From e1d39294aee16fa6db9ba079b14442358217db71 Mon Sep 17 00:00:00 2001 From: julie Date: Thu, 6 Oct 2011 06:53:11 +0000 Subject: Integrating Doxygen in comments --- SRC/zgetf2.f | 147 +++++++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 102 insertions(+), 45 deletions(-) (limited to 'SRC/zgetf2.f') diff --git a/SRC/zgetf2.f b/SRC/zgetf2.f index 79c2170f..f85fd099 100644 --- a/SRC/zgetf2.f +++ b/SRC/zgetf2.f @@ -1,60 +1,117 @@ - SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO ) -* -* -- LAPACK routine (version 3.2) -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, M, N -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - COMPLEX*16 A( LDA, * ) -* .. -* +*> \brief \b ZGETF2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* COMPLEX*16 A( LDA, * ) +* .. +* * Purpose * ======= * -* ZGETF2 computes an LU factorization of a general m-by-n matrix A -* using partial pivoting with row interchanges. -* -* The factorization has the form -* A = P * L * U -* where P is a permutation matrix, L is lower triangular with unit -* diagonal elements (lower trapezoidal if m > n), and U is upper -* triangular (upper trapezoidal if m < n). -* -* This is the right-looking Level 2 BLAS version of the algorithm. +*>\details \b Purpose: +*>\verbatim +*> +*> ZGETF2 computes an LU factorization of a general m-by-n matrix A +*> using partial pivoting with row interchanges. +*> +*> The factorization has the form +*> A = P * L * U +*> where P is a permutation matrix, L is lower triangular with unit +*> diagonal elements (lower trapezoidal if m > n), and U is upper +*> triangular (upper trapezoidal if m < n). +*> +*> This is the right-looking Level 2 BLAS version of the algorithm. +*> +*>\endverbatim * * Arguments * ========= * -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0. +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX*16 array, dimension (LDA,N) +*> On entry, the m by n matrix to be factored. +*> On exit, the factors L and U from the factorization +*> A = P*L*U; the unit diagonal elements of L are not stored. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (min(M,N)) +*> The pivot indices; for 1 <= i <= min(M,N), row i of the +*> matrix was interchanged with row IPIV(i). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -k, the k-th argument had an illegal value +*> > 0: if INFO = k, U(k,k) is exactly zero. The factorization +*> has been completed, but the factor U is exactly +*> singular, and division by zero will occur if it is used +*> to solve a system of equations. +*> \endverbatim +*> +* +* Authors +* ======= * -* N (input) INTEGER -* The number of columns of the matrix A. N >= 0. +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. * -* A (input/output) COMPLEX*16 array, dimension (LDA,N) -* On entry, the m by n matrix to be factored. -* On exit, the factors L and U from the factorization -* A = P*L*U; the unit diagonal elements of L are not stored. +*> \date November 2011 * -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). +*> \ingroup complex16GEcomputational * -* IPIV (output) INTEGER array, dimension (min(M,N)) -* The pivot indices; for 1 <= i <= min(M,N), row i of the -* matrix was interchanged with row IPIV(i). +* ===================================================================== + SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO ) +* +* -- LAPACK computational routine (version 3.2) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 * -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -k, the k-th argument had an illegal value -* > 0: if INFO = k, U(k,k) is exactly zero. The factorization -* has been completed, but the factor U is exactly -* singular, and division by zero will occur if it is used -* to solve a system of equations. +* .. Scalar Arguments .. + INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + COMPLEX*16 A( LDA, * ) +* .. * * ===================================================================== * -- cgit v1.2.3