From ff981f106bde4ce6a74aa4f4a572c943f5a395b2 Mon Sep 17 00:00:00 2001 From: julie Date: Tue, 16 Dec 2008 17:06:58 +0000 Subject: --- SRC/dla_gbrcond.f | 216 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 216 insertions(+) create mode 100644 SRC/dla_gbrcond.f (limited to 'SRC/dla_gbrcond.f') diff --git a/SRC/dla_gbrcond.f b/SRC/dla_gbrcond.f new file mode 100644 index 00000000..fd57665a --- /dev/null +++ b/SRC/dla_gbrcond.f @@ -0,0 +1,216 @@ + DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB, + $ AFB, LDAFB, IPIV, CMODE, C, INFO, + $ WORK, IWORK ) +* +* -- LAPACK routine (version 3.2) -- +* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- +* -- Jason Riedy of Univ. of California Berkeley. -- +* -- November 2008 -- +* +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley and NAG Ltd. -- +* + IMPLICIT NONE +* .. +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER N, LDAB, LDAFB, INFO, KL, KU, CMODE +* .. +* .. Array Arguments .. + INTEGER IWORK( * ), IPIV( * ) + DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ), + $ C( * ) +* +* DLA_GERCOND Estimates the Skeel condition number of op(A) * op2(C) +* where op2 is determined by CMODE as follows +* CMODE = 1 op2(C) = C +* CMODE = 0 op2(C) = I +* CMODE = -1 op2(C) = inv(C) +* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) +* is computed by computing scaling factors R such that +* diag(R)*A*op2(C) is row equilibrated and computing the standard +* infinity-norm condition number. +* WORK is a double precision workspace of size 5*N, and +* IWORK is an integer workspace of size N. +* .. +* .. Local Scalars .. + LOGICAL NOTRANS + INTEGER KASE, I, J, KD + DOUBLE PRECISION AINVNM, TMP +* .. +* .. Local Arrays .. + INTEGER ISAVE( 3 ) +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL DLACN2, DGBTRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX +* .. +* .. Executable Statements .. +* + DLA_GBRCOND = 0.0D+0 +* + INFO = 0 + NOTRANS = LSAME( TRANS, 'N' ) + IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T') + $ .AND. .NOT. LSAME(TRANS, 'C') ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( KL.LT.0 ) THEN + INFO = -4 + ELSE IF( KU.LT.0 ) THEN + INFO = -5 + ELSE IF( LDAB.LT.KL+KU+1 ) THEN + INFO = -8 + ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN + INFO = -10 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DLA_GBRCOND', -INFO ) + RETURN + END IF + IF( N.EQ.0 ) THEN + DLA_GBRCOND = 1.0D+0 + RETURN + END IF +* +* Compute the equilibration matrix R such that +* inv(R)*A*C has unit 1-norm. +* + KD = KU + 1 + IF ( NOTRANS ) THEN + DO I = 1, N + TMP = 0.0D+0 + IF ( CMODE .EQ. 1 ) THEN + DO J = 1, N + IF ( I.GE.MAX( 1, J-KU ) + $ .AND. I.LE.MIN( N, J+KL ) ) THEN + TMP = TMP + ABS( AB( KD+I-J, J ) * C( J ) ) + END IF + END DO + ELSE IF ( CMODE .EQ. 0 ) THEN + DO J = 1, N + IF ( I.GE.MAX( 1, J-KU ) + $ .AND. I.LE.MIN( N, J+KL ) ) THEN + TMP = TMP + ABS( AB( KD+I-J, J ) ) + END IF + END DO + ELSE + DO J = 1, N + IF ( I.GE.MAX( 1, J-KU ) + $ .AND. I.LE.MIN( N, J+KL ) ) THEN + TMP = TMP + ABS( AB( KD+I-J, J ) / C( J ) ) + END IF + END DO + END IF + WORK( 2*N+I ) = TMP + END DO + ELSE + DO I = 1, N + TMP = 0.0D+0 + IF ( CMODE .EQ. 1 ) THEN + DO J = 1, N + IF ( I.GE.MAX( 1, J-KU ) + $ .AND. I.LE.MIN( N, J+KL ) ) THEN + TMP = TMP + ABS( AB( J, KD+I-J ) * C( J ) ) + END IF + END DO + ELSE IF ( CMODE .EQ. 0 ) THEN + DO J = 1, N + IF ( I.GE.MAX( 1, J-KU ) + $ .AND. I.LE.MIN( N, J+KL ) ) THEN + TMP = TMP + ABS(AB(J,KD+I-J)) + END IF + END DO + ELSE + DO J = 1, N + IF ( I.GE.MAX( 1, J-KU ) + $ .AND. I.LE.MIN( N, J+KL ) ) THEN + TMP = TMP + ABS( AB( J, KD+I-J ) / C( J ) ) + END IF + END DO + END IF + WORK( 2*N+I ) = TMP + END DO + END IF +* +* Estimate the norm of inv(op(A)). +* + AINVNM = 0.0D+0 + + KASE = 0 + 10 CONTINUE + CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE ) + IF( KASE.NE.0 ) THEN + IF( KASE.EQ.2 ) THEN +* +* Multiply by R. +* + DO I = 1, N + WORK( I ) = WORK( I ) * WORK( 2*N+I ) + END DO + + IF ( NOTRANS ) THEN + CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB, + $ IPIV, WORK, N, INFO ) + ELSE + CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV, + $ WORK, N, INFO ) + END IF +* +* Multiply by inv(C). +* + IF ( CMODE .EQ. 1 ) THEN + DO I = 1, N + WORK( I ) = WORK( I ) / C( I ) + END DO + ELSE IF ( CMODE .EQ. -1 ) THEN + DO I = 1, N + WORK( I ) = WORK( I ) * C( I ) + END DO + END IF + ELSE +* +* Multiply by inv(C'). +* + IF ( CMODE .EQ. 1 ) THEN + DO I = 1, N + WORK( I ) = WORK( I ) / C( I ) + END DO + ELSE IF ( CMODE .EQ. -1 ) THEN + DO I = 1, N + WORK( I ) = WORK( I ) * C( I ) + END DO + END IF + + IF ( NOTRANS ) THEN + CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV, + $ WORK, N, INFO ) + ELSE + CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB, + $ IPIV, WORK, N, INFO ) + END IF +* +* Multiply by R. +* + DO I = 1, N + WORK( I ) = WORK( I ) * WORK( 2*N+I ) + END DO + END IF + GO TO 10 + END IF +* +* Compute the estimate of the reciprocal condition number. +* + IF( AINVNM .NE. 0.0D+0 ) + $ DLA_GBRCOND = ( 1.0D+0 / AINVNM ) +* + RETURN +* + END -- cgit v1.2.3