* +* Quick exit if N = 0. +* + IF( N.LE.0 ) THEN + RESID = ZERO + RETURN + END IF +* +* Determine EPS and the norm of A. +* + EPS = DLAMCH( 'Epsilon' ) + ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK ) +* +* Check the imaginary parts of the diagonal elements and return with +* an error code if any are nonzero. +* + DO 10 J = 1, N + IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN + RESID = ONE / EPS + RETURN + END IF + 10 CONTINUE +* +* Initialize C to the identity matrix. +* + CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC ) +* +* Call ZLAVHE_ROOK to form the product D * U' (or D * L' ). +* + CALL ZLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, + $ LDAFAC, IPIV, C, LDC, INFO ) +* +* Call ZLAVHE_ROOK again to multiply by U (or L ). +* + CALL ZLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC, + $ LDAFAC, IPIV, C, LDC, INFO ) +* +* Compute the difference C - A . +* + IF( LSAME( UPLO, 'U' ) ) THEN + DO 30 J = 1, N + DO 20 I = 1, J - 1 + C( I, J ) = C( I, J ) - A( I, J ) + 20 CONTINUE + C( J, J ) = C( J, J ) - DBLE( A( J, J ) ) + 30 CONTINUE + ELSE + DO 50 J = 1, N + C( J, J ) = C( J, J ) - DBLE( A( J, J ) ) + DO 40 I = J + 1, N + C( I, J ) = C( I, J ) - A( I, J ) + 40 CONTINUE + 50 CONTINUE + END IF +* +* Compute norm( C - A ) / ( N * norm(A) * EPS ) +* + RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK ) +* + IF( ANORM.LE.ZERO ) THEN + IF( RESID.NE.ZERO ) + $ RESID = ONE / EPS + ELSE + RESID = ( ( RESID/DBLE( N ) )/ANORM ) / EPS + END IF +* + RETURN +* +* End of ZHET01_ROOK +* + END -- cgit v1.2.3