summaryrefslogtreecommitdiff
path: root/SRC
diff options
context:
space:
mode:
Diffstat (limited to 'SRC')
-rw-r--r--SRC/cbbcsd.f15
-rw-r--r--SRC/cbdsqr.f9
-rw-r--r--SRC/cgbrfs.f6
-rw-r--r--SRC/cgbrfsx.f51
-rw-r--r--SRC/cgbsvx.f18
-rw-r--r--SRC/cgbsvxx.f69
-rw-r--r--SRC/cgbtf2.f3
-rw-r--r--SRC/cgbtrf.f3
-rw-r--r--SRC/cgees.f3
-rw-r--r--SRC/cgeesx.f3
-rw-r--r--SRC/cgeev.f3
-rw-r--r--SRC/cgeevx.f9
-rw-r--r--SRC/cgegs.f6
-rw-r--r--SRC/cgegv.f3
-rw-r--r--SRC/cgehrd.f3
-rw-r--r--SRC/cgelqf.f3
-rw-r--r--SRC/cgels.f3
-rw-r--r--SRC/cgelsd.f3
-rw-r--r--SRC/cgelss.f3
-rw-r--r--SRC/cgelsy.f3
-rw-r--r--SRC/cgeqlf.f3
-rw-r--r--SRC/cgeqp3.f3
-rw-r--r--SRC/cgeqrf.f3
-rw-r--r--SRC/cgeqrfp.f3
-rw-r--r--SRC/cgerfs.f6
-rw-r--r--SRC/cgerfsx.f51
-rw-r--r--SRC/cgesdd.f3
-rw-r--r--SRC/cgesvd.f6
-rw-r--r--SRC/cgesvx.f15
-rw-r--r--SRC/cgesvxx.f66
-rw-r--r--SRC/cgetri.f3
-rw-r--r--SRC/cgges.f9
-rw-r--r--SRC/cggesx.f9
-rw-r--r--SRC/cggev.f6
-rw-r--r--SRC/cggevx.f6
-rw-r--r--SRC/cggglm.f6
-rw-r--r--SRC/cgghrd.f3
-rw-r--r--SRC/cgglse.f3
-rw-r--r--SRC/cggsvd.f12
-rw-r--r--SRC/cggsvp.f6
-rw-r--r--SRC/cgtrfs.f6
-rw-r--r--SRC/cgtsvx.f15
-rw-r--r--SRC/cgttrf.f9
-rw-r--r--SRC/chbev.f3
-rw-r--r--SRC/chbevd.f12
-rw-r--r--SRC/chbevx.f15
-rw-r--r--SRC/chbgst.f3
-rw-r--r--SRC/chbgv.f6
-rw-r--r--SRC/chbgvd.f15
-rw-r--r--SRC/chbgvx.f21
-rw-r--r--SRC/chbtrd.f3
-rw-r--r--SRC/cheev.f3
-rw-r--r--SRC/cheevd.f9
-rw-r--r--SRC/cheevr.f21
-rw-r--r--SRC/cheevx.f15
-rw-r--r--SRC/chegs2.f3
-rw-r--r--SRC/chegst.f3
-rw-r--r--SRC/chegv.f9
-rw-r--r--SRC/chegvd.f15
-rw-r--r--SRC/chegvx.f9
-rw-r--r--SRC/cherfs.f6
-rw-r--r--SRC/cherfsx.f51
-rw-r--r--SRC/chesv.f6
-rw-r--r--SRC/chesvx.f9
-rw-r--r--SRC/chesvxx.f60
-rw-r--r--SRC/cheswapr.f3
-rw-r--r--SRC/chetf2.f3
-rw-r--r--SRC/chetrd.f3
-rw-r--r--SRC/chetrf.f3
-rw-r--r--SRC/chetri.f3
-rw-r--r--SRC/chetri2.f3
-rw-r--r--SRC/chetri2x.f3
-rw-r--r--SRC/chfrk.f18
-rw-r--r--SRC/chgeqz.f6
-rw-r--r--SRC/chpev.f3
-rw-r--r--SRC/chpevd.f12
-rw-r--r--SRC/chpevx.f15
-rw-r--r--SRC/chpgst.f3
-rw-r--r--SRC/chpgv.f6
-rw-r--r--SRC/chpgvd.f15
-rw-r--r--SRC/chpgvx.f24
-rw-r--r--SRC/chprfs.f6
-rw-r--r--SRC/chpsv.f3
-rw-r--r--SRC/chpsvx.f6
-rw-r--r--SRC/chptrf.f3
-rw-r--r--SRC/chptri.f3
-rw-r--r--SRC/chseqr.f36
-rw-r--r--SRC/cla_gbamv.f9
-rw-r--r--SRC/cla_geamv.f9
-rw-r--r--SRC/cla_heamv.f9
-rw-r--r--SRC/cla_herfsx_extended.f42
-rw-r--r--SRC/cla_porfsx_extended.f42
-rw-r--r--SRC/cla_syamv.f9
-rw-r--r--SRC/cla_syrfsx_extended.f42
-rw-r--r--SRC/clahef.f3
-rw-r--r--SRC/clahqr.f9
-rw-r--r--SRC/clals0.f3
-rw-r--r--SRC/clanhf.f6
-rw-r--r--SRC/claqgb.f12
-rw-r--r--SRC/claqge.f9
-rw-r--r--SRC/claqhb.f12
-rw-r--r--SRC/claqhe.f12
-rw-r--r--SRC/claqhp.f12
-rw-r--r--SRC/claqr0.f6
-rw-r--r--SRC/claqr1.f3
-rw-r--r--SRC/claqr2.f3
-rw-r--r--SRC/claqr3.f3
-rw-r--r--SRC/claqr4.f6
-rw-r--r--SRC/claqsb.f12
-rw-r--r--SRC/claqsp.f12
-rw-r--r--SRC/claqsy.f12
-rw-r--r--SRC/clascl.f3
-rw-r--r--SRC/clasyf.f3
-rw-r--r--SRC/clatbs.f6
-rw-r--r--SRC/clatps.f6
-rw-r--r--SRC/clatrs.f6
-rw-r--r--SRC/clatzm.f6
-rw-r--r--SRC/cpbrfs.f6
-rw-r--r--SRC/cpbsv.f3
-rw-r--r--SRC/cpbsvx.f9
-rw-r--r--SRC/cpbtf2.f3
-rw-r--r--SRC/cpbtrf.f3
-rw-r--r--SRC/cpftrf.f66
-rw-r--r--SRC/cpftri.f3
-rw-r--r--SRC/cporfs.f6
-rw-r--r--SRC/cporfsx.f51
-rw-r--r--SRC/cposv.f3
-rw-r--r--SRC/cposvx.f9
-rw-r--r--SRC/cposvxx.f60
-rw-r--r--SRC/cpotf2.f3
-rw-r--r--SRC/cpotrf.f3
-rw-r--r--SRC/cpprfs.f6
-rw-r--r--SRC/cppsv.f3
-rw-r--r--SRC/cppsvx.f9
-rw-r--r--SRC/cpptrf.f3
-rw-r--r--SRC/cpptri.f3
-rw-r--r--SRC/cpstf2.f3
-rw-r--r--SRC/cpstrf.f3
-rw-r--r--SRC/cptrfs.f6
-rw-r--r--SRC/cspmv.f9
-rw-r--r--SRC/cspr.f9
-rw-r--r--SRC/csprfs.f6
-rw-r--r--SRC/cspsv.f3
-rw-r--r--SRC/cspsvx.f6
-rw-r--r--SRC/csptrf.f3
-rw-r--r--SRC/csptri.f3
-rw-r--r--SRC/cstedc.f9
-rw-r--r--SRC/cstegr.f6
-rw-r--r--SRC/cstein.f9
-rw-r--r--SRC/cstemr.f6
-rw-r--r--SRC/csymv.f9
-rw-r--r--SRC/csyr.f9
-rw-r--r--SRC/csyrfs.f6
-rw-r--r--SRC/csyrfsx.f51
-rw-r--r--SRC/csysv.f6
-rw-r--r--SRC/csysvx.f9
-rw-r--r--SRC/csysvxx.f60
-rw-r--r--SRC/csyswapr.f3
-rw-r--r--SRC/csytf2.f3
-rw-r--r--SRC/csytrf.f6
-rw-r--r--SRC/csytri.f3
-rw-r--r--SRC/csytri2.f3
-rw-r--r--SRC/csytri2x.f3
-rw-r--r--SRC/ctfsm.f30
-rw-r--r--SRC/ctftri.f3
-rw-r--r--SRC/ctgsen.f12
-rw-r--r--SRC/ctgsyl.f3
-rw-r--r--SRC/ctrexc.f3
-rw-r--r--SRC/ctrsen.f3
-rw-r--r--SRC/ctrti2.f3
-rw-r--r--SRC/ctzrzf.f3
-rw-r--r--SRC/cunbdb.f3
-rw-r--r--SRC/cuncsd.f12
-rw-r--r--SRC/cungbr.f3
-rw-r--r--SRC/cunghr.f6
-rw-r--r--SRC/cunglq.f3
-rw-r--r--SRC/cungql.f3
-rw-r--r--SRC/cungqr.f3
-rw-r--r--SRC/cungrq.f3
-rw-r--r--SRC/cungtr.f3
-rw-r--r--SRC/cunmbr.f3
-rw-r--r--SRC/cunmhr.f6
-rw-r--r--SRC/cunmlq.f3
-rw-r--r--SRC/cunmql.f3
-rw-r--r--SRC/cunmqr.f3
-rw-r--r--SRC/cunmrq.f3
-rw-r--r--SRC/cunmrz.f3
-rw-r--r--SRC/cunmtr.f3
-rw-r--r--SRC/dbbcsd.f15
-rw-r--r--SRC/dbdsqr.f9
-rw-r--r--SRC/dgbrfs.f6
-rw-r--r--SRC/dgbrfsx.f51
-rw-r--r--SRC/dgbsvx.f18
-rw-r--r--SRC/dgbsvxx.f69
-rw-r--r--SRC/dgbtf2.f3
-rw-r--r--SRC/dgbtrf.f3
-rw-r--r--SRC/dgeesx.f6
-rw-r--r--SRC/dgeev.f3
-rw-r--r--SRC/dgeevx.f9
-rw-r--r--SRC/dgegs.f3
-rw-r--r--SRC/dgegv.f9
-rw-r--r--SRC/dgehd2.f3
-rw-r--r--SRC/dgehrd.f3
-rw-r--r--SRC/dgels.f3
-rw-r--r--SRC/dgelsd.f3
-rw-r--r--SRC/dgelss.f3
-rw-r--r--SRC/dgelsy.f3
-rw-r--r--SRC/dgeqp3.f3
-rw-r--r--SRC/dgeqrf.f3
-rw-r--r--SRC/dgeqrfp.f3
-rw-r--r--SRC/dgerfs.f6
-rw-r--r--SRC/dgerfsx.f51
-rw-r--r--SRC/dgesvd.f6
-rw-r--r--SRC/dgesvj.f3
-rw-r--r--SRC/dgesvx.f15
-rw-r--r--SRC/dgesvxx.f66
-rw-r--r--SRC/dgetri.f3
-rw-r--r--SRC/dgges.f9
-rw-r--r--SRC/dggesx.f9
-rw-r--r--SRC/dggev.f6
-rw-r--r--SRC/dggevx.f6
-rw-r--r--SRC/dggglm.f6
-rw-r--r--SRC/dgghrd.f3
-rw-r--r--SRC/dgglse.f3
-rw-r--r--SRC/dggsvd.f12
-rw-r--r--SRC/dggsvp.f6
-rw-r--r--SRC/dgtrfs.f6
-rw-r--r--SRC/dgtsv.f9
-rw-r--r--SRC/dgtsvx.f15
-rw-r--r--SRC/dgttrf.f9
-rw-r--r--SRC/dhgeqz.f3
-rw-r--r--SRC/dhsein.f3
-rw-r--r--SRC/dhseqr.f39
-rw-r--r--SRC/dla_gbamv.f9
-rw-r--r--SRC/dla_geamv.f9
-rw-r--r--SRC/dla_porfsx_extended.f42
-rw-r--r--SRC/dla_syamv.f9
-rw-r--r--SRC/dla_syrfsx_extended.f42
-rw-r--r--SRC/dlaed4.f15
-rw-r--r--SRC/dlagtf.f15
-rw-r--r--SRC/dlagts.f3
-rw-r--r--SRC/dlahqr.f9
-rw-r--r--SRC/dlals0.f3
-rw-r--r--SRC/dlaqgb.f12
-rw-r--r--SRC/dlaqge.f9
-rw-r--r--SRC/dlaqr0.f12
-rw-r--r--SRC/dlaqr2.f3
-rw-r--r--SRC/dlaqr3.f3
-rw-r--r--SRC/dlaqr4.f6
-rw-r--r--SRC/dlaqsb.f12
-rw-r--r--SRC/dlaqsp.f12
-rw-r--r--SRC/dlaqsy.f12
-rw-r--r--SRC/dlarrd.f9
-rw-r--r--SRC/dlarre.f3
-rw-r--r--SRC/dlarrk.f6
-rw-r--r--SRC/dlartg.f3
-rw-r--r--SRC/dlartgp.f3
-rw-r--r--SRC/dlascl.f3
-rw-r--r--SRC/dlasd1.f3
-rw-r--r--SRC/dlasd2.f6
-rw-r--r--SRC/dlasd3.f6
-rw-r--r--SRC/dlasd4.f15
-rw-r--r--SRC/dlasd6.f9
-rw-r--r--SRC/dlasd7.f3
-rw-r--r--SRC/dlasd8.f3
-rw-r--r--SRC/dlasdq.f3
-rw-r--r--SRC/dlaset.f6
-rw-r--r--SRC/dlasq3.f3
-rw-r--r--SRC/dlasyf.f3
-rw-r--r--SRC/dlatbs.f6
-rw-r--r--SRC/dlatps.f6
-rw-r--r--SRC/dlatrs.f6
-rw-r--r--SRC/dlatzm.f6
-rw-r--r--SRC/dorbdb.f3
-rw-r--r--SRC/dorcsd.f9
-rw-r--r--SRC/dorgbr.f3
-rw-r--r--SRC/dorghr.f6
-rw-r--r--SRC/dorglq.f3
-rw-r--r--SRC/dorgql.f3
-rw-r--r--SRC/dorgqr.f3
-rw-r--r--SRC/dorgrq.f3
-rw-r--r--SRC/dorgtr.f3
-rw-r--r--SRC/dormbr.f3
-rw-r--r--SRC/dormhr.f6
-rw-r--r--SRC/dormlq.f3
-rw-r--r--SRC/dormql.f3
-rw-r--r--SRC/dormqr.f3
-rw-r--r--SRC/dormrq.f3
-rw-r--r--SRC/dormrz.f3
-rw-r--r--SRC/dormtr.f3
-rw-r--r--SRC/dpbrfs.f6
-rw-r--r--SRC/dpbstf.f3
-rw-r--r--SRC/dpbsv.f3
-rw-r--r--SRC/dpbsvx.f9
-rw-r--r--SRC/dpbtf2.f3
-rw-r--r--SRC/dpbtrf.f3
-rw-r--r--SRC/dpftrf.f3
-rw-r--r--SRC/dpftri.f3
-rw-r--r--SRC/dporfs.f6
-rw-r--r--SRC/dporfsx.f51
-rw-r--r--SRC/dposv.f3
-rw-r--r--SRC/dposvx.f9
-rw-r--r--SRC/dposvxx.f60
-rw-r--r--SRC/dpotf2.f3
-rw-r--r--SRC/dpotrf.f3
-rw-r--r--SRC/dpprfs.f6
-rw-r--r--SRC/dppsv.f3
-rw-r--r--SRC/dppsvx.f9
-rw-r--r--SRC/dpptrf.f3
-rw-r--r--SRC/dpptri.f3
-rw-r--r--SRC/dpstf2.f3
-rw-r--r--SRC/dpstrf.f3
-rw-r--r--SRC/dptrfs.f6
-rw-r--r--SRC/dsbev.f3
-rw-r--r--SRC/dsbevd.f9
-rw-r--r--SRC/dsbevx.f15
-rw-r--r--SRC/dsbgst.f3
-rw-r--r--SRC/dsbgv.f6
-rw-r--r--SRC/dsbgvd.f12
-rw-r--r--SRC/dsbgvx.f21
-rw-r--r--SRC/dsbtrd.f3
-rw-r--r--SRC/dsfrk.f18
-rw-r--r--SRC/dspev.f3
-rw-r--r--SRC/dspevd.f9
-rw-r--r--SRC/dspevx.f15
-rw-r--r--SRC/dspgst.f3
-rw-r--r--SRC/dspgv.f6
-rw-r--r--SRC/dspgvd.f12
-rw-r--r--SRC/dspgvx.f24
-rw-r--r--SRC/dsprfs.f6
-rw-r--r--SRC/dspsv.f3
-rw-r--r--SRC/dspsvx.f6
-rw-r--r--SRC/dsptrf.f3
-rw-r--r--SRC/dsptri.f3
-rw-r--r--SRC/dstebz.f18
-rw-r--r--SRC/dstedc.f6
-rw-r--r--SRC/dstegr.f6
-rw-r--r--SRC/dstein.f9
-rw-r--r--SRC/dstemr.f6
-rw-r--r--SRC/dstevd.f6
-rw-r--r--SRC/dstevr.f18
-rw-r--r--SRC/dstevx.f12
-rw-r--r--SRC/dsyev.f3
-rw-r--r--SRC/dsyevd.f6
-rw-r--r--SRC/dsyevr.f18
-rw-r--r--SRC/dsyevx.f15
-rw-r--r--SRC/dsygs2.f3
-rw-r--r--SRC/dsygst.f3
-rw-r--r--SRC/dsygv.f9
-rw-r--r--SRC/dsygvd.f12
-rw-r--r--SRC/dsygvx.f21
-rw-r--r--SRC/dsyrfs.f6
-rw-r--r--SRC/dsyrfsx.f51
-rw-r--r--SRC/dsysv.f6
-rw-r--r--SRC/dsysvx.f9
-rw-r--r--SRC/dsysvxx.f60
-rw-r--r--SRC/dsyswapr.f3
-rw-r--r--SRC/dsytf2.f3
-rw-r--r--SRC/dsytrf.f6
-rw-r--r--SRC/dsytri.f3
-rw-r--r--SRC/dsytri2.f3
-rw-r--r--SRC/dsytri2x.f3
-rw-r--r--SRC/dtfsm.f30
-rw-r--r--SRC/dtftri.f3
-rw-r--r--SRC/dtgevc.f12
-rw-r--r--SRC/dtgexc.f3
-rw-r--r--SRC/dtgsen.f12
-rw-r--r--SRC/dtgsja.f9
-rw-r--r--SRC/dtgsna.f3
-rw-r--r--SRC/dtgsyl.f3
-rw-r--r--SRC/dtrexc.f3
-rw-r--r--SRC/dtrsen.f9
-rw-r--r--SRC/dtrti2.f3
-rw-r--r--SRC/dtzrzf.f3
-rw-r--r--SRC/ieeeck.f3
-rw-r--r--SRC/iparmq.f15
-rw-r--r--SRC/sbbcsd.f15
-rw-r--r--SRC/sbdsqr.f9
-rw-r--r--SRC/sgbrfs.f6
-rw-r--r--SRC/sgbrfsx.f51
-rw-r--r--SRC/sgbsvx.f18
-rw-r--r--SRC/sgbsvxx.f69
-rw-r--r--SRC/sgbtf2.f3
-rw-r--r--SRC/sgbtrf.f3
-rw-r--r--SRC/sgees.f3
-rw-r--r--SRC/sgeesx.f6
-rw-r--r--SRC/sgeev.f3
-rw-r--r--SRC/sgeevx.f9
-rw-r--r--SRC/sgegs.f3
-rw-r--r--SRC/sgegv.f9
-rw-r--r--SRC/sgehd2.f3
-rw-r--r--SRC/sgehrd.f6
-rw-r--r--SRC/sgels.f3
-rw-r--r--SRC/sgelsd.f3
-rw-r--r--SRC/sgelss.f3
-rw-r--r--SRC/sgelsy.f3
-rw-r--r--SRC/sgeqp3.f3
-rw-r--r--SRC/sgeqrf.f3
-rw-r--r--SRC/sgeqrfp.f3
-rw-r--r--SRC/sgerfs.f6
-rw-r--r--SRC/sgerfsx.f51
-rw-r--r--SRC/sgesvd.f6
-rw-r--r--SRC/sgesvj.f3
-rw-r--r--SRC/sgesvx.f15
-rw-r--r--SRC/sgesvxx.f66
-rw-r--r--SRC/sgetri.f3
-rw-r--r--SRC/sgges.f9
-rw-r--r--SRC/sggesx.f9
-rw-r--r--SRC/sggev.f6
-rw-r--r--SRC/sggevx.f6
-rw-r--r--SRC/sggglm.f6
-rw-r--r--SRC/sgghrd.f3
-rw-r--r--SRC/sgglse.f3
-rw-r--r--SRC/sggsvd.f12
-rw-r--r--SRC/sggsvp.f6
-rw-r--r--SRC/sgtrfs.f6
-rw-r--r--SRC/sgtsv.f9
-rw-r--r--SRC/sgtsvx.f15
-rw-r--r--SRC/sgttrf.f9
-rw-r--r--SRC/shgeqz.f3
-rw-r--r--SRC/shsein.f3
-rw-r--r--SRC/shseqr.f12
-rw-r--r--SRC/sla_gbamv.f9
-rw-r--r--SRC/sla_geamv.f9
-rw-r--r--SRC/sla_porfsx_extended.f42
-rw-r--r--SRC/sla_syamv.f9
-rw-r--r--SRC/sla_syrfsx_extended.f42
-rw-r--r--SRC/slaed4.f15
-rw-r--r--SRC/slagtf.f15
-rw-r--r--SRC/slagts.f3
-rw-r--r--SRC/slahqr.f9
-rw-r--r--SRC/slals0.f3
-rw-r--r--SRC/slaqgb.f12
-rw-r--r--SRC/slaqge.f9
-rw-r--r--SRC/slaqr0.f6
-rw-r--r--SRC/slaqr2.f3
-rw-r--r--SRC/slaqr3.f3
-rw-r--r--SRC/slaqr4.f6
-rw-r--r--SRC/slaqsb.f12
-rw-r--r--SRC/slaqsp.f12
-rw-r--r--SRC/slaqsy.f12
-rw-r--r--SRC/slarrd.f9
-rw-r--r--SRC/slarre.f3
-rw-r--r--SRC/slarrk.f6
-rw-r--r--SRC/slartg.f3
-rw-r--r--SRC/slartgp.f3
-rw-r--r--SRC/slascl.f3
-rw-r--r--SRC/slasd1.f3
-rw-r--r--SRC/slasd2.f6
-rw-r--r--SRC/slasd3.f6
-rw-r--r--SRC/slasd4.f15
-rw-r--r--SRC/slasd6.f9
-rw-r--r--SRC/slasd7.f3
-rw-r--r--SRC/slasd8.f3
-rw-r--r--SRC/slasdq.f3
-rw-r--r--SRC/slaset.f6
-rw-r--r--SRC/slasq3.f3
-rw-r--r--SRC/slasyf.f3
-rw-r--r--SRC/slatbs.f6
-rw-r--r--SRC/slatps.f6
-rw-r--r--SRC/slatrs.f6
-rw-r--r--SRC/slatzm.f6
-rw-r--r--SRC/sorbdb.f3
-rw-r--r--SRC/sorcsd.f9
-rw-r--r--SRC/sorgbr.f3
-rw-r--r--SRC/sorghr.f6
-rw-r--r--SRC/sorglq.f3
-rw-r--r--SRC/sorgql.f3
-rw-r--r--SRC/sorgqr.f3
-rw-r--r--SRC/sorgrq.f3
-rw-r--r--SRC/sorgtr.f3
-rw-r--r--SRC/sormbr.f3
-rw-r--r--SRC/sormhr.f6
-rw-r--r--SRC/sormlq.f3
-rw-r--r--SRC/sormql.f3
-rw-r--r--SRC/sormqr.f3
-rw-r--r--SRC/sormrq.f3
-rw-r--r--SRC/sormrz.f3
-rw-r--r--SRC/sormtr.f3
-rw-r--r--SRC/spbrfs.f6
-rw-r--r--SRC/spbsv.f3
-rw-r--r--SRC/spbsvx.f9
-rw-r--r--SRC/spbtf2.f3
-rw-r--r--SRC/spbtrf.f3
-rw-r--r--SRC/spftrf.f3
-rw-r--r--SRC/spftri.f3
-rw-r--r--SRC/sporfs.f6
-rw-r--r--SRC/sporfsx.f51
-rw-r--r--SRC/sposv.f3
-rw-r--r--SRC/sposvx.f9
-rw-r--r--SRC/sposvxx.f60
-rw-r--r--SRC/spotf2.f3
-rw-r--r--SRC/spotrf.f3
-rw-r--r--SRC/spprfs.f6
-rw-r--r--SRC/sppsv.f3
-rw-r--r--SRC/sppsvx.f9
-rw-r--r--SRC/spptrf.f3
-rw-r--r--SRC/spptri.f3
-rw-r--r--SRC/spstf2.f3
-rw-r--r--SRC/spstrf.f3
-rw-r--r--SRC/sptrfs.f6
-rw-r--r--SRC/ssbev.f3
-rw-r--r--SRC/ssbevd.f9
-rw-r--r--SRC/ssbevx.f15
-rw-r--r--SRC/ssbgst.f3
-rw-r--r--SRC/ssbgv.f6
-rw-r--r--SRC/ssbgvd.f12
-rw-r--r--SRC/ssbgvx.f21
-rw-r--r--SRC/ssbtrd.f3
-rw-r--r--SRC/ssfrk.f18
-rw-r--r--SRC/sspev.f3
-rw-r--r--SRC/sspevd.f9
-rw-r--r--SRC/sspevx.f15
-rw-r--r--SRC/sspgst.f3
-rw-r--r--SRC/sspgv.f6
-rw-r--r--SRC/sspgvd.f12
-rw-r--r--SRC/sspgvx.f24
-rw-r--r--SRC/ssprfs.f6
-rw-r--r--SRC/sspsv.f3
-rw-r--r--SRC/sspsvx.f6
-rw-r--r--SRC/ssptrf.f3
-rw-r--r--SRC/ssptri.f3
-rw-r--r--SRC/sstebz.f18
-rw-r--r--SRC/sstedc.f6
-rw-r--r--SRC/sstegr.f6
-rw-r--r--SRC/sstein.f9
-rw-r--r--SRC/sstemr.f6
-rw-r--r--SRC/sstevd.f6
-rw-r--r--SRC/sstevr.f18
-rw-r--r--SRC/sstevx.f12
-rw-r--r--SRC/ssyev.f3
-rw-r--r--SRC/ssyevd.f6
-rw-r--r--SRC/ssyevr.f18
-rw-r--r--SRC/ssyevx.f15
-rw-r--r--SRC/ssygs2.f3
-rw-r--r--SRC/ssygst.f3
-rw-r--r--SRC/ssygv.f9
-rw-r--r--SRC/ssygvd.f12
-rw-r--r--SRC/ssygvx.f21
-rw-r--r--SRC/ssyrfs.f6
-rw-r--r--SRC/ssyrfsx.f51
-rw-r--r--SRC/ssysv.f6
-rw-r--r--SRC/ssysvx.f9
-rw-r--r--SRC/ssysvxx.f60
-rw-r--r--SRC/ssyswapr.f3
-rw-r--r--SRC/ssytf2.f3
-rw-r--r--SRC/ssytrf.f6
-rw-r--r--SRC/ssytri.f3
-rw-r--r--SRC/ssytri2.f3
-rw-r--r--SRC/ssytri2x.f3
-rw-r--r--SRC/stfsm.f30
-rw-r--r--SRC/stftri.f3
-rw-r--r--SRC/stgevc.f12
-rw-r--r--SRC/stgexc.f3
-rw-r--r--SRC/stgsen.f12
-rw-r--r--SRC/stgsja.f9
-rw-r--r--SRC/stgsna.f3
-rw-r--r--SRC/stgsyl.f3
-rw-r--r--SRC/strexc.f3
-rw-r--r--SRC/strsen.f9
-rw-r--r--SRC/strti2.f3
-rw-r--r--SRC/stzrzf.f3
-rw-r--r--SRC/zbbcsd.f15
-rw-r--r--SRC/zbdsqr.f9
-rw-r--r--SRC/zcposv.f6
-rw-r--r--SRC/zgbrfs.f6
-rw-r--r--SRC/zgbrfsx.f51
-rw-r--r--SRC/zgbsvx.f18
-rw-r--r--SRC/zgbsvxx.f69
-rw-r--r--SRC/zgbtf2.f3
-rw-r--r--SRC/zgbtrf.f3
-rw-r--r--SRC/zgebrd.f3
-rw-r--r--SRC/zgees.f3
-rw-r--r--SRC/zgeesx.f3
-rw-r--r--SRC/zgeev.f3
-rw-r--r--SRC/zgeevx.f9
-rw-r--r--SRC/zgegs.f6
-rw-r--r--SRC/zgegv.f3
-rw-r--r--SRC/zgehd2.f3
-rw-r--r--SRC/zgehrd.f6
-rw-r--r--SRC/zgels.f3
-rw-r--r--SRC/zgelsd.f3
-rw-r--r--SRC/zgelss.f3
-rw-r--r--SRC/zgelsy.f3
-rw-r--r--SRC/zgeqlf.f3
-rw-r--r--SRC/zgeqp3.f3
-rw-r--r--SRC/zgeqrf.f3
-rw-r--r--SRC/zgeqrfp.f3
-rw-r--r--SRC/zgerfs.f6
-rw-r--r--SRC/zgerfsx.f51
-rw-r--r--SRC/zgesdd.f3
-rw-r--r--SRC/zgesvd.f6
-rw-r--r--SRC/zgesvx.f15
-rw-r--r--SRC/zgesvxx.f66
-rw-r--r--SRC/zgetri.f3
-rw-r--r--SRC/zgges.f9
-rw-r--r--SRC/zggesx.f9
-rw-r--r--SRC/zggev.f6
-rw-r--r--SRC/zggevx.f6
-rw-r--r--SRC/zggglm.f6
-rw-r--r--SRC/zgghrd.f3
-rw-r--r--SRC/zgglse.f3
-rw-r--r--SRC/zggsvd.f12
-rw-r--r--SRC/zggsvp.f6
-rw-r--r--SRC/zgtrfs.f6
-rw-r--r--SRC/zgtsvx.f15
-rw-r--r--SRC/zgttrf.f9
-rw-r--r--SRC/zhbev.f3
-rw-r--r--SRC/zhbevd.f12
-rw-r--r--SRC/zhbevx.f15
-rw-r--r--SRC/zhbgst.f3
-rw-r--r--SRC/zhbgv.f6
-rw-r--r--SRC/zhbgvd.f15
-rw-r--r--SRC/zhbgvx.f21
-rw-r--r--SRC/zhbtrd.f3
-rw-r--r--SRC/zheev.f3
-rw-r--r--SRC/zheevd.f9
-rw-r--r--SRC/zheevr.f21
-rw-r--r--SRC/zheevx.f15
-rw-r--r--SRC/zhegs2.f3
-rw-r--r--SRC/zhegst.f3
-rw-r--r--SRC/zhegv.f9
-rw-r--r--SRC/zhegvd.f15
-rw-r--r--SRC/zhegvx.f9
-rw-r--r--SRC/zherfs.f6
-rw-r--r--SRC/zherfsx.f51
-rw-r--r--SRC/zhesv.f6
-rw-r--r--SRC/zhesvx.f9
-rw-r--r--SRC/zhesvxx.f60
-rw-r--r--SRC/zheswapr.f3
-rw-r--r--SRC/zhetf2.f3
-rw-r--r--SRC/zhetrd.f3
-rw-r--r--SRC/zhetrf.f3
-rw-r--r--SRC/zhetri.f3
-rw-r--r--SRC/zhetri2.f3
-rw-r--r--SRC/zhetri2x.f3
-rw-r--r--SRC/zhfrk.f18
-rw-r--r--SRC/zhgeqz.f6
-rw-r--r--SRC/zhpev.f3
-rw-r--r--SRC/zhpevd.f12
-rw-r--r--SRC/zhpevx.f15
-rw-r--r--SRC/zhpgst.f3
-rw-r--r--SRC/zhpgv.f6
-rw-r--r--SRC/zhpgvd.f15
-rw-r--r--SRC/zhpgvx.f24
-rw-r--r--SRC/zhprfs.f6
-rw-r--r--SRC/zhpsv.f3
-rw-r--r--SRC/zhpsvx.f6
-rw-r--r--SRC/zhptrf.f3
-rw-r--r--SRC/zhptri.f3
-rw-r--r--SRC/zhseqr.f36
-rw-r--r--SRC/zla_gbamv.f9
-rw-r--r--SRC/zla_geamv.f9
-rw-r--r--SRC/zla_heamv.f9
-rw-r--r--SRC/zla_herfsx_extended.f42
-rw-r--r--SRC/zla_porfsx_extended.f42
-rw-r--r--SRC/zla_syamv.f9
-rw-r--r--SRC/zla_syrfsx_extended.f42
-rw-r--r--SRC/zlahef.f3
-rw-r--r--SRC/zlahqr.f9
-rw-r--r--SRC/zlals0.f3
-rw-r--r--SRC/zlanhf.f6
-rw-r--r--SRC/zlaqgb.f12
-rw-r--r--SRC/zlaqge.f9
-rw-r--r--SRC/zlaqhb.f12
-rw-r--r--SRC/zlaqhe.f12
-rw-r--r--SRC/zlaqhp.f12
-rw-r--r--SRC/zlaqr0.f9
-rw-r--r--SRC/zlaqr1.f3
-rw-r--r--SRC/zlaqr2.f3
-rw-r--r--SRC/zlaqr3.f3
-rw-r--r--SRC/zlaqr4.f6
-rw-r--r--SRC/zlaqsb.f12
-rw-r--r--SRC/zlaqsp.f12
-rw-r--r--SRC/zlaqsy.f12
-rw-r--r--SRC/zlascl.f3
-rw-r--r--SRC/zlasyf.f3
-rw-r--r--SRC/zlatbs.f6
-rw-r--r--SRC/zlatps.f6
-rw-r--r--SRC/zlatrs.f6
-rw-r--r--SRC/zlatzm.f6
-rw-r--r--SRC/zpbrfs.f6
-rw-r--r--SRC/zpbstf.f3
-rw-r--r--SRC/zpbsv.f3
-rw-r--r--SRC/zpbsvx.f9
-rw-r--r--SRC/zpbtf2.f3
-rw-r--r--SRC/zpbtrf.f3
-rw-r--r--SRC/zpftrf.f66
-rw-r--r--SRC/zpftri.f3
-rw-r--r--SRC/zporfs.f6
-rw-r--r--SRC/zporfsx.f51
-rw-r--r--SRC/zposv.f3
-rw-r--r--SRC/zposvx.f9
-rw-r--r--SRC/zposvxx.f60
-rw-r--r--SRC/zpotf2.f3
-rw-r--r--SRC/zpotrf.f3
-rw-r--r--SRC/zpprfs.f6
-rw-r--r--SRC/zppsv.f3
-rw-r--r--SRC/zppsvx.f9
-rw-r--r--SRC/zpptrf.f3
-rw-r--r--SRC/zpptri.f3
-rw-r--r--SRC/zpstf2.f3
-rw-r--r--SRC/zpstrf.f3
-rw-r--r--SRC/zptrfs.f6
-rw-r--r--SRC/zspmv.f9
-rw-r--r--SRC/zspr.f9
-rw-r--r--SRC/zsprfs.f6
-rw-r--r--SRC/zspsv.f3
-rw-r--r--SRC/zspsvx.f6
-rw-r--r--SRC/zsptrf.f3
-rw-r--r--SRC/zsptri.f3
-rw-r--r--SRC/zstedc.f9
-rw-r--r--SRC/zstegr.f6
-rw-r--r--SRC/zstein.f9
-rw-r--r--SRC/zstemr.f6
-rw-r--r--SRC/zsymv.f9
-rw-r--r--SRC/zsyr.f9
-rw-r--r--SRC/zsyrfs.f6
-rw-r--r--SRC/zsyrfsx.f51
-rw-r--r--SRC/zsysv.f6
-rw-r--r--SRC/zsysvx.f9
-rw-r--r--SRC/zsysvxx.f60
-rw-r--r--SRC/zsyswapr.f3
-rw-r--r--SRC/zsytf2.f3
-rw-r--r--SRC/zsytrf.f6
-rw-r--r--SRC/zsytri.f3
-rw-r--r--SRC/zsytri2.f3
-rw-r--r--SRC/zsytri2x.f3
-rw-r--r--SRC/ztfsm.f30
-rw-r--r--SRC/ztftri.f3
-rw-r--r--SRC/ztgsen.f12
-rw-r--r--SRC/ztgsja.f12
-rw-r--r--SRC/ztgsyl.f3
-rw-r--r--SRC/ztrexc.f3
-rw-r--r--SRC/ztrsen.f3
-rw-r--r--SRC/ztrti2.f3
-rw-r--r--SRC/ztzrzf.f3
-rw-r--r--SRC/zunbdb.f3
-rw-r--r--SRC/zuncsd.f12
-rw-r--r--SRC/zungbr.f3
-rw-r--r--SRC/zunghr.f6
-rw-r--r--SRC/zunglq.f3
-rw-r--r--SRC/zungql.f3
-rw-r--r--SRC/zungqr.f3
-rw-r--r--SRC/zungrq.f3
-rw-r--r--SRC/zungtr.f3
-rw-r--r--SRC/zunmbr.f3
-rw-r--r--SRC/zunmhr.f6
-rw-r--r--SRC/zunmlq.f3
-rw-r--r--SRC/zunmql.f3
-rw-r--r--SRC/zunmqr.f3
-rw-r--r--SRC/zunmrq.f3
-rw-r--r--SRC/zunmrz.f3
-rw-r--r--SRC/zunmtr.f3
754 files changed, 2436 insertions, 4872 deletions
diff --git a/SRC/cbbcsd.f b/SRC/cbbcsd.f
index 9db7b9ee..91254a91 100644
--- a/SRC/cbbcsd.f
+++ b/SRC/cbbcsd.f
@@ -282,8 +282,7 @@
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the RWORK array,
*> returns this value as the first entry of the work array, and
@@ -298,20 +297,16 @@
*> > 0: if CBBCSD did not converge, INFO specifies the number
*> of nonzero entries in PHI, and B11D, B11E, etc.,
*> contain the partially reduced matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
diff --git a/SRC/cbdsqr.f b/SRC/cbdsqr.f
index e8ea175d..c9423b93 100644
--- a/SRC/cbdsqr.f
+++ b/SRC/cbdsqr.f
@@ -180,12 +180,10 @@
*> elements of a bidiagonal matrix which is orthogonally
*> similar to the input matrix B; if INFO = i, i
*> elements of E have not converged to zero.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL REAL, default = max(10,min(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> If it is positive, TOLMUL*EPS is the desired relative
@@ -200,8 +198,7 @@
*> Default is to lose at either one eighth or 2 of the
*> available decimal digits in each computed singular value
*> (whichever is smaller).
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITR INTEGER, default = 6
*> MAXITR controls the maximum number of passes of the
*> algorithm through its inner loop. The algorithms stops
diff --git a/SRC/cgbrfs.f b/SRC/cgbrfs.f
index 4fad09c9..1bff7c13 100644
--- a/SRC/cgbrfs.f
+++ b/SRC/cgbrfs.f
@@ -181,12 +181,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cgbrfsx.f b/SRC/cgbrfsx.f
index fa6ee264..7448f1e4 100644
--- a/SRC/cgbrfsx.f
+++ b/SRC/cgbrfsx.f
@@ -256,37 +256,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -295,8 +289,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -307,14 +300,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -322,26 +313,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -352,8 +339,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -372,8 +358,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -384,8 +369,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -395,8 +379,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cgbsvx.f b/SRC/cgbsvx.f
index 41b0df4d..890112da 100644
--- a/SRC/cgbsvx.f
+++ b/SRC/cgbsvx.f
@@ -151,14 +151,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then A must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -181,12 +179,10 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns details of the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns details of the LU factorization of the equilibrated
*> matrix A (see the description of AB for the form of the
@@ -206,13 +202,11 @@
*> contains the pivot indices from the factorization A = L*U
*> as computed by CGBTRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the equilibrated matrix A.
diff --git a/SRC/cgbsvxx.f b/SRC/cgbsvxx.f
index 483fa9c3..3684e81b 100644
--- a/SRC/cgbsvxx.f
+++ b/SRC/cgbsvxx.f
@@ -180,14 +180,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then AB must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -210,13 +208,11 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -236,13 +232,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by SGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -382,37 +376,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -421,8 +409,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -433,14 +420,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -448,26 +433,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -478,8 +459,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -498,8 +478,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -510,8 +489,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -521,8 +499,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cgbtf2.f b/SRC/cgbtf2.f
index 0b9a514e..b01bad78 100644
--- a/SRC/cgbtf2.f
+++ b/SRC/cgbtf2.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/cgbtrf.f b/SRC/cgbtrf.f
index 7d319ebf..17a238b6 100644
--- a/SRC/cgbtrf.f
+++ b/SRC/cgbtrf.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/cgees.f b/SRC/cgees.f
index b0ee5e2a..0c5199c9 100644
--- a/SRC/cgees.f
+++ b/SRC/cgees.f
@@ -143,8 +143,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgeesx.f b/SRC/cgeesx.f
index 37d41962..c4c24f32 100644
--- a/SRC/cgeesx.f
+++ b/SRC/cgeesx.f
@@ -184,8 +184,7 @@
*> that an error is only returned if LWORK < max(1,2*N), but if
*> SENSE = 'E' or 'V' or 'B' this may not be large enough.
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates upper bound on the optimal size of the
*> array WORK, returns this value as the first entry of the WORK
diff --git a/SRC/cgeev.f b/SRC/cgeev.f
index 51bd22dc..bad77c57 100644
--- a/SRC/cgeev.f
+++ b/SRC/cgeev.f
@@ -139,8 +139,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgeevx.f b/SRC/cgeevx.f
index 76a481e5..8f37a566 100644
--- a/SRC/cgeevx.f
+++ b/SRC/cgeevx.f
@@ -89,8 +89,7 @@
*> to make the rows and columns of A more equal in
*> norm. Do not permute;
*> = 'B': Both diagonally scale and permute A.
-*> \endverbatim
-*> \verbatim
+*>
*> Computed reciprocal condition numbers will be for the matrix
*> after balancing and/or permuting. Permuting does not change
*> condition numbers (in exact arithmetic), but balancing does.
@@ -120,8 +119,7 @@
*> = 'E': Computed for eigenvalues only;
*> = 'V': Computed for right eigenvectors only;
*> = 'B': Computed for eigenvalues and right eigenvectors.
-*> \endverbatim
-*> \verbatim
+*>
*> If SENSE = 'E' or 'B', both left and right eigenvectors
*> must also be computed (JOBVL = 'V' and JOBVR = 'V').
*> \endverbatim
@@ -248,8 +246,7 @@
*> LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
*> LWORK >= N*N+2*N.
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgegs.f b/SRC/cgegs.f
index 78c42fe2..90d2e345 100644
--- a/SRC/cgegs.f
+++ b/SRC/cgegs.f
@@ -124,8 +124,7 @@
*> The non-negative real scalars beta that define the
*> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
*> of the triangular factor T.
-*> \endverbatim
-*> \verbatim
+*>
*> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
*> represent the j-th eigenvalue of the matrix pair (A,B), in
*> one of the forms lambda = alpha/beta or mu = beta/alpha.
@@ -176,8 +175,7 @@
*> blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute:
*> NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;
*> the optimal LWORK is N*(NB+1).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgegv.f b/SRC/cgegv.f
index 29f1b99e..69fc8295 100644
--- a/SRC/cgegv.f
+++ b/SRC/cgegv.f
@@ -200,8 +200,7 @@
*> blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute:
*> NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;
*> The optimal LWORK is MAX( 2*N, N*(NB+1) ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgehrd.f b/SRC/cgehrd.f
index 40b88a64..363c9a84 100644
--- a/SRC/cgehrd.f
+++ b/SRC/cgehrd.f
@@ -100,8 +100,7 @@
*> The length of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgelqf.f b/SRC/cgelqf.f
index 3239113d..f88e5257 100644
--- a/SRC/cgelqf.f
+++ b/SRC/cgelqf.f
@@ -89,8 +89,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgels.f b/SRC/cgels.f
index 3d1a9dba..29bb2aba 100644
--- a/SRC/cgels.f
+++ b/SRC/cgels.f
@@ -149,8 +149,7 @@
*> For optimal performance,
*> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgelsd.f b/SRC/cgelsd.f
index 039adf25..4ec0862d 100644
--- a/SRC/cgelsd.f
+++ b/SRC/cgelsd.f
@@ -159,8 +159,7 @@
*> 2 * M + M * NRHS
*> if M is less than N, the code will execute correctly.
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the array WORK and the
*> minimum sizes of the arrays RWORK and IWORK, and returns
diff --git a/SRC/cgelss.f b/SRC/cgelss.f
index 740be762..e2540780 100644
--- a/SRC/cgelss.f
+++ b/SRC/cgelss.f
@@ -141,8 +141,7 @@
*> The dimension of the array WORK. LWORK >= 1, and also:
*> LWORK >= 2*min(M,N) + max(M,N,NRHS)
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgelsy.f b/SRC/cgelsy.f
index 2d5d7cdf..8e8261c6 100644
--- a/SRC/cgelsy.f
+++ b/SRC/cgelsy.f
@@ -169,8 +169,7 @@
*> where NB is an upper bound on the blocksize returned
*> by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR,
*> and CUNMRZ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgeqlf.f b/SRC/cgeqlf.f
index abe6472a..a3db5bbc 100644
--- a/SRC/cgeqlf.f
+++ b/SRC/cgeqlf.f
@@ -92,8 +92,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgeqp3.f b/SRC/cgeqp3.f
index abec72b5..7c1dc195 100644
--- a/SRC/cgeqp3.f
+++ b/SRC/cgeqp3.f
@@ -101,8 +101,7 @@
*> The dimension of the array WORK. LWORK >= N+1.
*> For optimal performance LWORK >= ( N+1 )*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgeqrf.f b/SRC/cgeqrf.f
index db420ede..cc76e06e 100644
--- a/SRC/cgeqrf.f
+++ b/SRC/cgeqrf.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgeqrfp.f b/SRC/cgeqrfp.f
index 7662fdd2..d734cc4c 100644
--- a/SRC/cgeqrfp.f
+++ b/SRC/cgeqrfp.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgerfs.f b/SRC/cgerfs.f
index 62a677cf..f06fd213 100644
--- a/SRC/cgerfs.f
+++ b/SRC/cgerfs.f
@@ -162,12 +162,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cgerfsx.f b/SRC/cgerfsx.f
index 48b27d11..e43b36c6 100644
--- a/SRC/cgerfsx.f
+++ b/SRC/cgerfsx.f
@@ -231,37 +231,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -270,8 +264,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -282,14 +275,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -297,26 +288,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -327,8 +314,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -347,8 +333,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -359,8 +344,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -370,8 +354,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cgesdd.f b/SRC/cgesdd.f
index 8d2f308e..994428f2 100644
--- a/SRC/cgesdd.f
+++ b/SRC/cgesdd.f
@@ -174,8 +174,7 @@
*> if JOBZ = 'S' or 'A',
*> LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, a workspace query is assumed. The optimal
*> size for the WORK array is calculated and stored in WORK(1),
*> and no other work except argument checking is performed.
diff --git a/SRC/cgesvd.f b/SRC/cgesvd.f
index d270d979..9abb7632 100644
--- a/SRC/cgesvd.f
+++ b/SRC/cgesvd.f
@@ -82,8 +82,7 @@
*> vectors) are overwritten on the array A;
*> = 'N': no rows of V**H (no right singular vectors) are
*> computed.
-*> \endverbatim
-*> \verbatim
+*>
*> JOBVT and JOBU cannot both be 'O'.
*> \endverbatim
*>
@@ -172,8 +171,7 @@
*> The dimension of the array WORK.
*> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)).
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgesvx.f b/SRC/cgesvx.f
index 660e9118..17dc4ade 100644
--- a/SRC/cgesvx.f
+++ b/SRC/cgesvx.f
@@ -138,8 +138,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -159,13 +158,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -185,13 +182,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by CGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
diff --git a/SRC/cgesvxx.f b/SRC/cgesvxx.f
index 32996803..543a52c5 100644
--- a/SRC/cgesvxx.f
+++ b/SRC/cgesvxx.f
@@ -168,8 +168,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -189,13 +188,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -215,13 +212,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by CGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -361,37 +356,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -400,8 +389,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -412,14 +400,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -427,26 +413,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -457,8 +439,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -477,8 +458,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -489,8 +469,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -500,8 +479,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cgetri.f b/SRC/cgetri.f
index cce96ed4..feb3a381 100644
--- a/SRC/cgetri.f
+++ b/SRC/cgetri.f
@@ -84,8 +84,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimal performance LWORK >= N*NB, where NB is
*> the optimal blocksize returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgges.f b/SRC/cgges.f
index 719b52de..723c61fd 100644
--- a/SRC/cgges.f
+++ b/SRC/cgges.f
@@ -108,8 +108,7 @@
*> to the top left of the Schur form.
*> An eigenvalue ALPHA(j)/BETA(j) is selected if
*> SELCTG(ALPHA(j),BETA(j)) is true.
-*> \endverbatim
-*> \verbatim
+*>
*> Note that a selected complex eigenvalue may no longer satisfy
*> SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
*> ordering may change the value of complex eigenvalues
@@ -171,8 +170,7 @@
*> generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j),
*> j=1,...,N are the diagonals of the complex Schur form (A,B)
*> output by CGGES. The BETA(j) will be non-negative real.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio alpha/beta.
@@ -220,8 +218,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cggesx.f b/SRC/cggesx.f
index 5715f98b..d2073a19 100644
--- a/SRC/cggesx.f
+++ b/SRC/cggesx.f
@@ -182,8 +182,7 @@
*> generalized eigenvalues. ALPHA(j) and BETA(j),j=1,...,N are
*> the diagonals of the complex Schur form (S,T). BETA(j) will
*> be non-negative real.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio alpha/beta.
@@ -254,8 +253,7 @@
*> Note also that an error is only returned if
*> LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
*> not be large enough.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the bound on the optimal size of the WORK
*> array and the minimum size of the IWORK array, returns these
@@ -282,8 +280,7 @@
*> The dimension of the array WORK.
*> If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
*> LIWORK >= N+2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the bound on the optimal size of the
*> WORK array and the minimum size of the IWORK array, returns
diff --git a/SRC/cggev.f b/SRC/cggev.f
index 75a36609..69cb6fc2 100644
--- a/SRC/cggev.f
+++ b/SRC/cggev.f
@@ -121,8 +121,7 @@
*> BETA is COMPLEX array, dimension (N)
*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
*> generalized eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio alpha/beta.
@@ -178,8 +177,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cggevx.f b/SRC/cggevx.f
index 20ca5fb3..011ff1f6 100644
--- a/SRC/cggevx.f
+++ b/SRC/cggevx.f
@@ -158,8 +158,7 @@
*> BETA is COMPLEX array, dimension (N)
*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
*> eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio ALPHA/BETA.
@@ -289,8 +288,7 @@
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> If SENSE = 'E', LWORK >= max(1,4*N).
*> If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cggglm.f b/SRC/cggglm.f
index 22363f0c..16d74fc3 100644
--- a/SRC/cggglm.f
+++ b/SRC/cggglm.f
@@ -130,8 +130,7 @@
*> \param[out] Y
*> \verbatim
*> Y is COMPLEX array, dimension (P)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, X and Y are the solutions of the GLM problem.
*> \endverbatim
*>
@@ -148,8 +147,7 @@
*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> CGEQRF, CGERQF, CUNMQR and CUNMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cgghrd.f b/SRC/cgghrd.f
index e30fbf58..46c6b285 100644
--- a/SRC/cgghrd.f
+++ b/SRC/cgghrd.f
@@ -101,8 +101,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI mark the rows and columns of A which are to be
*> reduced. It is assumed that A is already upper triangular
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
diff --git a/SRC/cgglse.f b/SRC/cgglse.f
index fe3df1c8..4a62fd4d 100644
--- a/SRC/cgglse.f
+++ b/SRC/cgglse.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> CGEQRF, CGERQF, CUNMQR and CUNMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cggsvd.f b/SRC/cggsvd.f
index 8522da23..2280d3fc 100644
--- a/SRC/cggsvd.f
+++ b/SRC/cggsvd.f
@@ -170,8 +170,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose.
*> K + L = effective numerical rank of (A**H,B**H)**H.
@@ -213,8 +212,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
@@ -300,12 +298,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, the Jacobi-type procedure failed to
*> converge. For further details, see subroutine CTGSJA.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA REAL
*> TOLB REAL
*> TOLA and TOLB are the thresholds to determine the effective
diff --git a/SRC/cggsvp.f b/SRC/cggsvp.f
index bcb30940..dd98adc1 100644
--- a/SRC/cggsvp.f
+++ b/SRC/cggsvp.f
@@ -144,8 +144,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the thresholds to determine the effective
*> numerical rank of matrix B and a subblock of A. Generally,
*> they are set to
@@ -163,8 +162,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose section.
*> K + L = effective numerical rank of (A**H,B**H)**H.
diff --git a/SRC/cgtrfs.f b/SRC/cgtrfs.f
index 34fc2297..de8ed77d 100644
--- a/SRC/cgtrfs.f
+++ b/SRC/cgtrfs.f
@@ -185,12 +185,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cgtsvx.f b/SRC/cgtsvx.f
index cae1b36c..27667e1c 100644
--- a/SRC/cgtsvx.f
+++ b/SRC/cgtsvx.f
@@ -136,8 +136,7 @@
*> If FACT = 'F', then DLF is an input argument and on entry
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A as computed by CGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DLF is an output argument and on exit
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A.
@@ -149,8 +148,7 @@
*> If FACT = 'F', then DF is an input argument and on entry
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DF is an output argument and on exit
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
@@ -161,8 +159,7 @@
*> DUF is or output) COMPLEX array, dimension (N-1)
*> If FACT = 'F', then DUF is an input argument and on entry
*> contains the (n-1) elements of the first superdiagonal of U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DUF is an output argument and on exit
*> contains the (n-1) elements of the first superdiagonal of U.
*> \endverbatim
@@ -173,8 +170,7 @@
*> If FACT = 'F', then DU2 is an input argument and on entry
*> contains the (n-2) elements of the second superdiagonal of
*> U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DU2 is an output argument and on exit
*> contains the (n-2) elements of the second superdiagonal of
*> U.
@@ -186,8 +182,7 @@
*> If FACT = 'F', then IPIV is an input argument and on entry
*> contains the pivot indices from the LU factorization of A as
*> computed by CGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the LU factorization of A;
*> row i of the matrix was interchanged with row IPIV(i).
diff --git a/SRC/cgttrf.f b/SRC/cgttrf.f
index 492422fb..17d40172 100644
--- a/SRC/cgttrf.f
+++ b/SRC/cgttrf.f
@@ -59,8 +59,7 @@
*> DL is COMPLEX array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DL is overwritten by the (n-1) multipliers that
*> define the matrix L from the LU factorization of A.
*> \endverbatim
@@ -69,8 +68,7 @@
*> \verbatim
*> D is COMPLEX array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, D is overwritten by the n diagonal elements of the
*> upper triangular matrix U from the LU factorization of A.
*> \endverbatim
@@ -80,8 +78,7 @@
*> DU is COMPLEX array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
diff --git a/SRC/chbev.f b/SRC/chbev.f
index dc2dbacc..49c0a344 100644
--- a/SRC/chbev.f
+++ b/SRC/chbev.f
@@ -80,8 +80,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
diff --git a/SRC/chbevd.f b/SRC/chbevd.f
index 9308a47c..42b1a565 100644
--- a/SRC/chbevd.f
+++ b/SRC/chbevd.f
@@ -89,8 +89,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
@@ -140,8 +139,7 @@
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -164,8 +162,7 @@
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
*> 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -185,8 +182,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/chbevx.f b/SRC/chbevx.f
index a10b7c54..74cc1b48 100644
--- a/SRC/chbevx.f
+++ b/SRC/chbevx.f
@@ -95,8 +95,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form.
*> \endverbatim
@@ -156,24 +155,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AB to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/chbgst.f b/SRC/chbgst.f
index 469a021a..7ca26620 100644
--- a/SRC/chbgst.f
+++ b/SRC/chbgst.f
@@ -94,8 +94,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the transformed matrix X**H*A*X, stored in the same
*> format as A.
*> \endverbatim
diff --git a/SRC/chbgv.f b/SRC/chbgv.f
index b3cf165b..fcb39ee6 100644
--- a/SRC/chbgv.f
+++ b/SRC/chbgv.f
@@ -90,8 +90,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -110,8 +109,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by CPBSTF.
*> \endverbatim
diff --git a/SRC/chbgvd.f b/SRC/chbgvd.f
index 6f48693b..68eed18f 100644
--- a/SRC/chbgvd.f
+++ b/SRC/chbgvd.f
@@ -101,8 +101,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -121,8 +120,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by CPBSTF.
*> \endverbatim
@@ -169,8 +167,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -191,8 +188,7 @@
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -212,8 +208,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/chbgvx.f b/SRC/chbgvx.f
index fb40c44f..451ffc35 100644
--- a/SRC/chbgvx.f
+++ b/SRC/chbgvx.f
@@ -105,8 +105,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -125,8 +124,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by CPBSTF.
*> \endverbatim
@@ -161,8 +159,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -176,8 +173,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -191,17 +187,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
diff --git a/SRC/chbtrd.f b/SRC/chbtrd.f
index fe68cef6..1e2ec2d8 100644
--- a/SRC/chbtrd.f
+++ b/SRC/chbtrd.f
@@ -114,8 +114,7 @@
*> Q is COMPLEX array, dimension (LDQ,N)
*> On entry, if VECT = 'U', then Q must contain an N-by-N
*> matrix X; if VECT = 'N' or 'V', then Q need not be set.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit:
*> if VECT = 'V', Q contains the N-by-N unitary matrix Q;
*> if VECT = 'U', Q contains the product X*Q;
diff --git a/SRC/cheev.f b/SRC/cheev.f
index 03d4436d..fc702c1f 100644
--- a/SRC/cheev.f
+++ b/SRC/cheev.f
@@ -103,8 +103,7 @@
*> The length of the array WORK. LWORK >= max(1,2*N-1).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for CHETRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cheevd.f b/SRC/cheevd.f
index 583914cb..817ed7b6 100644
--- a/SRC/cheevd.f
+++ b/SRC/cheevd.f
@@ -113,8 +113,7 @@
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -137,8 +136,7 @@
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
*> 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -159,8 +157,7 @@
*> If N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/cheevr.f b/SRC/cheevr.f
index cbe9bfdf..64b2513a 100644
--- a/SRC/cheevr.f
+++ b/SRC/cheevr.f
@@ -187,22 +187,18 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
-*> \endverbatim
-*> \verbatim
+*>
*> If high relative accuracy is important, set ABSTOL to
*> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
@@ -272,8 +268,7 @@
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the max of the blocksize for CHETRD and for
*> CUNMTR as returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -292,8 +287,7 @@
*> \verbatim
*> LRWORK is INTEGER
*> The length of the array RWORK. LRWORK >= max(1,24*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -312,8 +306,7 @@
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/cheevx.f b/SRC/cheevx.f
index 2073733b..f2d41f68 100644
--- a/SRC/cheevx.f
+++ b/SRC/cheevx.f
@@ -131,24 +131,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
@@ -205,8 +201,7 @@
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the max of the blocksize for CHETRD and for
*> CUNMTR as returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/chegs2.f b/SRC/chegs2.f
index c335b06c..dd09df1c 100644
--- a/SRC/chegs2.f
+++ b/SRC/chegs2.f
@@ -82,8 +82,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/chegst.f b/SRC/chegst.f
index 32bbabdf..400252f5 100644
--- a/SRC/chegst.f
+++ b/SRC/chegst.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/chegv.f b/SRC/chegv.f
index 73c0b729..4c5dbeb2 100644
--- a/SRC/chegv.f
+++ b/SRC/chegv.f
@@ -84,8 +84,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -110,8 +109,7 @@
*> contains the upper triangular part of the matrix B.
*> If UPLO = 'L', the leading N-by-N lower triangular part of B
*> contains the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
@@ -141,8 +139,7 @@
*> The length of the array WORK. LWORK >= max(1,2*N-1).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for CHETRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/chegvd.f b/SRC/chegvd.f
index 53215629..88e9de1a 100644
--- a/SRC/chegvd.f
+++ b/SRC/chegvd.f
@@ -92,8 +92,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -118,8 +117,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
@@ -150,8 +148,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -172,8 +169,7 @@
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -194,8 +190,7 @@
*> If N <= 1, LIWORK >= 1.
*> If JOBZ = 'N' and N > 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/chegvx.f b/SRC/chegvx.f
index 0b191152..ca395bc4 100644
--- a/SRC/chegvx.f
+++ b/SRC/chegvx.f
@@ -138,8 +138,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -153,8 +152,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -238,8 +236,7 @@
*> The length of the array WORK. LWORK >= max(1,2*N).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for CHETRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cherfs.f b/SRC/cherfs.f
index d4c4efa0..38afe80b 100644
--- a/SRC/cherfs.f
+++ b/SRC/cherfs.f
@@ -168,12 +168,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cherfsx.f b/SRC/cherfsx.f
index d52eec1b..33a58533 100644
--- a/SRC/cherfsx.f
+++ b/SRC/cherfsx.f
@@ -218,37 +218,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -257,8 +251,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -269,14 +262,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -284,26 +275,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -314,8 +301,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -334,8 +320,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -346,8 +331,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -357,8 +341,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/chesv.f b/SRC/chesv.f
index e34c334a..ffc0a76a 100644
--- a/SRC/chesv.f
+++ b/SRC/chesv.f
@@ -85,8 +85,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the block diagonal matrix D and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*D*U**H or A = L*D*L**H as computed by
@@ -140,8 +139,7 @@
*> CHETRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/chesvx.f b/SRC/chesvx.f
index f6dd7b71..cf38ff88 100644
--- a/SRC/chesvx.f
+++ b/SRC/chesvx.f
@@ -136,8 +136,7 @@
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**H or A = L*D*L**H as computed by CHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -163,8 +162,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by CHETRF.
@@ -237,8 +235,7 @@
*> The length of WORK. LWORK >= max(1,2*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
*> NB is the optimal blocksize for CHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/chesvxx.f b/SRC/chesvxx.f
index bc134549..9c6ac832 100644
--- a/SRC/chesvxx.f
+++ b/SRC/chesvxx.f
@@ -166,8 +166,7 @@
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -185,8 +184,7 @@
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
@@ -212,8 +210,7 @@
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by CHETRF.
@@ -324,37 +321,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -363,8 +354,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -375,14 +365,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -390,26 +378,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -420,8 +404,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -440,8 +423,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -452,8 +434,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -463,8 +444,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cheswapr.f b/SRC/cheswapr.f
index 03d3188f..bb4a17f3 100644
--- a/SRC/cheswapr.f
+++ b/SRC/cheswapr.f
@@ -61,8 +61,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/chetf2.f b/SRC/chetf2.f
index 982fcb49..76d62511 100644
--- a/SRC/chetf2.f
+++ b/SRC/chetf2.f
@@ -76,8 +76,7 @@
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/chetrd.f b/SRC/chetrd.f
index 870f60b3..0c1927f6 100644
--- a/SRC/chetrd.f
+++ b/SRC/chetrd.f
@@ -118,8 +118,7 @@
*> The dimension of the array WORK. LWORK >= 1.
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/chetrf.f b/SRC/chetrf.f
index 33ed8bc2..7f14b7d6 100644
--- a/SRC/chetrf.f
+++ b/SRC/chetrf.f
@@ -75,8 +75,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/chetri.f b/SRC/chetri.f
index d2681dfb..4c916ce7 100644
--- a/SRC/chetri.f
+++ b/SRC/chetri.f
@@ -64,8 +64,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (Hermitian) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/chetri2.f b/SRC/chetri2.f
index 3af108ac..02fd41c3 100644
--- a/SRC/chetri2.f
+++ b/SRC/chetri2.f
@@ -65,8 +65,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/chetri2x.f b/SRC/chetri2x.f
index 2b32ea64..a065a6b5 100644
--- a/SRC/chetri2x.f
+++ b/SRC/chetri2x.f
@@ -64,8 +64,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the NNB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/chfrk.f b/SRC/chfrk.f
index dcd698b9..a289f828 100644
--- a/SRC/chfrk.f
+++ b/SRC/chfrk.f
@@ -68,16 +68,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,14 +83,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/chgeqz.f b/SRC/chgeqz.f
index e5776d8f..52cf95dd 100644
--- a/SRC/chgeqz.f
+++ b/SRC/chgeqz.f
@@ -180,8 +180,7 @@
*> The real non-negative scalars beta that define the
*> eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized
*> Schur factorization.
-*> \endverbatim
-*> \verbatim
+*>
*> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
*> represent the j-th eigenvalue of the matrix pair (A,B), in
*> one of the forms lambda = alpha/beta or mu = beta/alpha.
@@ -235,8 +234,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/chpev.f b/SRC/chpev.f
index 457c87a3..16d72408 100644
--- a/SRC/chpev.f
+++ b/SRC/chpev.f
@@ -72,8 +72,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
diff --git a/SRC/chpevd.f b/SRC/chpevd.f
index 902ce0f6..e5b446fa 100644
--- a/SRC/chpevd.f
+++ b/SRC/chpevd.f
@@ -81,8 +81,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -126,8 +125,7 @@
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -149,8 +147,7 @@
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
*> 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -170,8 +167,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/chpevx.f b/SRC/chpevx.f
index 254e4654..4634b340 100644
--- a/SRC/chpevx.f
+++ b/SRC/chpevx.f
@@ -86,8 +86,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -130,24 +129,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/chpgst.f b/SRC/chpgst.f
index a183d760..1368e71a 100644
--- a/SRC/chpgst.f
+++ b/SRC/chpgst.f
@@ -80,8 +80,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/chpgv.f b/SRC/chpgv.f
index f956d95f..faa9b782 100644
--- a/SRC/chpgv.f
+++ b/SRC/chpgv.f
@@ -84,8 +84,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -97,8 +96,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H, in the same storage
*> format as B.
diff --git a/SRC/chpgvd.f b/SRC/chpgvd.f
index a0623cca..b873f5a5 100644
--- a/SRC/chpgvd.f
+++ b/SRC/chpgvd.f
@@ -93,8 +93,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -106,8 +105,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H, in the same storage
*> format as B.
@@ -149,8 +147,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -171,8 +168,7 @@
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -192,8 +188,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/chpgvx.f b/SRC/chpgvx.f
index 6dce19a2..a1d0b904 100644
--- a/SRC/chpgvx.f
+++ b/SRC/chpgvx.f
@@ -98,8 +98,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -111,8 +110,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H, in the same storage
*> format as B.
@@ -126,8 +124,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -141,8 +138,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -156,17 +152,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -199,8 +192,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**H*B*Z = I;
*> if ITYPE = 3, Z**H*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
diff --git a/SRC/chprfs.f b/SRC/chprfs.f
index 900e3037..863f6aee 100644
--- a/SRC/chprfs.f
+++ b/SRC/chprfs.f
@@ -156,12 +156,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/chpsv.f b/SRC/chpsv.f
index 85360d54..6f3ff6d7 100644
--- a/SRC/chpsv.f
+++ b/SRC/chpsv.f
@@ -83,8 +83,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as
diff --git a/SRC/chpsvx.f b/SRC/chpsvx.f
index efe7671b..3fe0aea5 100644
--- a/SRC/chpsvx.f
+++ b/SRC/chpsvx.f
@@ -128,8 +128,7 @@
*> to obtain the factor U or L from the factorization
*> A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -150,8 +149,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by CHPTRF.
diff --git a/SRC/chptrf.f b/SRC/chptrf.f
index fb0d03cc..e78d98e6 100644
--- a/SRC/chptrf.f
+++ b/SRC/chptrf.f
@@ -70,8 +70,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L, stored as a packed triangular
*> matrix overwriting A (see below for further details).
diff --git a/SRC/chptri.f b/SRC/chptri.f
index b052d48c..69dbc560 100644
--- a/SRC/chptri.f
+++ b/SRC/chptri.f
@@ -65,8 +65,7 @@
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CHPTRF,
*> stored as a packed triangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (Hermitian) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
diff --git a/SRC/chseqr.f b/SRC/chseqr.f
index f54a9307..b1e2423c 100644
--- a/SRC/chseqr.f
+++ b/SRC/chseqr.f
@@ -82,8 +82,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that H is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to CGEBAL, and then passed to ZGEHRD
@@ -102,8 +101,7 @@
*> Schur form). If INFO = 0 and JOB = 'E', the contents of
*> H are unspecified on exit. (The output value of H when
*> INFO.GT.0 is given under the description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> Unlike earlier versions of CHSEQR, this subroutine may
*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
*> or j = IHI+1, IHI+2, ... N.
@@ -162,8 +160,7 @@
*> may be required for optimal performance. A workspace
*> query is recommended to determine the optimal workspace
*> size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then CHSEQR does a workspace query.
*> In this case, CHSEQR checks the input parameters and
*> estimates the optimal workspace size for the given
@@ -182,42 +179,33 @@
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and JOB = 'E', then on exit, the
*> remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and JOB = 'S', then on exit
-*> \endverbatim
-*> \verbatim
+*>
*> (*) (initial value of H)*U = U*(final value of H)
-*> \endverbatim
-*> \verbatim
+*>
*> where U is a unitary matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'V', then on exit
-*> \endverbatim
-*> \verbatim
+*>
*> (final value of Z) = (initial value of Z)*U
-*> \endverbatim
-*> \verbatim
+*>
*> where U is the unitary matrix in (*) (regard-
*> less of the value of JOB.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'I', then on exit
*> (final value of Z) = U
*> where U is the unitary matrix in (*) (regard-
*> less of the value of JOB.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'N', then Z is not
*> accessed.
*> \endverbatim
diff --git a/SRC/cla_gbamv.f b/SRC/cla_gbamv.f
index 85f84ab2..3a22bca6 100644
--- a/SRC/cla_gbamv.f
+++ b/SRC/cla_gbamv.f
@@ -63,13 +63,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -169,8 +167,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/cla_geamv.f b/SRC/cla_geamv.f
index 65ffac34..09eb5b05 100644
--- a/SRC/cla_geamv.f
+++ b/SRC/cla_geamv.f
@@ -64,13 +64,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -158,8 +156,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/cla_heamv.f b/SRC/cla_heamv.f
index 359219f4..ea7acd0a 100644
--- a/SRC/cla_heamv.f
+++ b/SRC/cla_heamv.f
@@ -63,16 +63,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/cla_herfsx_extended.f b/SRC/cla_herfsx_extended.f
index 11e84fb1..91f58993 100644
--- a/SRC/cla_herfsx_extended.f
+++ b/SRC/cla_herfsx_extended.f
@@ -200,37 +200,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -239,8 +233,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -254,14 +247,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -269,26 +260,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -299,8 +286,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/cla_porfsx_extended.f b/SRC/cla_porfsx_extended.f
index 7deea24e..ac8428c6 100644
--- a/SRC/cla_porfsx_extended.f
+++ b/SRC/cla_porfsx_extended.f
@@ -192,37 +192,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -231,8 +225,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -246,14 +239,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -261,26 +252,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -291,8 +278,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/cla_syamv.f b/SRC/cla_syamv.f
index 77ffc50e..c738954a 100644
--- a/SRC/cla_syamv.f
+++ b/SRC/cla_syamv.f
@@ -64,16 +64,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/cla_syrfsx_extended.f b/SRC/cla_syrfsx_extended.f
index c8b07130..44a90b34 100644
--- a/SRC/cla_syrfsx_extended.f
+++ b/SRC/cla_syrfsx_extended.f
@@ -200,37 +200,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -239,8 +233,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -254,14 +247,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -269,26 +260,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -299,8 +286,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/clahef.f b/SRC/clahef.f
index 572b8323..34c4bcaf 100644
--- a/SRC/clahef.f
+++ b/SRC/clahef.f
@@ -113,8 +113,7 @@
*> Details of the interchanges and the block structure of D.
*> If UPLO = 'U', only the last KB elements of IPIV are set;
*> if UPLO = 'L', only the first KB elements are set.
-*> \endverbatim
-*> \verbatim
+*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
diff --git a/SRC/clahqr.f b/SRC/clahqr.f
index 4b09a708..8e32a189 100644
--- a/SRC/clahqr.f
+++ b/SRC/clahqr.f
@@ -147,22 +147,19 @@
*> per eigenvalue; elements i+1:ihi of W contain
*> those eigenvalues which have been successfully
*> computed.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the
*> eigenvalues of the upper Hessenberg matrix
*> rows and columns ILO thorugh INFO of the final,
*> output value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
*> (*) (initial value of H)*U = U*(final value of H)
*> where U is an orthognal matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*> (final value of Z) = (initial value of Z)*U
*> where U is the orthogonal matrix in (*)
diff --git a/SRC/clals0.f b/SRC/clals0.f
index 0bc0b122..3bc79e3f 100644
--- a/SRC/clals0.f
+++ b/SRC/clals0.f
@@ -102,8 +102,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
diff --git a/SRC/clanhf.f b/SRC/clanhf.f
index 81816af1..29fcbd16 100644
--- a/SRC/clanhf.f
+++ b/SRC/clanhf.f
@@ -83,12 +83,10 @@
*> UPLO is CHARACTER
*> On entry, UPLO specifies whether the RFP matrix A came from
*> an upper or lower triangular matrix as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' RFP A came from an upper triangular
*> matrix
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' RFP A came from a lower triangular
*> matrix
*> \endverbatim
diff --git a/SRC/claqgb.f b/SRC/claqgb.f
index be826c38..642ff10a 100644
--- a/SRC/claqgb.f
+++ b/SRC/claqgb.f
@@ -77,8 +77,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix, in the same storage format
*> as A. See EQUED for the form of the equilibrated matrix.
*> \endverbatim
@@ -130,18 +129,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/claqge.f b/SRC/claqge.f
index 54003de7..902dec0d 100644
--- a/SRC/claqge.f
+++ b/SRC/claqge.f
@@ -112,18 +112,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/claqhb.f b/SRC/claqhb.f
index fbc2d99d..562acf34 100644
--- a/SRC/claqhb.f
+++ b/SRC/claqhb.f
@@ -75,8 +75,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
@@ -113,17 +112,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/claqhe.f b/SRC/claqhe.f
index 5019df8e..fceb3f74 100644
--- a/SRC/claqhe.f
+++ b/SRC/claqhe.f
@@ -69,8 +69,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED = 'Y', the equilibrated matrix:
*> diag(S) * A * diag(S).
*> \endverbatim
@@ -106,17 +105,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/claqhp.f b/SRC/claqhp.f
index a2e9cd0d..c4d8f0aa 100644
--- a/SRC/claqhp.f
+++ b/SRC/claqhp.f
@@ -67,8 +67,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
@@ -98,17 +97,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/claqr0.f b/SRC/claqr0.f
index 31730620..be73778e 100644
--- a/SRC/claqr0.f
+++ b/SRC/claqr0.f
@@ -98,8 +98,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -164,8 +163,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then CLAQR0 does a workspace query.
*> In this case, CLAQR0 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/claqr1.f b/SRC/claqr1.f
index 7c46c6f1..8b468a65 100644
--- a/SRC/claqr1.f
+++ b/SRC/claqr1.f
@@ -76,8 +76,7 @@
*> \param[in] S2
*> \verbatim
*> S2 is COMPLEX
-*> \endverbatim
-*> \verbatim
+*>
*> S1 and S2 are the shifts defining K in (*) above.
*> \endverbatim
*>
diff --git a/SRC/claqr2.f b/SRC/claqr2.f
index a0ee3890..5fc0555c 100644
--- a/SRC/claqr2.f
+++ b/SRC/claqr2.f
@@ -239,8 +239,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; CLAQR2
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/claqr3.f b/SRC/claqr3.f
index 49badd30..185be7ed 100644
--- a/SRC/claqr3.f
+++ b/SRC/claqr3.f
@@ -236,8 +236,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; CLAQR3
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/claqr4.f b/SRC/claqr4.f
index 59104227..d7a96d8f 100644
--- a/SRC/claqr4.f
+++ b/SRC/claqr4.f
@@ -106,8 +106,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -172,8 +171,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then CLAQR4 does a workspace query.
*> In this case, CLAQR4 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/claqsb.f b/SRC/claqsb.f
index 30fa6b08..22d92c12 100644
--- a/SRC/claqsb.f
+++ b/SRC/claqsb.f
@@ -75,8 +75,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
@@ -113,17 +112,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/claqsp.f b/SRC/claqsp.f
index 91f88693..31f68d14 100644
--- a/SRC/claqsp.f
+++ b/SRC/claqsp.f
@@ -67,8 +67,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
@@ -98,17 +97,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/claqsy.f b/SRC/claqsy.f
index 12ec9145..80b46968 100644
--- a/SRC/claqsy.f
+++ b/SRC/claqsy.f
@@ -69,8 +69,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED = 'Y', the equilibrated matrix:
*> diag(S) * A * diag(S).
*> \endverbatim
@@ -106,17 +105,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/clascl.f b/SRC/clascl.f
index 07d29967..d5039e97 100644
--- a/SRC/clascl.f
+++ b/SRC/clascl.f
@@ -86,8 +86,7 @@
*> \param[in] CTO
*> \verbatim
*> CTO is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*> without over/underflow if the final result CTO*A(I,J)/CFROM
*> can be represented without over/underflow. CFROM must be
diff --git a/SRC/clasyf.f b/SRC/clasyf.f
index 23f8d7a2..0d9a4dff 100644
--- a/SRC/clasyf.f
+++ b/SRC/clasyf.f
@@ -113,8 +113,7 @@
*> Details of the interchanges and the block structure of D.
*> If UPLO = 'U', only the last KB elements of IPIV are set;
*> if UPLO = 'L', only the first KB elements are set.
-*> \endverbatim
-*> \verbatim
+*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
diff --git a/SRC/clatbs.f b/SRC/clatbs.f
index 9c94705c..1e7dcce5 100644
--- a/SRC/clatbs.f
+++ b/SRC/clatbs.f
@@ -137,15 +137,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/clatps.f b/SRC/clatps.f
index 6aad2fe9..5c36c905 100644
--- a/SRC/clatps.f
+++ b/SRC/clatps.f
@@ -125,15 +125,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/clatrs.f b/SRC/clatrs.f
index 7098388d..675550f9 100644
--- a/SRC/clatrs.f
+++ b/SRC/clatrs.f
@@ -133,15 +133,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/clatzm.f b/SRC/clatzm.f
index e0a15e89..d0915dfb 100644
--- a/SRC/clatzm.f
+++ b/SRC/clatzm.f
@@ -107,8 +107,7 @@
*> (M,1) if SIDE = 'R'
*> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*> if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the first row of P*C if SIDE = 'L', or the first
*> column of C*P if SIDE = 'R'.
*> \endverbatim
@@ -120,8 +119,7 @@
*> (LDC, N-1) if SIDE = 'R'
*> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*> m x (n - 1) matrix C2 if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*> if SIDE = 'R'.
*> \endverbatim
diff --git a/SRC/cpbrfs.f b/SRC/cpbrfs.f
index d5018944..9ac4f70a 100644
--- a/SRC/cpbrfs.f
+++ b/SRC/cpbrfs.f
@@ -165,12 +165,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cpbsv.f b/SRC/cpbsv.f
index b100b97c..627cfc36 100644
--- a/SRC/cpbsv.f
+++ b/SRC/cpbsv.f
@@ -90,8 +90,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H*U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/cpbsvx.f b/SRC/cpbsvx.f
index 9af0418b..05c99895 100644
--- a/SRC/cpbsvx.f
+++ b/SRC/cpbsvx.f
@@ -145,8 +145,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -165,13 +164,11 @@
*> factorization A = U**H*U or A = L*L**H of the band matrix
*> A, in the same storage format as A (see AB). If EQUED = 'Y',
*> then AFB is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H of the equilibrated
diff --git a/SRC/cpbtf2.f b/SRC/cpbtf2.f
index b5d63c2b..883edfaa 100644
--- a/SRC/cpbtf2.f
+++ b/SRC/cpbtf2.f
@@ -81,8 +81,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/cpbtrf.f b/SRC/cpbtrf.f
index 7a5abaec..8a11a5c7 100644
--- a/SRC/cpbtrf.f
+++ b/SRC/cpbtrf.f
@@ -76,8 +76,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H*U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/cpftrf.f b/SRC/cpftrf.f
index 996d9e51..647d596c 100644
--- a/SRC/cpftrf.f
+++ b/SRC/cpftrf.f
@@ -82,8 +82,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization RFP A = U**H*U or RFP A = L*L**H.
*> \endverbatim
@@ -96,27 +95,22 @@
*> > 0: if INFO = i, the leading minor of order i is not
*> positive definite, and the factorization could not be
*> completed.
-*> \endverbatim
-*> \verbatim
+*>
*> Further Notes on RFP Format:
*> ============================
-*> \endverbatim
-*> \verbatim
+*>
*> We first consider Standard Packed Format when N is even.
*> We give an example where N = 6.
-*> \endverbatim
-*> \verbatim
+*>
*> AP is Upper AP is Lower
-*> \endverbatim
-*> \verbatim
+*>
*> 00 01 02 03 04 05 00
*> 11 12 13 14 15 10 11
*> 22 23 24 25 20 21 22
*> 33 34 35 30 31 32 33
*> 44 45 40 41 42 43 44
*> 55 50 51 52 53 54 55
-*> \endverbatim
-*> \verbatim
+*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
@@ -126,19 +120,16 @@
*> conjugate-transpose of the last three columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N even and TRANSR = 'N'.
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- -- --
*> 03 04 05 33 43 53
*> -- --
*> 13 14 15 00 44 54
*> --
*> 23 24 25 10 11 55
-*> \endverbatim
-*> \verbatim
+*>
*> 33 34 35 20 21 22
*> --
*> 00 44 45 30 31 32
@@ -146,37 +137,30 @@
*> 01 11 55 40 41 42
*> -- -- --
*> 02 12 22 50 51 52
-*> \endverbatim
-*> \verbatim
+*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- -- -- -- -- -- -- -- -- --
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
*> -- -- -- -- -- -- -- -- -- --
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
-*> \endverbatim
-*> \verbatim
+*>
*> We next consider Standard Packed Format when N is odd.
*> We give an example where N = 5.
-*> \endverbatim
-*> \verbatim
+*>
*> AP is Upper AP is Lower
-*> \endverbatim
-*> \verbatim
+*>
*> 00 01 02 03 04 00
*> 11 12 13 14 10 11
*> 22 23 24 20 21 22
*> 33 34 30 31 32 33
*> 44 40 41 42 43 44
-*> \endverbatim
-*> \verbatim
+*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
@@ -186,31 +170,25 @@
*> conjugate-transpose of the last two columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N odd and TRANSR = 'N'.
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- --
*> 02 03 04 00 33 43
*> --
*> 12 13 14 10 11 44
-*> \endverbatim
-*> \verbatim
+*>
*> 22 23 24 20 21 22
*> --
*> 00 33 34 30 31 32
*> -- --
*> 01 11 44 40 41 42
-*> \endverbatim
-*> \verbatim
+*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- -- -- -- -- -- -- -- --
*> 02 12 22 00 01 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- --
diff --git a/SRC/cpftri.f b/SRC/cpftri.f
index 3b172c13..5937effc 100644
--- a/SRC/cpftri.f
+++ b/SRC/cpftri.f
@@ -76,8 +76,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the Hermitian inverse of the original matrix, in the
*> same storage format.
*> \endverbatim
diff --git a/SRC/cporfs.f b/SRC/cporfs.f
index 7eedf5c4..580ab10f 100644
--- a/SRC/cporfs.f
+++ b/SRC/cporfs.f
@@ -159,12 +159,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cporfsx.f b/SRC/cporfsx.f
index c95aba5d..2ba6cefa 100644
--- a/SRC/cporfsx.f
+++ b/SRC/cporfsx.f
@@ -210,37 +210,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -249,8 +243,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -261,14 +254,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -276,26 +267,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -306,8 +293,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -326,8 +312,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -338,8 +323,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -349,8 +333,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cposv.f b/SRC/cposv.f
index 58652b1e..4b73f6c0 100644
--- a/SRC/cposv.f
+++ b/SRC/cposv.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H.
*> \endverbatim
diff --git a/SRC/cposvx.f b/SRC/cposvx.f
index e5477d88..ef3d591d 100644
--- a/SRC/cposvx.f
+++ b/SRC/cposvx.f
@@ -140,8 +140,7 @@
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -160,14 +159,12 @@
*> factorization A = U**H*U or A = L*L**H, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored form
*> of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H of the equilibrated
diff --git a/SRC/cposvxx.f b/SRC/cposvxx.f
index 7550ea5f..fb1c6df8 100644
--- a/SRC/cposvxx.f
+++ b/SRC/cposvxx.f
@@ -167,8 +167,7 @@
*> the strictly upper triangular part of A is not referenced. A is
*> not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
*> 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -187,14 +186,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored
*> form of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
@@ -313,37 +310,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -352,8 +343,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -364,14 +354,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -379,26 +367,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -409,8 +393,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -429,8 +412,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -441,8 +423,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -452,8 +433,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/cpotf2.f b/SRC/cpotf2.f
index a2eed9d8..a9f5efef 100644
--- a/SRC/cpotf2.f
+++ b/SRC/cpotf2.f
@@ -74,8 +74,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H.
*> \endverbatim
diff --git a/SRC/cpotrf.f b/SRC/cpotrf.f
index 21189b2e..0d20bb0d 100644
--- a/SRC/cpotrf.f
+++ b/SRC/cpotrf.f
@@ -72,8 +72,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H.
*> \endverbatim
diff --git a/SRC/cpprfs.f b/SRC/cpprfs.f
index a6db5697..a5c26651 100644
--- a/SRC/cpprfs.f
+++ b/SRC/cpprfs.f
@@ -147,12 +147,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cppsv.f b/SRC/cppsv.f
index cde5f27f..5aa477de 100644
--- a/SRC/cppsv.f
+++ b/SRC/cppsv.f
@@ -81,8 +81,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H, in the same storage
*> format as A.
diff --git a/SRC/cppsvx.f b/SRC/cppsvx.f
index fce18b70..b9051a6e 100644
--- a/SRC/cppsvx.f
+++ b/SRC/cppsvx.f
@@ -138,8 +138,7 @@
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -152,14 +151,12 @@
*> factorization A = U**H*U or A = L*L**H, in the same storage
*> format as A. If EQUED .ne. 'N', then AFP is the factored
*> form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H * U or A = L * L**H of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H of the equilibrated
diff --git a/SRC/cpptrf.f b/SRC/cpptrf.f
index 933d1e89..e99f0339 100644
--- a/SRC/cpptrf.f
+++ b/SRC/cpptrf.f
@@ -69,8 +69,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H*U or A = L*L**H, in the same
*> storage format as A.
diff --git a/SRC/cpptri.f b/SRC/cpptri.f
index 70e0840b..dcfbae5e 100644
--- a/SRC/cpptri.f
+++ b/SRC/cpptri.f
@@ -65,8 +65,7 @@
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the upper or lower triangle of the (Hermitian)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
diff --git a/SRC/cpstf2.f b/SRC/cpstf2.f
index 7cea72c6..4ec6ea79 100644
--- a/SRC/cpstf2.f
+++ b/SRC/cpstf2.f
@@ -79,8 +79,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/cpstrf.f b/SRC/cpstrf.f
index 8da607ec..976fd5e9 100644
--- a/SRC/cpstrf.f
+++ b/SRC/cpstrf.f
@@ -79,8 +79,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/cptrfs.f b/SRC/cptrfs.f
index abd4fa53..ce1277db 100644
--- a/SRC/cptrfs.f
+++ b/SRC/cptrfs.f
@@ -159,12 +159,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cspmv.f b/SRC/cspmv.f
index bc5a9cc6..7d3539a2 100644
--- a/SRC/cspmv.f
+++ b/SRC/cspmv.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/cspr.f b/SRC/cspr.f
index 124174b0..eb282570 100644
--- a/SRC/cspr.f
+++ b/SRC/cspr.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/csprfs.f b/SRC/csprfs.f
index d75faf7d..b84474d2 100644
--- a/SRC/csprfs.f
+++ b/SRC/csprfs.f
@@ -156,12 +156,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/cspsv.f b/SRC/cspsv.f
index 06c168f7..ebcde720 100644
--- a/SRC/cspsv.f
+++ b/SRC/cspsv.f
@@ -83,8 +83,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as
diff --git a/SRC/cspsvx.f b/SRC/cspsvx.f
index 3728234b..2c7be9d5 100644
--- a/SRC/cspsvx.f
+++ b/SRC/cspsvx.f
@@ -128,8 +128,7 @@
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -150,8 +149,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by CSPTRF.
diff --git a/SRC/csptrf.f b/SRC/csptrf.f
index d5d8af77..2842bd4a 100644
--- a/SRC/csptrf.f
+++ b/SRC/csptrf.f
@@ -71,8 +71,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L, stored as a packed triangular
*> matrix overwriting A (see below for further details).
diff --git a/SRC/csptri.f b/SRC/csptri.f
index 2e9c0ab9..0981022b 100644
--- a/SRC/csptri.f
+++ b/SRC/csptri.f
@@ -65,8 +65,7 @@
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSPTRF,
*> stored as a packed triangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
diff --git a/SRC/cstedc.f b/SRC/cstedc.f
index 9b7aad51..54c5d1d7 100644
--- a/SRC/cstedc.f
+++ b/SRC/cstedc.f
@@ -119,8 +119,7 @@
*> Note that for COMPZ = 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LWORK need
*> only be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -148,8 +147,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LRWORK
*> need only be max(1,2*(N-1)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -175,8 +173,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LIWORK
*> need only be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/cstegr.f b/SRC/cstegr.f
index fb085184..1222baf1 100644
--- a/SRC/cstegr.f
+++ b/SRC/cstegr.f
@@ -111,8 +111,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -126,8 +125,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/cstein.f b/SRC/cstein.f
index 2a232d76..691a764a 100644
--- a/SRC/cstein.f
+++ b/SRC/cstein.f
@@ -153,16 +153,13 @@
*> > 0: if INFO = i, then i eigenvectors failed to converge
*> in MAXITS iterations. Their indices are stored in
*> array IFAIL.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITS INTEGER, default = 5
*> The maximum number of iterations performed.
-*> \endverbatim
-*> \verbatim
+*>
*> EXTRA INTEGER, default = 2
*> The number of iterations performed after norm growth
*> criterion is satisfied, should be at least 1.
diff --git a/SRC/cstemr.f b/SRC/cstemr.f
index 1c6f8074..4e605e77 100644
--- a/SRC/cstemr.f
+++ b/SRC/cstemr.f
@@ -159,8 +159,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -174,8 +173,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/csymv.f b/SRC/csymv.f
index 5cc548db..ee7caedf 100644
--- a/SRC/csymv.f
+++ b/SRC/csymv.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/csyr.f b/SRC/csyr.f
index 4d265f91..b6b1ed75 100644
--- a/SRC/csyr.f
+++ b/SRC/csyr.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/csyrfs.f b/SRC/csyrfs.f
index 03a5539d..bd070ffb 100644
--- a/SRC/csyrfs.f
+++ b/SRC/csyrfs.f
@@ -168,12 +168,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/csyrfsx.f b/SRC/csyrfsx.f
index 97465907..216d39f2 100644
--- a/SRC/csyrfsx.f
+++ b/SRC/csyrfsx.f
@@ -219,37 +219,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -258,8 +252,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -270,14 +263,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -285,26 +276,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -315,8 +302,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -335,8 +321,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -347,8 +332,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -358,8 +342,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/csysv.f b/SRC/csysv.f
index 8e28a936..f9233e40 100644
--- a/SRC/csysv.f
+++ b/SRC/csysv.f
@@ -85,8 +85,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the block diagonal matrix D and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*D*U**T or A = L*D*L**T as computed by
@@ -140,8 +139,7 @@
*> CSYTRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/csysvx.f b/SRC/csysvx.f
index cfbc5689..34b8688d 100644
--- a/SRC/csysvx.f
+++ b/SRC/csysvx.f
@@ -136,8 +136,7 @@
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -163,8 +162,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by CSYTRF.
@@ -237,8 +235,7 @@
*> The length of WORK. LWORK >= max(1,2*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
*> NB is the optimal blocksize for CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/csysvxx.f b/SRC/csysvxx.f
index 6d68bea5..652e08b8 100644
--- a/SRC/csysvxx.f
+++ b/SRC/csysvxx.f
@@ -168,8 +168,7 @@
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -187,8 +186,7 @@
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
@@ -214,8 +212,7 @@
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by SSYTRF.
@@ -326,37 +323,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -365,8 +356,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -377,14 +367,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -392,26 +380,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -422,8 +406,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -442,8 +425,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -454,8 +436,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -465,8 +446,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/csyswapr.f b/SRC/csyswapr.f
index e072e20f..ec98d5d2 100644
--- a/SRC/csyswapr.f
+++ b/SRC/csyswapr.f
@@ -61,8 +61,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/csytf2.f b/SRC/csytf2.f
index 2c58a02e..11c0d219 100644
--- a/SRC/csytf2.f
+++ b/SRC/csytf2.f
@@ -76,8 +76,7 @@
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/csytrf.f b/SRC/csytrf.f
index 289d0766..f3206b38 100644
--- a/SRC/csytrf.f
+++ b/SRC/csytrf.f
@@ -75,8 +75,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
@@ -111,8 +110,7 @@
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/csytri.f b/SRC/csytri.f
index afe2caa5..c41a0615 100644
--- a/SRC/csytri.f
+++ b/SRC/csytri.f
@@ -64,8 +64,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/csytri2.f b/SRC/csytri2.f
index 80714b24..92f9ec7c 100644
--- a/SRC/csytri2.f
+++ b/SRC/csytri2.f
@@ -65,8 +65,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/csytri2x.f b/SRC/csytri2x.f
index d12f1faa..fd8c32b2 100644
--- a/SRC/csytri2x.f
+++ b/SRC/csytri2x.f
@@ -64,8 +64,7 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the NNB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/ctfsm.f b/SRC/ctfsm.f
index b36ee28a..8b6e15c1 100644
--- a/SRC/ctfsm.f
+++ b/SRC/ctfsm.f
@@ -68,14 +68,11 @@
*> SIDE is CHARACTER*1
*> On entry, SIDE specifies whether op( A ) appears on the left
*> or right of X as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,8 +83,7 @@
*> an upper or lower triangular matrix as follows:
*> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
*> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -96,14 +92,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the form of op( A ) to be used
*> in the matrix multiplication as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' op( A ) = A.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'C' or 'c' op( A ) = conjg( A' ).
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -112,15 +105,12 @@
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not RFP A is unit
*> triangular as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/ctftri.f b/SRC/ctftri.f
index a55283aa..ea606490 100644
--- a/SRC/ctftri.f
+++ b/SRC/ctftri.f
@@ -85,8 +85,7 @@
*> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
*> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
*> even and N is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/ctgsen.f b/SRC/ctgsen.f
index 9a5e24b7..b9a17569 100644
--- a/SRC/ctgsen.f
+++ b/SRC/ctgsen.f
@@ -154,8 +154,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> The diagonal elements of A and B, respectively,
*> when the pair (A,B) has been reduced to generalized Schur
*> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
@@ -213,8 +212,7 @@
*> \param[out] PR
*> \verbatim
*> PR is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
*> reciprocal of the norm of "projections" onto left and right
*> eigenspace with respect to the selected cluster.
@@ -247,8 +245,7 @@
*> The dimension of the array WORK. LWORK >= 1
*> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
*> If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -267,8 +264,7 @@
*> The dimension of the array IWORK. LIWORK >= 1.
*> If IJOB = 1, 2 or 4, LIWORK >= N+2;
*> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/ctgsyl.f b/SRC/ctgsyl.f
index 0066823b..79efe853 100644
--- a/SRC/ctgsyl.f
+++ b/SRC/ctgsyl.f
@@ -232,8 +232,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK > = 1.
*> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ctrexc.f b/SRC/ctrexc.f
index ee090a3b..9722600e 100644
--- a/SRC/ctrexc.f
+++ b/SRC/ctrexc.f
@@ -96,8 +96,7 @@
*> \param[in] ILST
*> \verbatim
*> ILST is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> Specify the reordering of the diagonal elements of T:
*> The element with row index IFST is moved to row ILST by a
*> sequence of transpositions between adjacent elements.
diff --git a/SRC/ctrsen.f b/SRC/ctrsen.f
index 2d0b70c0..ef22122b 100644
--- a/SRC/ctrsen.f
+++ b/SRC/ctrsen.f
@@ -161,8 +161,7 @@
*> If JOB = 'N', LWORK >= 1;
*> if JOB = 'E', LWORK = max(1,M*(N-M));
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ctrti2.f b/SRC/ctrti2.f
index 74f05a9f..5c11fd78 100644
--- a/SRC/ctrti2.f
+++ b/SRC/ctrti2.f
@@ -78,8 +78,7 @@
*> triangular part of A is not referenced. If DIAG = 'U', the
*> diagonal elements of A are also not referenced and are
*> assumed to be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/ctzrzf.f b/SRC/ctzrzf.f
index 36506b8e..95945e18 100644
--- a/SRC/ctzrzf.f
+++ b/SRC/ctzrzf.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunbdb.f b/SRC/cunbdb.f
index 50e08769..1f14986f 100644
--- a/SRC/cunbdb.f
+++ b/SRC/cunbdb.f
@@ -234,8 +234,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= M-Q.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cuncsd.f b/SRC/cuncsd.f
index f7fdff3a..ad81209c 100644
--- a/SRC/cuncsd.f
+++ b/SRC/cuncsd.f
@@ -252,8 +252,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
@@ -275,8 +274,7 @@
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the RWORK array, returns
*> this value as the first entry of the work array, and no error
@@ -295,12 +293,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: CBBCSD did not converge. See the description of RWORK
*> above for details.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*> \endverbatim
diff --git a/SRC/cungbr.f b/SRC/cungbr.f
index ed4b2463..13e333ce 100644
--- a/SRC/cungbr.f
+++ b/SRC/cungbr.f
@@ -129,8 +129,7 @@
*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*> For optimum performance LWORK >= min(M,N)*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunghr.f b/SRC/cunghr.f
index 966c4ecf..8288e163 100644
--- a/SRC/cunghr.f
+++ b/SRC/cunghr.f
@@ -58,8 +58,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of CGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -99,8 +98,7 @@
*> The dimension of the array WORK. LWORK >= IHI-ILO.
*> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunglq.f b/SRC/cunglq.f
index 028fcfbc..8b263bf0 100644
--- a/SRC/cunglq.f
+++ b/SRC/cunglq.f
@@ -99,8 +99,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cungql.f b/SRC/cungql.f
index 4fe19daf..59510b6c 100644
--- a/SRC/cungql.f
+++ b/SRC/cungql.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cungqr.f b/SRC/cungqr.f
index 00612f74..71b9294f 100644
--- a/SRC/cungqr.f
+++ b/SRC/cungqr.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cungrq.f b/SRC/cungrq.f
index 76ee4058..f6cca67d 100644
--- a/SRC/cungrq.f
+++ b/SRC/cungrq.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cungtr.f b/SRC/cungtr.f
index cb682813..f31fe245 100644
--- a/SRC/cungtr.f
+++ b/SRC/cungtr.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= N-1.
*> For optimum performance LWORK >= (N-1)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmbr.f b/SRC/cunmbr.f
index 420804b4..785e540c 100644
--- a/SRC/cunmbr.f
+++ b/SRC/cunmbr.f
@@ -168,8 +168,7 @@
*> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
*> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
*> optimal blocksize. (NB = 0 if M = 0 or N = 0.)
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmhr.f b/SRC/cunmhr.f
index 191ca113..4fffdeaf 100644
--- a/SRC/cunmhr.f
+++ b/SRC/cunmhr.f
@@ -87,8 +87,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of CGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -151,8 +150,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmlq.f b/SRC/cunmlq.f
index 9c914027..76740467 100644
--- a/SRC/cunmlq.f
+++ b/SRC/cunmlq.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmql.f b/SRC/cunmql.f
index 817955b3..72147b56 100644
--- a/SRC/cunmql.f
+++ b/SRC/cunmql.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmqr.f b/SRC/cunmqr.f
index 4e01bd52..cbeb19ae 100644
--- a/SRC/cunmqr.f
+++ b/SRC/cunmqr.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmrq.f b/SRC/cunmrq.f
index 0198cb80..093ae0b3 100644
--- a/SRC/cunmrq.f
+++ b/SRC/cunmrq.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmrz.f b/SRC/cunmrz.f
index f2441b56..42c6e3a2 100644
--- a/SRC/cunmrz.f
+++ b/SRC/cunmrz.f
@@ -149,8 +149,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/cunmtr.f b/SRC/cunmtr.f
index 9169891f..a4247d17 100644
--- a/SRC/cunmtr.f
+++ b/SRC/cunmtr.f
@@ -143,8 +143,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >=M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dbbcsd.f b/SRC/dbbcsd.f
index dbc28641..23aaf533 100644
--- a/SRC/dbbcsd.f
+++ b/SRC/dbbcsd.f
@@ -282,8 +282,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MAX(1,8*Q).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the WORK array,
*> returns this value as the first entry of the work array, and
@@ -298,20 +297,16 @@
*> > 0: if DBBCSD did not converge, INFO specifies the number
*> of nonzero entries in PHI, and B11D, B11E, etc.,
*> contain the partially reduced matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
diff --git a/SRC/dbdsqr.f b/SRC/dbdsqr.f
index 96abe542..cab83f3b 100644
--- a/SRC/dbdsqr.f
+++ b/SRC/dbdsqr.f
@@ -187,12 +187,10 @@
*> elements of a bidiagonal matrix which is orthogonally
*> similar to the input matrix B; if INFO = i, i
*> elements of E have not converged to zero.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> If it is positive, TOLMUL*EPS is the desired relative
@@ -207,8 +205,7 @@
*> Default is to lose at either one eighth or 2 of the
*> available decimal digits in each computed singular value
*> (whichever is smaller).
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITR INTEGER, default = 6
*> MAXITR controls the maximum number of passes of the
*> algorithm through its inner loop. The algorithms stops
diff --git a/SRC/dgbrfs.f b/SRC/dgbrfs.f
index d2930ef7..2dba93a0 100644
--- a/SRC/dgbrfs.f
+++ b/SRC/dgbrfs.f
@@ -180,12 +180,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dgbrfsx.f b/SRC/dgbrfsx.f
index 5a331ffe..86839c82 100644
--- a/SRC/dgbrfsx.f
+++ b/SRC/dgbrfsx.f
@@ -256,37 +256,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -295,8 +289,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -307,14 +300,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -322,26 +313,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -352,8 +339,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -372,8 +358,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -384,8 +369,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -395,8 +379,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dgbsvx.f b/SRC/dgbsvx.f
index 5ee6be0f..e33e31a2 100644
--- a/SRC/dgbsvx.f
+++ b/SRC/dgbsvx.f
@@ -150,14 +150,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then A must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -180,12 +178,10 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns details of the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns details of the LU factorization of the equilibrated
*> matrix A (see the description of AB for the form of the
@@ -205,13 +201,11 @@
*> contains the pivot indices from the factorization A = L*U
*> as computed by DGBTRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the equilibrated matrix A.
diff --git a/SRC/dgbsvxx.f b/SRC/dgbsvxx.f
index 116fc3ed..f35aa518 100644
--- a/SRC/dgbsvxx.f
+++ b/SRC/dgbsvxx.f
@@ -178,14 +178,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then AB must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -208,13 +206,11 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -234,13 +230,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by DGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -380,37 +374,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -419,8 +407,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -431,14 +418,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -446,26 +431,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -476,8 +457,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -496,8 +476,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -505,8 +484,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -516,8 +494,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dgbtf2.f b/SRC/dgbtf2.f
index 6907f1d1..174c1712 100644
--- a/SRC/dgbtf2.f
+++ b/SRC/dgbtf2.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/dgbtrf.f b/SRC/dgbtrf.f
index 5e9e9d8a..76f57cb4 100644
--- a/SRC/dgbtrf.f
+++ b/SRC/dgbtrf.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/dgeesx.f b/SRC/dgeesx.f
index 3900b5d7..0f648b56 100644
--- a/SRC/dgeesx.f
+++ b/SRC/dgeesx.f
@@ -209,8 +209,7 @@
*> returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
*> 'B' this may not be large enough.
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates upper bounds on the optimal sizes of the
*> arrays WORK and IWORK, returns these values as the first
@@ -232,8 +231,7 @@
*> Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
*> only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
*> may not be large enough.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates upper bounds on the optimal sizes of
*> the arrays WORK and IWORK, returns these values as the first
diff --git a/SRC/dgeev.f b/SRC/dgeev.f
index b548908f..e1ceb714 100644
--- a/SRC/dgeev.f
+++ b/SRC/dgeev.f
@@ -156,8 +156,7 @@
*> The dimension of the array WORK. LWORK >= max(1,3*N), and
*> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
*> performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgeevx.f b/SRC/dgeevx.f
index 1c022882..fbcff637 100644
--- a/SRC/dgeevx.f
+++ b/SRC/dgeevx.f
@@ -89,8 +89,7 @@
*> to make the rows and columns of A more equal in
*> norm. Do not permute;
*> = 'B': Both diagonally scale and permute A.
-*> \endverbatim
-*> \verbatim
+*>
*> Computed reciprocal condition numbers will be for the matrix
*> after balancing and/or permuting. Permuting does not change
*> condition numbers (in exact arithmetic), but balancing does.
@@ -120,8 +119,7 @@
*> = 'E': Computed for eigenvalues only;
*> = 'V': Computed for right eigenvectors only;
*> = 'B': Computed for eigenvalues and right eigenvectors.
-*> \endverbatim
-*> \verbatim
+*>
*> If SENSE = 'E' or 'B', both left and right eigenvectors
*> must also be computed (JOBVL = 'V' and JOBVR = 'V').
*> \endverbatim
@@ -265,8 +263,7 @@
*> LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
*> LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgegs.f b/SRC/dgegs.f
index c443fd69..cd10b6dd 100644
--- a/SRC/dgegs.f
+++ b/SRC/dgegs.f
@@ -182,8 +182,7 @@
*> blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
*> NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
*> The optimal LWORK is 2*N + N*(NB+1).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgegv.f b/SRC/dgegv.f
index 0d41f81f..b22b7e58 100644
--- a/SRC/dgegv.f
+++ b/SRC/dgegv.f
@@ -171,8 +171,7 @@
*> u(j) = VL(:,j) + i*VL(:,j+1)
*> and
*> u(j+1) = VL(:,j) - i*VL(:,j+1).
-*> \endverbatim
-*> \verbatim
+*>
*> Each eigenvector is scaled so that its largest component has
*> abs(real part) + abs(imag. part) = 1, except for eigenvectors
*> corresponding to an eigenvalue with alpha = beta = 0, which
@@ -198,8 +197,7 @@
*> x(j) = VR(:,j) + i*VR(:,j+1)
*> and
*> x(j+1) = VR(:,j) - i*VR(:,j+1).
-*> \endverbatim
-*> \verbatim
+*>
*> Each eigenvector is scaled so that its largest component has
*> abs(real part) + abs(imag. part) = 1, except for eigenvalues
*> corresponding to an eigenvalue with alpha = beta = 0, which
@@ -230,8 +228,7 @@
*> NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
*> The optimal LWORK is:
*> 2*N + MAX( 6*N, N*(NB+1) ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgehd2.f b/SRC/dgehd2.f
index b69d1dc9..e2ab7ffa 100644
--- a/SRC/dgehd2.f
+++ b/SRC/dgehd2.f
@@ -55,8 +55,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to DGEBAL; otherwise they should be
diff --git a/SRC/dgehrd.f b/SRC/dgehrd.f
index 2076e757..fdf8f6b2 100644
--- a/SRC/dgehrd.f
+++ b/SRC/dgehrd.f
@@ -55,8 +55,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to DGEBAL; otherwise they should be
diff --git a/SRC/dgels.f b/SRC/dgels.f
index fb016acb..ac76f110 100644
--- a/SRC/dgels.f
+++ b/SRC/dgels.f
@@ -150,8 +150,7 @@
*> For optimal performance,
*> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgelsd.f b/SRC/dgelsd.f
index 9641b055..4f40929c 100644
--- a/SRC/dgelsd.f
+++ b/SRC/dgelsd.f
@@ -162,8 +162,7 @@
*> tree (usually about 25), and
*> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgelss.f b/SRC/dgelss.f
index e889d35c..3be272d8 100644
--- a/SRC/dgelss.f
+++ b/SRC/dgelss.f
@@ -140,8 +140,7 @@
*> The dimension of the array WORK. LWORK >= 1, and also:
*> LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgelsy.f b/SRC/dgelsy.f
index 4a69b167..2aa8a49f 100644
--- a/SRC/dgelsy.f
+++ b/SRC/dgelsy.f
@@ -168,8 +168,7 @@
*> where NB is an upper bound on the blocksize returned
*> by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
*> and DORMRZ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgeqp3.f b/SRC/dgeqp3.f
index 1de642c3..30f2f321 100644
--- a/SRC/dgeqp3.f
+++ b/SRC/dgeqp3.f
@@ -99,8 +99,7 @@
*> The dimension of the array WORK. LWORK >= 3*N+1.
*> For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgeqrf.f b/SRC/dgeqrf.f
index 10c11222..50254dc4 100644
--- a/SRC/dgeqrf.f
+++ b/SRC/dgeqrf.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgeqrfp.f b/SRC/dgeqrfp.f
index e3d6f14d..07ce01b1 100644
--- a/SRC/dgeqrfp.f
+++ b/SRC/dgeqrfp.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgerfs.f b/SRC/dgerfs.f
index 2984616d..62485c0a 100644
--- a/SRC/dgerfs.f
+++ b/SRC/dgerfs.f
@@ -161,12 +161,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dgerfsx.f b/SRC/dgerfsx.f
index 7cf79ab1..523cf340 100644
--- a/SRC/dgerfsx.f
+++ b/SRC/dgerfsx.f
@@ -231,37 +231,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -270,8 +264,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -282,14 +275,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -297,26 +288,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -327,8 +314,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -347,8 +333,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -359,8 +344,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -370,8 +354,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dgesvd.f b/SRC/dgesvd.f
index 8ba44666..1b8e0f86 100644
--- a/SRC/dgesvd.f
+++ b/SRC/dgesvd.f
@@ -81,8 +81,7 @@
*> vectors) are overwritten on the array A;
*> = 'N': no rows of V**T (no right singular vectors) are
*> computed.
-*> \endverbatim
-*> \verbatim
+*>
*> JOBVT and JOBU cannot both be 'O'.
*> \endverbatim
*>
@@ -179,8 +178,7 @@
*> - PATH 1t (N much larger than M, JOBVT='N')
*> LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) for the other paths
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgesvj.f b/SRC/dgesvj.f
index 8dced567..6e0bfdd3 100644
--- a/SRC/dgesvj.f
+++ b/SRC/dgesvj.f
@@ -138,8 +138,7 @@
*> values in SVA(1:N)) and V is still a decomposition of the
*> input matrix A in the sense that the residual
*> ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small.
-*> \endverbatim
-*> \verbatim
+*>
*> If JOBU .EQ. 'N' :
*> If INFO .EQ. 0 :
*> Note that the left singular vectors are 'for free' in the
diff --git a/SRC/dgesvx.f b/SRC/dgesvx.f
index f67834a0..798ff9f6 100644
--- a/SRC/dgesvx.f
+++ b/SRC/dgesvx.f
@@ -137,8 +137,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -158,13 +157,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -184,13 +181,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by DGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
diff --git a/SRC/dgesvxx.f b/SRC/dgesvxx.f
index fc25b6e7..88411a3c 100644
--- a/SRC/dgesvxx.f
+++ b/SRC/dgesvxx.f
@@ -166,8 +166,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -187,13 +186,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -213,13 +210,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by DGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -359,37 +354,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -398,8 +387,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -410,14 +398,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -425,26 +411,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -455,8 +437,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -475,8 +456,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -484,8 +464,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -495,8 +474,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dgetri.f b/SRC/dgetri.f
index e13b2a46..82b32cc0 100644
--- a/SRC/dgetri.f
+++ b/SRC/dgetri.f
@@ -84,8 +84,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimal performance LWORK >= N*NB, where NB is
*> the optimal blocksize returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgges.f b/SRC/dgges.f
index bc2c69ae..44b8f6b1 100644
--- a/SRC/dgges.f
+++ b/SRC/dgges.f
@@ -116,8 +116,7 @@
*> SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
*> one of a complex conjugate pair of eigenvalues is selected,
*> then both complex eigenvalues are selected.
-*> \endverbatim
-*> \verbatim
+*>
*> Note that in the ill-conditioned case, a selected complex
*> eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
*> BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
@@ -189,8 +188,7 @@
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*> positive, then the j-th and (j+1)-st eigenvalues are a
*> complex conjugate pair, with ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio.
@@ -239,8 +237,7 @@
*> The dimension of the array WORK.
*> If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
*> For good performance , LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dggesx.f b/SRC/dggesx.f
index b123c08b..4d6d6830 100644
--- a/SRC/dggesx.f
+++ b/SRC/dggesx.f
@@ -204,8 +204,7 @@
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*> positive, then the j-th and (j+1)-st eigenvalues are a
*> complex conjugate pair, with ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio.
@@ -277,8 +276,7 @@
*> Note also that an error is only returned if
*> LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
*> this may not be large enough.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the bound on the optimal size of the WORK
*> array and the minimum size of the IWORK array, returns these
@@ -299,8 +297,7 @@
*> The dimension of the array IWORK.
*> If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
*> LIWORK >= N+6.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the bound on the optimal size of the
*> WORK array and the minimum size of the IWORK array, returns
diff --git a/SRC/dggev.f b/SRC/dggev.f
index afbb67f8..35278177 100644
--- a/SRC/dggev.f
+++ b/SRC/dggev.f
@@ -129,8 +129,7 @@
*> the j-th eigenvalue is real; if positive, then the j-th and
*> (j+1)-st eigenvalues are a complex conjugate pair, with
*> ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio
@@ -192,8 +191,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,8*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dggevx.f b/SRC/dggevx.f
index 6da2fe3a..0f4f86b0 100644
--- a/SRC/dggevx.f
+++ b/SRC/dggevx.f
@@ -169,8 +169,7 @@
*> the j-th eigenvalue is real; if positive, then the j-th and
*> (j+1)-st eigenvalues are a complex conjugate pair, with
*> ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio
@@ -314,8 +313,7 @@
*> LWORK >= max(1,6*N).
*> If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
*> If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dggglm.f b/SRC/dggglm.f
index 8fb2f5d5..945ab59f 100644
--- a/SRC/dggglm.f
+++ b/SRC/dggglm.f
@@ -130,8 +130,7 @@
*> \param[out] Y
*> \verbatim
*> Y is DOUBLE PRECISION array, dimension (P)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, X and Y are the solutions of the GLM problem.
*> \endverbatim
*>
@@ -148,8 +147,7 @@
*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> DGEQRF, SGERQF, DORMQR and SORMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dgghrd.f b/SRC/dgghrd.f
index 57b1fd2c..5296059f 100644
--- a/SRC/dgghrd.f
+++ b/SRC/dgghrd.f
@@ -104,8 +104,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI mark the rows and columns of A which are to be
*> reduced. It is assumed that A is already upper triangular
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
diff --git a/SRC/dgglse.f b/SRC/dgglse.f
index 908f7a5d..0f5ac04b 100644
--- a/SRC/dgglse.f
+++ b/SRC/dgglse.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> DGEQRF, SGERQF, DORMQR and SORMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dggsvd.f b/SRC/dggsvd.f
index fc8a6d46..fc439389 100644
--- a/SRC/dggsvd.f
+++ b/SRC/dggsvd.f
@@ -170,8 +170,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose.
*> K + L = effective numerical rank of (A**T,B**T)**T.
@@ -213,8 +212,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
@@ -296,12 +294,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, the Jacobi-type procedure failed to
*> converge. For further details, see subroutine DTGSJA.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA DOUBLE PRECISION
*> TOLB DOUBLE PRECISION
*> TOLA and TOLB are the thresholds to determine the effective
diff --git a/SRC/dggsvp.f b/SRC/dggsvp.f
index bc1a0ac1..aa82939e 100644
--- a/SRC/dggsvp.f
+++ b/SRC/dggsvp.f
@@ -143,8 +143,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the thresholds to determine the effective
*> numerical rank of matrix B and a subblock of A. Generally,
*> they are set to
@@ -162,8 +161,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose section.
*> K + L = effective numerical rank of (A**T,B**T)**T.
diff --git a/SRC/dgtrfs.f b/SRC/dgtrfs.f
index ae68f79e..897b81a5 100644
--- a/SRC/dgtrfs.f
+++ b/SRC/dgtrfs.f
@@ -184,12 +184,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dgtsv.f b/SRC/dgtsv.f
index 3c242860..58cb98bd 100644
--- a/SRC/dgtsv.f
+++ b/SRC/dgtsv.f
@@ -66,8 +66,7 @@
*> DL is DOUBLE PRECISION array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DL is overwritten by the (n-2) elements of the
*> second super-diagonal of the upper triangular matrix U from
*> the LU factorization of A, in DL(1), ..., DL(n-2).
@@ -77,8 +76,7 @@
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, D is overwritten by the n diagonal elements of U.
*> \endverbatim
*>
@@ -87,8 +85,7 @@
*> DU is DOUBLE PRECISION array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
diff --git a/SRC/dgtsvx.f b/SRC/dgtsvx.f
index 69f2a7bc..e7d2d1b5 100644
--- a/SRC/dgtsvx.f
+++ b/SRC/dgtsvx.f
@@ -135,8 +135,7 @@
*> If FACT = 'F', then DLF is an input argument and on entry
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A as computed by DGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DLF is an output argument and on exit
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A.
@@ -148,8 +147,7 @@
*> If FACT = 'F', then DF is an input argument and on entry
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DF is an output argument and on exit
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
@@ -160,8 +158,7 @@
*> DUF is or output) DOUBLE PRECISION array, dimension (N-1)
*> If FACT = 'F', then DUF is an input argument and on entry
*> contains the (n-1) elements of the first superdiagonal of U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DUF is an output argument and on exit
*> contains the (n-1) elements of the first superdiagonal of U.
*> \endverbatim
@@ -172,8 +169,7 @@
*> If FACT = 'F', then DU2 is an input argument and on entry
*> contains the (n-2) elements of the second superdiagonal of
*> U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DU2 is an output argument and on exit
*> contains the (n-2) elements of the second superdiagonal of
*> U.
@@ -185,8 +181,7 @@
*> If FACT = 'F', then IPIV is an input argument and on entry
*> contains the pivot indices from the LU factorization of A as
*> computed by DGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the LU factorization of A;
*> row i of the matrix was interchanged with row IPIV(i).
diff --git a/SRC/dgttrf.f b/SRC/dgttrf.f
index 11dfc855..173c1a76 100644
--- a/SRC/dgttrf.f
+++ b/SRC/dgttrf.f
@@ -59,8 +59,7 @@
*> DL is DOUBLE PRECISION array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DL is overwritten by the (n-1) multipliers that
*> define the matrix L from the LU factorization of A.
*> \endverbatim
@@ -69,8 +68,7 @@
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, D is overwritten by the n diagonal elements of the
*> upper triangular matrix U from the LU factorization of A.
*> \endverbatim
@@ -80,8 +78,7 @@
*> DU is DOUBLE PRECISION array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
diff --git a/SRC/dhgeqz.f b/SRC/dhgeqz.f
index 27c22f1e..849b76cc 100644
--- a/SRC/dhgeqz.f
+++ b/SRC/dhgeqz.f
@@ -255,8 +255,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dhsein.f b/SRC/dhsein.f
index 9e056686..b59fd91f 100644
--- a/SRC/dhsein.f
+++ b/SRC/dhsein.f
@@ -125,8 +125,7 @@
*> \param[in] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On entry, the real and imaginary parts of the eigenvalues of
*> H; a complex conjugate pair of eigenvalues must be stored in
*> consecutive elements of WR and WI.
diff --git a/SRC/dhseqr.f b/SRC/dhseqr.f
index 8e17443f..9e665906 100644
--- a/SRC/dhseqr.f
+++ b/SRC/dhseqr.f
@@ -83,8 +83,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that H is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to DGEBAL, and then passed to ZGEHRD
@@ -107,8 +106,7 @@
*> contents of H are unspecified on exit. (The output value of
*> H when INFO.GT.0 is given under the description of INFO
*> below.)
-*> \endverbatim
-*> \verbatim
+*>
*> Unlike earlier versions of DHSEQR, this subroutine may
*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
*> or j = IHI+1, IHI+2, ... N.
@@ -128,8 +126,7 @@
*> \param[out] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> The real and imaginary parts, respectively, of the computed
*> eigenvalues. If two eigenvalues are computed as a complex
*> conjugate pair, they are stored in consecutive elements of
@@ -180,8 +177,7 @@
*> may be required for optimal performance. A workspace
*> query is recommended to determine the optimal workspace
*> size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then DHSEQR does a workspace query.
*> In this case, DHSEQR checks the input parameters and
*> estimates the optimal workspace size for the given
@@ -200,42 +196,33 @@
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and JOB = 'E', then on exit, the
*> remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and JOB = 'S', then on exit
-*> \endverbatim
-*> \verbatim
+*>
*> (*) (initial value of H)*U = U*(final value of H)
-*> \endverbatim
-*> \verbatim
+*>
*> where U is an orthogonal matrix. The final
*> value of H is upper Hessenberg and quasi-triangular
*> in rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'V', then on exit
-*> \endverbatim
-*> \verbatim
+*>
*> (final value of Z) = (initial value of Z)*U
-*> \endverbatim
-*> \verbatim
+*>
*> where U is the orthogonal matrix in (*) (regard-
*> less of the value of JOB.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'I', then on exit
*> (final value of Z) = U
*> where U is the orthogonal matrix in (*) (regard-
*> less of the value of JOB.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'N', then Z is not
*> accessed.
*> \endverbatim
diff --git a/SRC/dla_gbamv.f b/SRC/dla_gbamv.f
index a913da81..d1da1278 100644
--- a/SRC/dla_gbamv.f
+++ b/SRC/dla_gbamv.f
@@ -62,13 +62,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -168,8 +166,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/dla_geamv.f b/SRC/dla_geamv.f
index 77ca7341..b13d4756 100644
--- a/SRC/dla_geamv.f
+++ b/SRC/dla_geamv.f
@@ -62,13 +62,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -157,8 +155,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/dla_porfsx_extended.f b/SRC/dla_porfsx_extended.f
index 2c5c1bac..c7b68a57 100644
--- a/SRC/dla_porfsx_extended.f
+++ b/SRC/dla_porfsx_extended.f
@@ -192,37 +192,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -231,8 +225,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -246,14 +239,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -261,26 +252,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -291,8 +278,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/dla_syamv.f b/SRC/dla_syamv.f
index aa5fd29f..21e50be8 100644
--- a/SRC/dla_syamv.f
+++ b/SRC/dla_syamv.f
@@ -62,16 +62,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/dla_syrfsx_extended.f b/SRC/dla_syrfsx_extended.f
index f5915cb0..131144db 100644
--- a/SRC/dla_syrfsx_extended.f
+++ b/SRC/dla_syrfsx_extended.f
@@ -200,37 +200,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -239,8 +233,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -254,14 +247,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -269,26 +260,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -299,8 +286,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/dlaed4.f b/SRC/dlaed4.f
index 5ac5d2f0..d0c6bd13 100644
--- a/SRC/dlaed4.f
+++ b/SRC/dlaed4.f
@@ -106,24 +106,19 @@
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = 1, the updating process failed.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable ORGATI (origin-at-i?) is used for distinguishing
*> whether D(i) or D(i+1) is treated as the origin.
-*> \endverbatim
-*> \verbatim
+*>
*> ORGATI = .true. origin at i
*> ORGATI = .false. origin at i+1
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*> if we are working with THREE poles!
-*> \endverbatim
-*> \verbatim
+*>
*> MAXIT is the maximum number of iterations allowed for each
*> eigenvalue.
*> \endverbatim
diff --git a/SRC/dlagtf.f b/SRC/dlagtf.f
index 48382de5..eb4e25d8 100644
--- a/SRC/dlagtf.f
+++ b/SRC/dlagtf.f
@@ -67,8 +67,7 @@
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (N)
*> On entry, A must contain the diagonal elements of T.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, A is overwritten by the n diagonal elements of the
*> upper triangular matrix U of the factorization of T.
*> \endverbatim
@@ -84,8 +83,7 @@
*> B is DOUBLE PRECISION array, dimension (N-1)
*> On entry, B must contain the (n-1) super-diagonal elements of
*> T.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, B is overwritten by the (n-1) super-diagonal
*> elements of the matrix U of the factorization of T.
*> \endverbatim
@@ -95,8 +93,7 @@
*> C is DOUBLE PRECISION array, dimension (N-1)
*> On entry, C must contain the (n-1) sub-diagonal elements of
*> T.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, C is overwritten by the (n-1) sub-diagonal elements
*> of the matrix L of the factorization of T.
*> \endverbatim
@@ -128,11 +125,9 @@
*> an interchange occurred at the kth step of the elimination,
*> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
*> returns the smallest positive integer j such that
-*> \endverbatim
-*> \verbatim
+*>
*> abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
-*> \endverbatim
-*> \verbatim
+*>
*> where norm( A(j) ) denotes the sum of the absolute values of
*> the jth row of the matrix A. If no such j exists then IN(n)
*> is returned as zero. If IN(n) is returned as positive, then a
diff --git a/SRC/dlagts.f b/SRC/dlagts.f
index 695b64c4..691d7a7a 100644
--- a/SRC/dlagts.f
+++ b/SRC/dlagts.f
@@ -129,8 +129,7 @@
*> is the relative machine precision, but if TOL is supplied as
*> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
*> If JOB .gt. 0 then TOL is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, TOL is changed as described above, only if TOL is
*> non-positive on entry. Otherwise TOL is unchanged.
*> \endverbatim
diff --git a/SRC/dlahqr.f b/SRC/dlahqr.f
index e9dd56a9..8ed28bbc 100644
--- a/SRC/dlahqr.f
+++ b/SRC/dlahqr.f
@@ -159,22 +159,19 @@
*> per eigenvalue; elements i+1:ihi of WR and WI
*> contain those eigenvalues which have been
*> successfully computed.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the
*> eigenvalues of the upper Hessenberg matrix rows
*> and columns ILO thorugh INFO of the final, output
*> value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
*> (*) (initial value of H)*U = U*(final value of H)
*> where U is an orthognal matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*> (final value of Z) = (initial value of Z)*U
*> where U is the orthogonal matrix in (*)
diff --git a/SRC/dlals0.f b/SRC/dlals0.f
index da2b64e2..728584f2 100644
--- a/SRC/dlals0.f
+++ b/SRC/dlals0.f
@@ -101,8 +101,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
diff --git a/SRC/dlaqgb.f b/SRC/dlaqgb.f
index c7866610..d742512a 100644
--- a/SRC/dlaqgb.f
+++ b/SRC/dlaqgb.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix, in the same storage format
*> as A. See EQUED for the form of the equilibrated matrix.
*> \endverbatim
@@ -129,18 +128,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/dlaqge.f b/SRC/dlaqge.f
index f424cc06..3fce578a 100644
--- a/SRC/dlaqge.f
+++ b/SRC/dlaqge.f
@@ -111,18 +111,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/dlaqr0.f b/SRC/dlaqr0.f
index 29e0492d..985dd9f0 100644
--- a/SRC/dlaqr0.f
+++ b/SRC/dlaqr0.f
@@ -102,8 +102,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -180,8 +179,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then DLAQR0 does a workspace query.
*> In this case, DLAQR0 checks the input parameters and
*> estimates the optimal workspace size for the given
@@ -223,10 +221,8 @@
*>
*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
*> accessed.
-*> \endverbatim
-*> \verbatim
-*> \endverbatim
-*> \verbatim
+*>
+*>
*> Based on contributions by
*> Karen Braman and Ralph Byers, Department of Mathematics,
*> University of Kansas, USA
diff --git a/SRC/dlaqr2.f b/SRC/dlaqr2.f
index 580cda40..8af7c6a1 100644
--- a/SRC/dlaqr2.f
+++ b/SRC/dlaqr2.f
@@ -248,8 +248,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; DLAQR2
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/dlaqr3.f b/SRC/dlaqr3.f
index e09def41..63c98c62 100644
--- a/SRC/dlaqr3.f
+++ b/SRC/dlaqr3.f
@@ -245,8 +245,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; DLAQR3
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/dlaqr4.f b/SRC/dlaqr4.f
index e5c1973a..2cfbc81b 100644
--- a/SRC/dlaqr4.f
+++ b/SRC/dlaqr4.f
@@ -109,8 +109,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -187,8 +186,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then DLAQR4 does a workspace query.
*> In this case, DLAQR4 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/dlaqsb.f b/SRC/dlaqsb.f
index 85093cca..4c49597c 100644
--- a/SRC/dlaqsb.f
+++ b/SRC/dlaqsb.f
@@ -74,8 +74,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
@@ -112,17 +111,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/dlaqsp.f b/SRC/dlaqsp.f
index 262a6092..9dddd358 100644
--- a/SRC/dlaqsp.f
+++ b/SRC/dlaqsp.f
@@ -66,8 +66,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
@@ -97,17 +96,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/dlaqsy.f b/SRC/dlaqsy.f
index 87b0459f..0b141c2e 100644
--- a/SRC/dlaqsy.f
+++ b/SRC/dlaqsy.f
@@ -68,8 +68,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED = 'Y', the equilibrated matrix:
*> diag(S) * A * diag(S).
*> \endverbatim
@@ -105,17 +104,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/dlarrd.f b/SRC/dlarrd.f
index cd30cca5..2cfdd268 100644
--- a/SRC/dlarrd.f
+++ b/SRC/dlarrd.f
@@ -279,12 +279,10 @@
*> floating-point arithmetic.
*> Cure: Increase the PARAMETER "FUDGE",
*> recompile, and try again.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> FUDGE DOUBLE PRECISION, default = 2
*> A "fudge factor" to widen the Gershgorin intervals. Ideally,
*> a value of 1 should work, but on machines with sloppy
@@ -292,8 +290,7 @@
*> publicly released versions should be large enough to handle
*> the worst machine around. Note that this has no effect
*> on accuracy of the solution.
-*> \endverbatim
-*> \verbatim
+*>
*> Based on contributions by
*> W. Kahan, University of California, Berkeley, USA
*> Beresford Parlett, University of California, Berkeley, USA
diff --git a/SRC/dlarre.f b/SRC/dlarre.f
index 41111ad0..946e0c49 100644
--- a/SRC/dlarre.f
+++ b/SRC/dlarre.f
@@ -249,8 +249,7 @@
*> < 0: One of the called subroutines signaled an internal problem.
*> Needs inspection of the corresponding parameter IINFO
*> for further information.
-*> \endverbatim
-*> \verbatim
+*>
*> =-1: Problem in DLARRD.
*> = 2: No base representation could be found in MAXTRY iterations.
*> Increasing MAXTRY and recompilation might be a remedy.
diff --git a/SRC/dlarrk.f b/SRC/dlarrk.f
index 6814a2fe..b04dfcad 100644
--- a/SRC/dlarrk.f
+++ b/SRC/dlarrk.f
@@ -120,12 +120,10 @@
*> INFO is INTEGER
*> = 0: Eigenvalue converged
*> = -1: Eigenvalue did NOT converge
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> FUDGE DOUBLE PRECISION, default = 2
*> A "fudge factor" to widen the Gershgorin intervals.
*> \endverbatim
diff --git a/SRC/dlartg.f b/SRC/dlartg.f
index ace79c84..82f301b6 100644
--- a/SRC/dlartg.f
+++ b/SRC/dlartg.f
@@ -78,8 +78,7 @@
*> \verbatim
*> R is DOUBLE PRECISION
*> The nonzero component of the rotated vector.
-*> \endverbatim
-*> \verbatim
+*>
*> This version has a few statements commented out for thread safety
*> (machine parameters are computed on each entry). 10 feb 03, SJH.
*> \endverbatim
diff --git a/SRC/dlartgp.f b/SRC/dlartgp.f
index fbd23621..7935ded5 100644
--- a/SRC/dlartgp.f
+++ b/SRC/dlartgp.f
@@ -76,8 +76,7 @@
*> \verbatim
*> R is DOUBLE PRECISION
*> The nonzero component of the rotated vector.
-*> \endverbatim
-*> \verbatim
+*>
*> This version has a few statements commented out for thread safety
*> (machine parameters are computed on each entry). 10 feb 03, SJH.
*> \endverbatim
diff --git a/SRC/dlascl.f b/SRC/dlascl.f
index c8be9939..f7748b47 100644
--- a/SRC/dlascl.f
+++ b/SRC/dlascl.f
@@ -86,8 +86,7 @@
*> \param[in] CTO
*> \verbatim
*> CTO is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*> without over/underflow if the final result CTO*A(I,J)/CFROM
*> can be represented without over/underflow. CFROM must be
diff --git a/SRC/dlasd1.f b/SRC/dlasd1.f
index 4e2b6a06..d8626c2c 100644
--- a/SRC/dlasd1.f
+++ b/SRC/dlasd1.f
@@ -97,8 +97,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
diff --git a/SRC/dlasd2.f b/SRC/dlasd2.f
index 9cc0bfc2..0565d363 100644
--- a/SRC/dlasd2.f
+++ b/SRC/dlasd2.f
@@ -71,8 +71,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
@@ -236,8 +235,7 @@
*> 2 : non-zero in the lower half only
*> 3 : dense
*> 4 : deflated
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, it is an array of dimension 4, with COLTYP(I) being
*> the dimension of the I-th type columns.
*> \endverbatim
diff --git a/SRC/dlasd3.f b/SRC/dlasd3.f
index 6b25a93b..19045915 100644
--- a/SRC/dlasd3.f
+++ b/SRC/dlasd3.f
@@ -75,8 +75,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
@@ -175,8 +174,7 @@
*> contains non-zero entries only at and below (or after) NL+2;
*> and the third is dense. The first column of U and the row of
*> VT are treated separately, however.
-*> \endverbatim
-*> \verbatim
+*>
*> The rows of the singular vectors found by DLASD4
*> must be likewise permuted before the matrix multiplies can
*> take place.
diff --git a/SRC/dlasd4.f b/SRC/dlasd4.f
index a577d632..79a0b0b1 100644
--- a/SRC/dlasd4.f
+++ b/SRC/dlasd4.f
@@ -114,24 +114,19 @@
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = 1, the updating process failed.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable ORGATI (origin-at-i?) is used for distinguishing
*> whether D(i) or D(i+1) is treated as the origin.
-*> \endverbatim
-*> \verbatim
+*>
*> ORGATI = .true. origin at i
*> ORGATI = .false. origin at i+1
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*> if we are working with THREE poles!
-*> \endverbatim
-*> \verbatim
+*>
*> MAXIT is the maximum number of iterations allowed for each
*> eigenvalue.
*> \endverbatim
diff --git a/SRC/dlasd6.f b/SRC/dlasd6.f
index 5f6e0ff4..5f34d79d 100644
--- a/SRC/dlasd6.f
+++ b/SRC/dlasd6.f
@@ -118,8 +118,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
@@ -239,12 +238,10 @@
*> On exit, DIFR(I, 1) is the distance between I-th updated
*> (undeflated) singular value and the I+1-th (undeflated) old
*> singular value.
-*> \endverbatim
-*> \verbatim
+*>
*> If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
*> normalizing factors for the right singular vector matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> See DLASD8 for details on DIFL and DIFR.
*> \endverbatim
*>
diff --git a/SRC/dlasd7.f b/SRC/dlasd7.f
index dbee953a..de432ffa 100644
--- a/SRC/dlasd7.f
+++ b/SRC/dlasd7.f
@@ -83,8 +83,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
diff --git a/SRC/dlasd8.f b/SRC/dlasd8.f
index b2eade7c..4873c5a2 100644
--- a/SRC/dlasd8.f
+++ b/SRC/dlasd8.f
@@ -111,8 +111,7 @@
*> dimension ( K ) if ICOMPQ = 0.
*> On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
*> defined and will not be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
*> normalizing factors for the right singular vector matrix.
*> \endverbatim
diff --git a/SRC/dlasdq.f b/SRC/dlasdq.f
index 98f0f7a9..36b8c4c2 100644
--- a/SRC/dlasdq.f
+++ b/SRC/dlasdq.f
@@ -72,8 +72,7 @@
*> = 0: then the input matrix is N-by-N.
*> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
*> (N+1)-by-N if UPLU = 'L'.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
diff --git a/SRC/dlaset.f b/SRC/dlaset.f
index 873b4db5..12468694 100644
--- a/SRC/dlaset.f
+++ b/SRC/dlaset.f
@@ -82,13 +82,11 @@
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On exit, the leading m-by-n submatrix of A is set as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
*> if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
*> otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
-*> \endverbatim
-*> \verbatim
+*>
*> and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
*> \endverbatim
*>
diff --git a/SRC/dlasq3.f b/SRC/dlasq3.f
index 9660d528..2711c157 100644
--- a/SRC/dlasq3.f
+++ b/SRC/dlasq3.f
@@ -161,8 +161,7 @@
*> \param[in,out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> These are passed as arguments in order to save their values
*> between calls to DLASQ3.
*> \endverbatim
diff --git a/SRC/dlasyf.f b/SRC/dlasyf.f
index 0476da3a..ae4b252b 100644
--- a/SRC/dlasyf.f
+++ b/SRC/dlasyf.f
@@ -112,8 +112,7 @@
*> Details of the interchanges and the block structure of D.
*> If UPLO = 'U', only the last KB elements of IPIV are set;
*> if UPLO = 'L', only the first KB elements are set.
-*> \endverbatim
-*> \verbatim
+*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
diff --git a/SRC/dlatbs.f b/SRC/dlatbs.f
index 5101b7fd..c24841f6 100644
--- a/SRC/dlatbs.f
+++ b/SRC/dlatbs.f
@@ -136,15 +136,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/dlatps.f b/SRC/dlatps.f
index c818f131..6b28c24e 100644
--- a/SRC/dlatps.f
+++ b/SRC/dlatps.f
@@ -123,15 +123,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/dlatrs.f b/SRC/dlatrs.f
index b0772c08..b347f825 100644
--- a/SRC/dlatrs.f
+++ b/SRC/dlatrs.f
@@ -132,15 +132,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/dlatzm.f b/SRC/dlatzm.f
index 121b2bc2..7bcc3c36 100644
--- a/SRC/dlatzm.f
+++ b/SRC/dlatzm.f
@@ -107,8 +107,7 @@
*> (M,1) if SIDE = 'R'
*> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*> if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the first row of P*C if SIDE = 'L', or the first
*> column of C*P if SIDE = 'R'.
*> \endverbatim
@@ -120,8 +119,7 @@
*> (LDC, N-1) if SIDE = 'R'
*> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*> m x (n - 1) matrix C2 if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*> if SIDE = 'R'.
*> \endverbatim
diff --git a/SRC/dorbdb.f b/SRC/dorbdb.f
index f949f87a..a6aae378 100644
--- a/SRC/dorbdb.f
+++ b/SRC/dorbdb.f
@@ -234,8 +234,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= M-Q.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorcsd.f b/SRC/dorcsd.f
index 8916fb40..1345bbbb 100644
--- a/SRC/dorcsd.f
+++ b/SRC/dorcsd.f
@@ -255,8 +255,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
@@ -275,12 +274,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: DBBCSD did not converge. See the description of WORK
*> above for details.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*> \endverbatim
diff --git a/SRC/dorgbr.f b/SRC/dorgbr.f
index f92e0545..c65bc073 100644
--- a/SRC/dorgbr.f
+++ b/SRC/dorgbr.f
@@ -129,8 +129,7 @@
*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*> For optimum performance LWORK >= min(M,N)*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorghr.f b/SRC/dorghr.f
index 9e6dd87c..738ec8f8 100644
--- a/SRC/dorghr.f
+++ b/SRC/dorghr.f
@@ -58,8 +58,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of DGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -99,8 +98,7 @@
*> The dimension of the array WORK. LWORK >= IHI-ILO.
*> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorglq.f b/SRC/dorglq.f
index e9c42b1e..19d83458 100644
--- a/SRC/dorglq.f
+++ b/SRC/dorglq.f
@@ -99,8 +99,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorgql.f b/SRC/dorgql.f
index d34ad36e..2baeb533 100644
--- a/SRC/dorgql.f
+++ b/SRC/dorgql.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorgqr.f b/SRC/dorgqr.f
index 9a6a0319..5c9b5bf1 100644
--- a/SRC/dorgqr.f
+++ b/SRC/dorgqr.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorgrq.f b/SRC/dorgrq.f
index 1c8573c8..bfb319e1 100644
--- a/SRC/dorgrq.f
+++ b/SRC/dorgrq.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dorgtr.f b/SRC/dorgtr.f
index c0f2245a..dff9bf44 100644
--- a/SRC/dorgtr.f
+++ b/SRC/dorgtr.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N-1).
*> For optimum performance LWORK >= (N-1)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormbr.f b/SRC/dormbr.f
index fb310879..523e0959 100644
--- a/SRC/dormbr.f
+++ b/SRC/dormbr.f
@@ -166,8 +166,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormhr.f b/SRC/dormhr.f
index 4dbb2d3e..c2a66452 100644
--- a/SRC/dormhr.f
+++ b/SRC/dormhr.f
@@ -86,8 +86,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of DGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -150,8 +149,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormlq.f b/SRC/dormlq.f
index 0b56dcd2..482b676c 100644
--- a/SRC/dormlq.f
+++ b/SRC/dormlq.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormql.f b/SRC/dormql.f
index 7501f2ba..68940442 100644
--- a/SRC/dormql.f
+++ b/SRC/dormql.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormqr.f b/SRC/dormqr.f
index 58517e03..011c5665 100644
--- a/SRC/dormqr.f
+++ b/SRC/dormqr.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormrq.f b/SRC/dormrq.f
index 73c17a7b..e4e1beb6 100644
--- a/SRC/dormrq.f
+++ b/SRC/dormrq.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormrz.f b/SRC/dormrz.f
index ae41d933..52d3e11b 100644
--- a/SRC/dormrz.f
+++ b/SRC/dormrz.f
@@ -149,8 +149,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dormtr.f b/SRC/dormtr.f
index 29488835..32852b62 100644
--- a/SRC/dormtr.f
+++ b/SRC/dormtr.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dpbrfs.f b/SRC/dpbrfs.f
index c29c2a65..4440aaef 100644
--- a/SRC/dpbrfs.f
+++ b/SRC/dpbrfs.f
@@ -165,12 +165,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dpbstf.f b/SRC/dpbstf.f
index 130ba513..4d7429ef 100644
--- a/SRC/dpbstf.f
+++ b/SRC/dpbstf.f
@@ -82,8 +82,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor S from the split Cholesky
*> factorization A = S**T*S. See Further Details.
*> \endverbatim
diff --git a/SRC/dpbsv.f b/SRC/dpbsv.f
index 6a5fbd08..b22b8f8f 100644
--- a/SRC/dpbsv.f
+++ b/SRC/dpbsv.f
@@ -90,8 +90,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/dpbsvx.f b/SRC/dpbsvx.f
index 9483a7b9..bb1cf552 100644
--- a/SRC/dpbsvx.f
+++ b/SRC/dpbsvx.f
@@ -146,8 +146,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -166,13 +165,11 @@
*> factorization A = U**T*U or A = L*L**T of the band matrix
*> A, in the same storage format as A (see AB). If EQUED = 'Y',
*> then AFB is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
diff --git a/SRC/dpbtf2.f b/SRC/dpbtf2.f
index cafc15d2..898be3f4 100644
--- a/SRC/dpbtf2.f
+++ b/SRC/dpbtf2.f
@@ -81,8 +81,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/dpbtrf.f b/SRC/dpbtrf.f
index 0ac4dddd..575e5de3 100644
--- a/SRC/dpbtrf.f
+++ b/SRC/dpbtrf.f
@@ -76,8 +76,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/dpftrf.f b/SRC/dpftrf.f
index ccef6e09..477bbb06 100644
--- a/SRC/dpftrf.f
+++ b/SRC/dpftrf.f
@@ -82,8 +82,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization RFP A = U**T*U or RFP A = L*L**T.
*> \endverbatim
diff --git a/SRC/dpftri.f b/SRC/dpftri.f
index 0d2f65c7..f173f419 100644
--- a/SRC/dpftri.f
+++ b/SRC/dpftri.f
@@ -76,8 +76,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the symmetric inverse of the original matrix, in the
*> same storage format.
*> \endverbatim
diff --git a/SRC/dporfs.f b/SRC/dporfs.f
index 43f99569..5a213ce7 100644
--- a/SRC/dporfs.f
+++ b/SRC/dporfs.f
@@ -159,12 +159,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dporfsx.f b/SRC/dporfsx.f
index 941cc747..3772991e 100644
--- a/SRC/dporfsx.f
+++ b/SRC/dporfsx.f
@@ -211,37 +211,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -250,8 +244,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -262,14 +255,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -277,26 +268,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -307,8 +294,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -327,8 +313,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -339,8 +324,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -350,8 +334,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dposv.f b/SRC/dposv.f
index 427d979d..1e8963fd 100644
--- a/SRC/dposv.f
+++ b/SRC/dposv.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
*> \endverbatim
diff --git a/SRC/dposvx.f b/SRC/dposvx.f
index 110cc2b5..55dff5b1 100644
--- a/SRC/dposvx.f
+++ b/SRC/dposvx.f
@@ -141,8 +141,7 @@
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -161,14 +160,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored form
*> of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
diff --git a/SRC/dposvxx.f b/SRC/dposvxx.f
index 3b72faa6..8c3ff0fb 100644
--- a/SRC/dposvxx.f
+++ b/SRC/dposvxx.f
@@ -168,8 +168,7 @@
*> the strictly upper triangular part of A is not referenced. A is
*> not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
*> 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -188,14 +187,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored
*> form of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
@@ -314,37 +311,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -353,8 +344,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -365,14 +355,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -380,26 +368,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -410,8 +394,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -430,8 +413,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -439,8 +421,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -450,8 +431,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dpotf2.f b/SRC/dpotf2.f
index 0658a4d9..4604659e 100644
--- a/SRC/dpotf2.f
+++ b/SRC/dpotf2.f
@@ -74,8 +74,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T *U or A = L*L**T.
*> \endverbatim
diff --git a/SRC/dpotrf.f b/SRC/dpotrf.f
index 4feb0539..0e7010d1 100644
--- a/SRC/dpotrf.f
+++ b/SRC/dpotrf.f
@@ -72,8 +72,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
*> \endverbatim
diff --git a/SRC/dpprfs.f b/SRC/dpprfs.f
index 4735169f..1f0c58c0 100644
--- a/SRC/dpprfs.f
+++ b/SRC/dpprfs.f
@@ -147,12 +147,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dppsv.f b/SRC/dppsv.f
index 9369955a..bea94b3e 100644
--- a/SRC/dppsv.f
+++ b/SRC/dppsv.f
@@ -81,8 +81,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A.
diff --git a/SRC/dppsvx.f b/SRC/dppsvx.f
index 2d782f2e..a4031f9e 100644
--- a/SRC/dppsvx.f
+++ b/SRC/dppsvx.f
@@ -138,8 +138,7 @@
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -153,14 +152,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AFP is the factored
*> form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T * U or A = L * L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T * U or A = L * L**T of the equilibrated
diff --git a/SRC/dpptrf.f b/SRC/dpptrf.f
index 5f629567..e6f05e6c 100644
--- a/SRC/dpptrf.f
+++ b/SRC/dpptrf.f
@@ -69,8 +69,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T, in the same
*> storage format as A.
diff --git a/SRC/dpptri.f b/SRC/dpptri.f
index 90b94e17..10f77ce0 100644
--- a/SRC/dpptri.f
+++ b/SRC/dpptri.f
@@ -65,8 +65,7 @@
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the upper or lower triangle of the (symmetric)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
diff --git a/SRC/dpstf2.f b/SRC/dpstf2.f
index 5566589a..feae5e92 100644
--- a/SRC/dpstf2.f
+++ b/SRC/dpstf2.f
@@ -78,8 +78,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/dpstrf.f b/SRC/dpstrf.f
index ebcd76cc..0842d78b 100644
--- a/SRC/dpstrf.f
+++ b/SRC/dpstrf.f
@@ -78,8 +78,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/dptrfs.f b/SRC/dptrfs.f
index 00543716..cbbcdd3a 100644
--- a/SRC/dptrfs.f
+++ b/SRC/dptrfs.f
@@ -139,12 +139,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dsbev.f b/SRC/dsbev.f
index 3971a023..dc490fcf 100644
--- a/SRC/dsbev.f
+++ b/SRC/dsbev.f
@@ -79,8 +79,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
diff --git a/SRC/dsbevd.f b/SRC/dsbevd.f
index 6ff74c95..c4e6aa90 100644
--- a/SRC/dsbevd.f
+++ b/SRC/dsbevd.f
@@ -88,8 +88,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
@@ -141,8 +140,7 @@
*> If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
*> If JOBZ = 'V' and N > 2, LWORK must be at least
*> ( 1 + 5*N + 2*N**2 ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -162,8 +160,7 @@
*> The dimension of the array LIWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dsbevx.f b/SRC/dsbevx.f
index 8ab0d415..1bd8403c 100644
--- a/SRC/dsbevx.f
+++ b/SRC/dsbevx.f
@@ -94,8 +94,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
@@ -159,24 +158,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AB to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/dsbgst.f b/SRC/dsbgst.f
index 096f5c5e..d7974b6c 100644
--- a/SRC/dsbgst.f
+++ b/SRC/dsbgst.f
@@ -93,8 +93,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the transformed matrix X**T*A*X, stored in the same
*> format as A.
*> \endverbatim
diff --git a/SRC/dsbgv.f b/SRC/dsbgv.f
index 7400e2b3..96be241d 100644
--- a/SRC/dsbgv.f
+++ b/SRC/dsbgv.f
@@ -89,8 +89,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -109,8 +108,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**T*S, as returned by DPBSTF.
*> \endverbatim
diff --git a/SRC/dsbgvd.f b/SRC/dsbgvd.f
index 555a2d15..901e7cda 100644
--- a/SRC/dsbgvd.f
+++ b/SRC/dsbgvd.f
@@ -98,8 +98,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -118,8 +117,7 @@
*> as follows:
*> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**T*S, as returned by DPBSTF.
*> \endverbatim
@@ -166,8 +164,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= 3*N.
*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -187,8 +184,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dsbgvx.f b/SRC/dsbgvx.f
index 55d4c88b..1b783710 100644
--- a/SRC/dsbgvx.f
+++ b/SRC/dsbgvx.f
@@ -104,8 +104,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -124,8 +123,7 @@
*> as follows:
*> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**T*S, as returned by DPBSTF.
*> \endverbatim
@@ -160,8 +158,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -175,8 +172,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -190,17 +186,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
diff --git a/SRC/dsbtrd.f b/SRC/dsbtrd.f
index 094f0296..b97a9076 100644
--- a/SRC/dsbtrd.f
+++ b/SRC/dsbtrd.f
@@ -114,8 +114,7 @@
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
*> On entry, if VECT = 'U', then Q must contain an N-by-N
*> matrix X; if VECT = 'N' or 'V', then Q need not be set.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit:
*> if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
*> if VECT = 'U', Q contains the product X*Q;
diff --git a/SRC/dsfrk.f b/SRC/dsfrk.f
index c0532648..fcd7555a 100644
--- a/SRC/dsfrk.f
+++ b/SRC/dsfrk.f
@@ -68,16 +68,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,14 +83,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/dspev.f b/SRC/dspev.f
index dcb978c5..484f50cc 100644
--- a/SRC/dspev.f
+++ b/SRC/dspev.f
@@ -70,8 +70,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
diff --git a/SRC/dspevd.f b/SRC/dspevd.f
index b57b1a67..679a65db 100644
--- a/SRC/dspevd.f
+++ b/SRC/dspevd.f
@@ -80,8 +80,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -127,8 +126,7 @@
*> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
*> If JOBZ = 'V' and N > 1, LWORK must be at least
*> 1 + 6*N + N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -148,8 +146,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dspevx.f b/SRC/dspevx.f
index e7b6452b..9d31549f 100644
--- a/SRC/dspevx.f
+++ b/SRC/dspevx.f
@@ -85,8 +85,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -129,24 +128,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/dspgst.f b/SRC/dspgst.f
index 89d2199d..d9e7f70a 100644
--- a/SRC/dspgst.f
+++ b/SRC/dspgst.f
@@ -80,8 +80,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/dspgv.f b/SRC/dspgv.f
index 8223a5a4..74c7b5d2 100644
--- a/SRC/dspgv.f
+++ b/SRC/dspgv.f
@@ -85,8 +85,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -98,8 +97,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T, in the same storage
*> format as B.
diff --git a/SRC/dspgvd.f b/SRC/dspgvd.f
index 0694561f..fb7d3e91 100644
--- a/SRC/dspgvd.f
+++ b/SRC/dspgvd.f
@@ -93,8 +93,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -106,8 +105,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T, in the same storage
*> format as B.
@@ -149,8 +147,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= 2*N.
*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -170,8 +167,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dspgvx.f b/SRC/dspgvx.f
index f83eb174..178e0d1c 100644
--- a/SRC/dspgvx.f
+++ b/SRC/dspgvx.f
@@ -98,8 +98,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -111,8 +110,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T, in the same storage
*> format as B.
@@ -126,8 +124,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -141,8 +138,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -156,17 +152,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -199,8 +192,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
diff --git a/SRC/dsprfs.f b/SRC/dsprfs.f
index e00f4af4..1641fe26 100644
--- a/SRC/dsprfs.f
+++ b/SRC/dsprfs.f
@@ -155,12 +155,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dspsv.f b/SRC/dspsv.f
index a80049f2..e55c4b50 100644
--- a/SRC/dspsv.f
+++ b/SRC/dspsv.f
@@ -83,8 +83,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
diff --git a/SRC/dspsvx.f b/SRC/dspsvx.f
index 33256f38..865492eb 100644
--- a/SRC/dspsvx.f
+++ b/SRC/dspsvx.f
@@ -128,8 +128,7 @@
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -150,8 +149,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by DSPTRF.
diff --git a/SRC/dsptrf.f b/SRC/dsptrf.f
index 2e1c25f1..b5c420d9 100644
--- a/SRC/dsptrf.f
+++ b/SRC/dsptrf.f
@@ -70,8 +70,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L, stored as a packed triangular
*> matrix overwriting A (see below for further details).
diff --git a/SRC/dsptri.f b/SRC/dsptri.f
index a9a8b7e4..03a8dffa 100644
--- a/SRC/dsptri.f
+++ b/SRC/dsptri.f
@@ -65,8 +65,7 @@
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by DSPTRF,
*> stored as a packed triangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
diff --git a/SRC/dstebz.f b/SRC/dstebz.f
index 095ea368..a8933108 100644
--- a/SRC/dstebz.f
+++ b/SRC/dstebz.f
@@ -93,8 +93,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. Eigenvalues less than or equal
*> to VL, or greater than VU, will not be returned. VL < VU.
@@ -109,8 +108,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -125,8 +123,7 @@
*> determined to lie in an interval whose width is ABSTOL or
*> less. If ABSTOL is less than or equal to zero, then ULP*|T|
*> will be used, where |T| means the 1-norm of T.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> \endverbatim
@@ -229,19 +226,16 @@
*> floating-point arithmetic.
*> Cure: Increase the PARAMETER "FUDGE",
*> recompile, and try again.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> RELFAC DOUBLE PRECISION, default = 2.0e0
*> The relative tolerance. An interval (a,b] lies within
*> "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
*> where "ulp" is the machine precision (distance from 1 to
*> the next larger floating point number.)
-*> \endverbatim
-*> \verbatim
+*>
*> FUDGE DOUBLE PRECISION, default = 2
*> A "fudge factor" to widen the Gershgorin intervals. Ideally,
*> a value of 1 should work, but on machines with sloppy
diff --git a/SRC/dstedc.f b/SRC/dstedc.f
index a689ac49..541b1229 100644
--- a/SRC/dstedc.f
+++ b/SRC/dstedc.f
@@ -125,8 +125,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LWORK need
*> only be max(1,2*(N-1)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -151,8 +150,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LIWORK
*> need only be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/dstegr.f b/SRC/dstegr.f
index 1d1d1b72..e5f58353 100644
--- a/SRC/dstegr.f
+++ b/SRC/dstegr.f
@@ -111,8 +111,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -126,8 +125,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/dstein.f b/SRC/dstein.f
index c4250de5..34abb7f6 100644
--- a/SRC/dstein.f
+++ b/SRC/dstein.f
@@ -145,16 +145,13 @@
*> > 0: if INFO = i, then i eigenvectors failed to converge
*> in MAXITS iterations. Their indices are stored in
*> array IFAIL.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITS INTEGER, default = 5
*> The maximum number of iterations performed.
-*> \endverbatim
-*> \verbatim
+*>
*> EXTRA INTEGER, default = 2
*> The number of iterations performed after norm growth
*> criterion is satisfied, should be at least 1.
diff --git a/SRC/dstemr.f b/SRC/dstemr.f
index c0513d6e..ad044dbe 100644
--- a/SRC/dstemr.f
+++ b/SRC/dstemr.f
@@ -142,8 +142,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -157,8 +156,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/dstevd.f b/SRC/dstevd.f
index 396910b2..31f98ac5 100644
--- a/SRC/dstevd.f
+++ b/SRC/dstevd.f
@@ -111,8 +111,7 @@
*> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
*> If JOBZ = 'V' and N > 1 then LWORK must be at least
*> ( 1 + 4*N + N**2 ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -132,8 +131,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dstevr.f b/SRC/dstevr.f
index 54cc96da..a266fbd2 100644
--- a/SRC/dstevr.f
+++ b/SRC/dstevr.f
@@ -160,22 +160,18 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
-*> \endverbatim
-*> \verbatim
+*>
*> If high relative accuracy is important, set ABSTOL to
*> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
@@ -242,8 +238,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,20*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -262,8 +257,7 @@
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dstevx.f b/SRC/dstevx.f
index b00e0b39..af02662d 100644
--- a/SRC/dstevx.f
+++ b/SRC/dstevx.f
@@ -121,24 +121,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less
*> than or equal to zero, then EPS*|T| will be used in
*> its place, where |T| is the 1-norm of the tridiagonal
*> matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/dsyev.f b/SRC/dsyev.f
index 8b962c27..d30d4d0f 100644
--- a/SRC/dsyev.f
+++ b/SRC/dsyev.f
@@ -101,8 +101,7 @@
*> The length of the array WORK. LWORK >= max(1,3*N-1).
*> For optimal efficiency, LWORK >= (NB+2)*N,
*> where NB is the blocksize for DSYTRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsyevd.f b/SRC/dsyevd.f
index 2be0f4fe..7a8b139e 100644
--- a/SRC/dsyevd.f
+++ b/SRC/dsyevd.f
@@ -117,8 +117,7 @@
*> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
*> If JOBZ = 'V' and N > 1, LWORK must be at least
*> 1 + 6*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -139,8 +138,7 @@
*> If N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dsyevr.f b/SRC/dsyevr.f
index 266d0392..76833157 100644
--- a/SRC/dsyevr.f
+++ b/SRC/dsyevr.f
@@ -185,22 +185,18 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
-*> \endverbatim
-*> \verbatim
+*>
*> If high relative accuracy is important, set ABSTOL to
*> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
@@ -271,8 +267,7 @@
*> For optimal efficiency, LWORK >= (NB+6)*N,
*> where NB is the max of the blocksize for DSYTRD and DORMTR
*> returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -289,8 +284,7 @@
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/dsyevx.f b/SRC/dsyevx.f
index a9698052..90861c04 100644
--- a/SRC/dsyevx.f
+++ b/SRC/dsyevx.f
@@ -130,24 +130,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
@@ -204,8 +200,7 @@
*> For optimal efficiency, LWORK >= (NB+3)*N,
*> where NB is the max of the blocksize for DSYTRD and DORMTR
*> returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsygs2.f b/SRC/dsygs2.f
index 4da6bc54..2b7bf1df 100644
--- a/SRC/dsygs2.f
+++ b/SRC/dsygs2.f
@@ -82,8 +82,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/dsygst.f b/SRC/dsygst.f
index 3dbfa82e..792a8076 100644
--- a/SRC/dsygst.f
+++ b/SRC/dsygst.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/dsygv.f b/SRC/dsygv.f
index 29f5ca55..dc5e0591 100644
--- a/SRC/dsygv.f
+++ b/SRC/dsygv.f
@@ -83,8 +83,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -109,8 +108,7 @@
*> contains the upper triangular part of the matrix B.
*> If UPLO = 'L', the leading N-by-N lower triangular part of B
*> contains the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T.
@@ -140,8 +138,7 @@
*> The length of the array WORK. LWORK >= max(1,3*N-1).
*> For optimal efficiency, LWORK >= (NB+2)*N,
*> where NB is the blocksize for DSYTRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsygvd.f b/SRC/dsygvd.f
index 28e4d1cc..0fde04c4 100644
--- a/SRC/dsygvd.f
+++ b/SRC/dsygvd.f
@@ -91,8 +91,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -117,8 +116,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T.
@@ -149,8 +147,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -171,8 +168,7 @@
*> If N <= 1, LIWORK >= 1.
*> If JOBZ = 'N' and N > 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/dsygvx.f b/SRC/dsygvx.f
index b045a9a5..6f022477 100644
--- a/SRC/dsygvx.f
+++ b/SRC/dsygvx.f
@@ -97,8 +97,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the lower triangle (if UPLO='L') or the upper
*> triangle (if UPLO='U') of A, including the diagonal, is
*> destroyed.
@@ -118,8 +117,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T.
@@ -165,19 +163,16 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing C to tridiagonal form, where C is the symmetric
*> matrix of the standard symmetric problem to which the
*> generalized problem is transformed.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -210,8 +205,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
@@ -239,8 +233,7 @@
*> The length of the array WORK. LWORK >= max(1,8*N).
*> For optimal efficiency, LWORK >= (NB+3)*N,
*> where NB is the blocksize for DSYTRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsyrfs.f b/SRC/dsyrfs.f
index e2582e4a..9333713c 100644
--- a/SRC/dsyrfs.f
+++ b/SRC/dsyrfs.f
@@ -167,12 +167,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/dsyrfsx.f b/SRC/dsyrfsx.f
index efab12d1..14e64b16 100644
--- a/SRC/dsyrfsx.f
+++ b/SRC/dsyrfsx.f
@@ -219,37 +219,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -258,8 +252,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -270,14 +263,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -285,26 +276,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -315,8 +302,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -335,8 +321,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -347,8 +332,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -358,8 +342,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dsysv.f b/SRC/dsysv.f
index 1d5630a5..f4d2acfc 100644
--- a/SRC/dsysv.f
+++ b/SRC/dsysv.f
@@ -85,8 +85,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the block diagonal matrix D and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*D*U**T or A = L*D*L**T as computed by
@@ -140,8 +139,7 @@
*> DSYTRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsysvx.f b/SRC/dsysvx.f
index ef9733d8..7b92f4e8 100644
--- a/SRC/dsysvx.f
+++ b/SRC/dsysvx.f
@@ -135,8 +135,7 @@
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -162,8 +161,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by DSYTRF.
@@ -236,8 +234,7 @@
*> The length of WORK. LWORK >= max(1,3*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
*> NB is the optimal blocksize for DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsysvxx.f b/SRC/dsysvxx.f
index de61c010..84953d35 100644
--- a/SRC/dsysvxx.f
+++ b/SRC/dsysvxx.f
@@ -167,8 +167,7 @@
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -186,8 +185,7 @@
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
@@ -213,8 +211,7 @@
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by DSYTRF.
@@ -325,37 +322,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -364,8 +355,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -376,14 +366,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -391,26 +379,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -421,8 +405,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -441,8 +424,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -450,8 +432,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -461,8 +442,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/dsyswapr.f b/SRC/dsyswapr.f
index 8526ef89..8b0bd6af 100644
--- a/SRC/dsyswapr.f
+++ b/SRC/dsyswapr.f
@@ -61,8 +61,7 @@
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/dsytf2.f b/SRC/dsytf2.f
index c68ad395..3bdf48c8 100644
--- a/SRC/dsytf2.f
+++ b/SRC/dsytf2.f
@@ -76,8 +76,7 @@
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/dsytrf.f b/SRC/dsytrf.f
index fcf06879..07341b1a 100644
--- a/SRC/dsytrf.f
+++ b/SRC/dsytrf.f
@@ -75,8 +75,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
@@ -111,8 +110,7 @@
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dsytri.f b/SRC/dsytri.f
index 5da539b2..da96cbe7 100644
--- a/SRC/dsytri.f
+++ b/SRC/dsytri.f
@@ -64,8 +64,7 @@
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/dsytri2.f b/SRC/dsytri2.f
index 6ee2f281..c34c8f43 100644
--- a/SRC/dsytri2.f
+++ b/SRC/dsytri2.f
@@ -65,8 +65,7 @@
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/dsytri2x.f b/SRC/dsytri2x.f
index 38aa6d0e..71a79851 100644
--- a/SRC/dsytri2x.f
+++ b/SRC/dsytri2x.f
@@ -64,8 +64,7 @@
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the NNB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/dtfsm.f b/SRC/dtfsm.f
index 1d94232f..57e174f5 100644
--- a/SRC/dtfsm.f
+++ b/SRC/dtfsm.f
@@ -68,14 +68,11 @@
*> SIDE is CHARACTER*1
*> On entry, SIDE specifies whether op( A ) appears on the left
*> or right of X as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,8 +83,7 @@
*> an upper or lower triangular matrix as follows:
*> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
*> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -96,14 +92,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the form of op( A ) to be used
*> in the matrix multiplication as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' op( A ) = A.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'T' or 't' op( A ) = A'.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -112,15 +105,12 @@
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not RFP A is unit
*> triangular as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/dtftri.f b/SRC/dtftri.f
index 127ceb63..03c8bca6 100644
--- a/SRC/dtftri.f
+++ b/SRC/dtftri.f
@@ -86,8 +86,7 @@
*> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
*> TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
*> even and N is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/dtgevc.f b/SRC/dtgevc.f
index fbe3b814..7b5553c3 100644
--- a/SRC/dtgevc.f
+++ b/SRC/dtgevc.f
@@ -146,13 +146,11 @@
*> if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
*> SELECT, stored consecutively in the columns of
*> VL, in the same order as their eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part, and the second the imaginary part.
-*> \endverbatim
-*> \verbatim
+*>
*> Not referenced if SIDE = 'R'.
*> \endverbatim
*>
@@ -169,8 +167,7 @@
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*> contain an N-by-N matrix Z (usually the orthogonal matrix Z
*> of right Schur vectors returned by DHGEQZ).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
*> if HOWMNY = 'B' or 'b', the matrix Z*X;
@@ -178,8 +175,7 @@
*> specified by SELECT, stored consecutively in the
*> columns of VR, in the same order as their
*> eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part and the second the imaginary part.
diff --git a/SRC/dtgexc.f b/SRC/dtgexc.f
index 9580f3ce..6a4fa366 100644
--- a/SRC/dtgexc.f
+++ b/SRC/dtgexc.f
@@ -169,8 +169,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dtgsen.f b/SRC/dtgsen.f
index 831c9c73..e3e2110b 100644
--- a/SRC/dtgsen.f
+++ b/SRC/dtgsen.f
@@ -164,8 +164,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*> be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
*> and BETA(j),j=1,...,N are the diagonals of the complex Schur
@@ -228,8 +227,7 @@
*> \param[out] PR
*> \verbatim
*> PR is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
*> reciprocal of the norm of "projections" onto left and right
*> eigenspaces with respect to the selected cluster.
@@ -262,8 +260,7 @@
*> The dimension of the array WORK. LWORK >= 4*N+16.
*> If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
*> If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -282,8 +279,7 @@
*> The dimension of the array IWORK. LIWORK >= 1.
*> If IJOB = 1, 2 or 4, LIWORK >= N+6.
*> If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/dtgsja.f b/SRC/dtgsja.f
index c8a3b476..fdf5d29b 100644
--- a/SRC/dtgsja.f
+++ b/SRC/dtgsja.f
@@ -185,8 +185,7 @@
*> \param[in] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> K and L specify the subblocks in the input matrices A and B:
*> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
*> of A and B, whose GSVD is going to be computed by DTGSJA.
@@ -229,8 +228,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the convergence criteria for the Jacobi-
*> Kogbetliantz iteration procedure. Generally, they are the
*> same as used in the preprocessing step, say
@@ -246,8 +244,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
diff --git a/SRC/dtgsna.f b/SRC/dtgsna.f
index e4a1b387..3818668b 100644
--- a/SRC/dtgsna.f
+++ b/SRC/dtgsna.f
@@ -203,8 +203,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*> If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dtgsyl.f b/SRC/dtgsyl.f
index 19fa8acf..b59acfec 100644
--- a/SRC/dtgsyl.f
+++ b/SRC/dtgsyl.f
@@ -234,8 +234,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK > = 1.
*> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/dtrexc.f b/SRC/dtrexc.f
index 3d0f0a80..6623e1ab 100644
--- a/SRC/dtrexc.f
+++ b/SRC/dtrexc.f
@@ -104,8 +104,7 @@
*> \param[in,out] ILST
*> \verbatim
*> ILST is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> Specify the reordering of the diagonal blocks of T.
*> The block with row index IFST is moved to row ILST, by a
*> sequence of transpositions between adjacent blocks.
diff --git a/SRC/dtrsen.f b/SRC/dtrsen.f
index b0234b58..8e79e909 100644
--- a/SRC/dtrsen.f
+++ b/SRC/dtrsen.f
@@ -136,8 +136,7 @@
*> \param[out] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> The real and imaginary parts, respectively, of the reordered
*> eigenvalues of T. The eigenvalues are stored in the same
*> order as on the diagonal of T, with WR(i) = T(i,i) and, if
@@ -186,8 +185,7 @@
*> If JOB = 'N', LWORK >= max(1,N);
*> if JOB = 'E', LWORK >= max(1,M*(N-M));
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -206,8 +204,7 @@
*> The dimension of the array IWORK.
*> If JOB = 'N' or 'E', LIWORK >= 1;
*> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/dtrti2.f b/SRC/dtrti2.f
index 0e359456..bba6491c 100644
--- a/SRC/dtrti2.f
+++ b/SRC/dtrti2.f
@@ -78,8 +78,7 @@
*> triangular part of A is not referenced. If DIAG = 'U', the
*> diagonal elements of A are also not referenced and are
*> assumed to be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/dtzrzf.f b/SRC/dtzrzf.f
index 73084758..9661e370 100644
--- a/SRC/dtzrzf.f
+++ b/SRC/dtzrzf.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ieeeck.f b/SRC/ieeeck.f
index 1f536a77..06d0f515 100644
--- a/SRC/ieeeck.f
+++ b/SRC/ieeeck.f
@@ -62,8 +62,7 @@
*> Must contain the value 1.0
*> This is passed to prevent the compiler from optimizing
*> away this code.
-*> \endverbatim
-*> \verbatim
+*>
*> RETURN VALUE: INTEGER
*> = 0: Arithmetic failed to produce the correct answers
*> = 1: Arithmetic produced the correct answers
diff --git a/SRC/iparmq.f b/SRC/iparmq.f
index f49e0d04..9f6d0c86 100644
--- a/SRC/iparmq.f
+++ b/SRC/iparmq.f
@@ -44,21 +44,18 @@
*> ISPEC is integer scalar
*> ISPEC specifies which tunable parameter IPARMQ should
*> return.
-*> \endverbatim
-*> \verbatim
+*>
*> ISPEC=12: (INMIN) Matrices of order nmin or less
*> are sent directly to xLAHQR, the implicit
*> double shift QR algorithm. NMIN must be
*> at least 11.
-*> \endverbatim
-*> \verbatim
+*>
*> ISPEC=13: (INWIN) Size of the deflation window.
*> This is best set greater than or equal to
*> the number of simultaneous shifts NS.
*> Larger matrices benefit from larger deflation
*> windows.
-*> \endverbatim
-*> \verbatim
+*>
*> ISPEC=14: (INIBL) Determines when to stop nibbling and
*> invest in an (expensive) multi-shift QR sweep.
*> If the aggressive early deflation subroutine
@@ -73,12 +70,10 @@
*> IPARMQ(ISPEC=14) greater than or equal to 100
*> prevents TTQRE from skipping a multi-shift
*> QR sweep.
-*> \endverbatim
-*> \verbatim
+*>
*> ISPEC=15: (NSHFTS) The number of simultaneous shifts in
*> a multi-shift QR iteration.
-*> \endverbatim
-*> \verbatim
+*>
*> ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the
*> following meanings.
*> 0: During the multi-shift QR sweep,
diff --git a/SRC/sbbcsd.f b/SRC/sbbcsd.f
index 4007c609..9099d023 100644
--- a/SRC/sbbcsd.f
+++ b/SRC/sbbcsd.f
@@ -282,8 +282,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MAX(1,8*Q).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the WORK array,
*> returns this value as the first entry of the work array, and
@@ -298,20 +297,16 @@
*> > 0: if SBBCSD did not converge, INFO specifies the number
*> of nonzero entries in PHI, and B11D, B11E, etc.,
*> contain the partially reduced matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
diff --git a/SRC/sbdsqr.f b/SRC/sbdsqr.f
index b37102c4..5d7fbcf9 100644
--- a/SRC/sbdsqr.f
+++ b/SRC/sbdsqr.f
@@ -187,12 +187,10 @@
*> elements of a bidiagonal matrix which is orthogonally
*> similar to the input matrix B; if INFO = i, i
*> elements of E have not converged to zero.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL REAL, default = max(10,min(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> If it is positive, TOLMUL*EPS is the desired relative
@@ -207,8 +205,7 @@
*> Default is to lose at either one eighth or 2 of the
*> available decimal digits in each computed singular value
*> (whichever is smaller).
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITR INTEGER, default = 6
*> MAXITR controls the maximum number of passes of the
*> algorithm through its inner loop. The algorithms stops
diff --git a/SRC/sgbrfs.f b/SRC/sgbrfs.f
index 13357c84..17c0993f 100644
--- a/SRC/sgbrfs.f
+++ b/SRC/sgbrfs.f
@@ -180,12 +180,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/sgbrfsx.f b/SRC/sgbrfsx.f
index de8754be..8a5e17f2 100644
--- a/SRC/sgbrfsx.f
+++ b/SRC/sgbrfsx.f
@@ -256,37 +256,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -295,8 +289,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -307,14 +300,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -322,26 +313,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -352,8 +339,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -372,8 +358,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -384,8 +369,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -395,8 +379,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/sgbsvx.f b/SRC/sgbsvx.f
index aa142e00..81fbaa4f 100644
--- a/SRC/sgbsvx.f
+++ b/SRC/sgbsvx.f
@@ -150,14 +150,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then A must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -180,12 +178,10 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns details of the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns details of the LU factorization of the equilibrated
*> matrix A (see the description of AB for the form of the
@@ -205,13 +201,11 @@
*> contains the pivot indices from the factorization A = L*U
*> as computed by SGBTRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the equilibrated matrix A.
diff --git a/SRC/sgbsvxx.f b/SRC/sgbsvxx.f
index 93c7e343..ddf4e602 100644
--- a/SRC/sgbsvxx.f
+++ b/SRC/sgbsvxx.f
@@ -180,14 +180,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then AB must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -210,13 +208,11 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -236,13 +232,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by SGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -382,37 +376,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -421,8 +409,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -433,14 +420,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -448,26 +433,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -478,8 +459,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -498,8 +478,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -510,8 +489,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -521,8 +499,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/sgbtf2.f b/SRC/sgbtf2.f
index 6d46dba5..871bca5d 100644
--- a/SRC/sgbtf2.f
+++ b/SRC/sgbtf2.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/sgbtrf.f b/SRC/sgbtrf.f
index c1b951ae..9add5355 100644
--- a/SRC/sgbtrf.f
+++ b/SRC/sgbtrf.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/sgees.f b/SRC/sgees.f
index 50df3aff..8b564da5 100644
--- a/SRC/sgees.f
+++ b/SRC/sgees.f
@@ -168,8 +168,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,3*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgeesx.f b/SRC/sgeesx.f
index ff064a52..dba6cc93 100644
--- a/SRC/sgeesx.f
+++ b/SRC/sgeesx.f
@@ -209,8 +209,7 @@
*> returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
*> 'B' this may not be large enough.
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates upper bounds on the optimal sizes of the
*> arrays WORK and IWORK, returns these values as the first
@@ -232,8 +231,7 @@
*> Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
*> only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
*> may not be large enough.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates upper bounds on the optimal sizes of
*> the arrays WORK and IWORK, returns these values as the first
diff --git a/SRC/sgeev.f b/SRC/sgeev.f
index 1b124658..68f666cb 100644
--- a/SRC/sgeev.f
+++ b/SRC/sgeev.f
@@ -156,8 +156,7 @@
*> The dimension of the array WORK. LWORK >= max(1,3*N), and
*> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
*> performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgeevx.f b/SRC/sgeevx.f
index 5c78c837..bd3c2238 100644
--- a/SRC/sgeevx.f
+++ b/SRC/sgeevx.f
@@ -89,8 +89,7 @@
*> to make the rows and columns of A more equal in
*> norm. Do not permute;
*> = 'B': Both diagonally scale and permute A.
-*> \endverbatim
-*> \verbatim
+*>
*> Computed reciprocal condition numbers will be for the matrix
*> after balancing and/or permuting. Permuting does not change
*> condition numbers (in exact arithmetic), but balancing does.
@@ -120,8 +119,7 @@
*> = 'E': Computed for eigenvalues only;
*> = 'V': Computed for right eigenvectors only;
*> = 'B': Computed for eigenvalues and right eigenvectors.
-*> \endverbatim
-*> \verbatim
+*>
*> If SENSE = 'E' or 'B', both left and right eigenvectors
*> must also be computed (JOBVL = 'V' and JOBVR = 'V').
*> \endverbatim
@@ -265,8 +263,7 @@
*> LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
*> LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgegs.f b/SRC/sgegs.f
index 570f18e6..21b46fec 100644
--- a/SRC/sgegs.f
+++ b/SRC/sgegs.f
@@ -182,8 +182,7 @@
*> blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
*> NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
*> The optimal LWORK is 2*N + N*(NB+1).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgegv.f b/SRC/sgegv.f
index 6830dfc3..435316b7 100644
--- a/SRC/sgegv.f
+++ b/SRC/sgegv.f
@@ -171,8 +171,7 @@
*> u(j) = VL(:,j) + i*VL(:,j+1)
*> and
*> u(j+1) = VL(:,j) - i*VL(:,j+1).
-*> \endverbatim
-*> \verbatim
+*>
*> Each eigenvector is scaled so that its largest component has
*> abs(real part) + abs(imag. part) = 1, except for eigenvectors
*> corresponding to an eigenvalue with alpha = beta = 0, which
@@ -198,8 +197,7 @@
*> x(j) = VR(:,j) + i*VR(:,j+1)
*> and
*> x(j+1) = VR(:,j) - i*VR(:,j+1).
-*> \endverbatim
-*> \verbatim
+*>
*> Each eigenvector is scaled so that its largest component has
*> abs(real part) + abs(imag. part) = 1, except for eigenvalues
*> corresponding to an eigenvalue with alpha = beta = 0, which
@@ -230,8 +228,7 @@
*> NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
*> The optimal LWORK is:
*> 2*N + MAX( 6*N, N*(NB+1) ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgehd2.f b/SRC/sgehd2.f
index 2282b4cf..af00d4c5 100644
--- a/SRC/sgehd2.f
+++ b/SRC/sgehd2.f
@@ -55,8 +55,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to SGEBAL; otherwise they should be
diff --git a/SRC/sgehrd.f b/SRC/sgehrd.f
index 3afadab1..f4268235 100644
--- a/SRC/sgehrd.f
+++ b/SRC/sgehrd.f
@@ -55,8 +55,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to SGEBAL; otherwise they should be
@@ -101,8 +100,7 @@
*> The length of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgels.f b/SRC/sgels.f
index 3df887db..a892941e 100644
--- a/SRC/sgels.f
+++ b/SRC/sgels.f
@@ -150,8 +150,7 @@
*> For optimal performance,
*> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgelsd.f b/SRC/sgelsd.f
index 52f6b730..8e7f5eab 100644
--- a/SRC/sgelsd.f
+++ b/SRC/sgelsd.f
@@ -162,8 +162,7 @@
*> tree (usually about 25), and
*> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the array WORK and the
*> minimum size of the array IWORK, and returns these values as
diff --git a/SRC/sgelss.f b/SRC/sgelss.f
index 590361a3..8550b415 100644
--- a/SRC/sgelss.f
+++ b/SRC/sgelss.f
@@ -140,8 +140,7 @@
*> The dimension of the array WORK. LWORK >= 1, and also:
*> LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgelsy.f b/SRC/sgelsy.f
index d07f2f73..4f77b700 100644
--- a/SRC/sgelsy.f
+++ b/SRC/sgelsy.f
@@ -168,8 +168,7 @@
*> where NB is an upper bound on the blocksize returned
*> by ILAENV for the routines SGEQP3, STZRZF, STZRQF, SORMQR,
*> and SORMRZ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgeqp3.f b/SRC/sgeqp3.f
index b4dc7be3..2a2497e3 100644
--- a/SRC/sgeqp3.f
+++ b/SRC/sgeqp3.f
@@ -99,8 +99,7 @@
*> The dimension of the array WORK. LWORK >= 3*N+1.
*> For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgeqrf.f b/SRC/sgeqrf.f
index 1517a0d9..2d2499da 100644
--- a/SRC/sgeqrf.f
+++ b/SRC/sgeqrf.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgeqrfp.f b/SRC/sgeqrfp.f
index 99de605e..9fbf1d07 100644
--- a/SRC/sgeqrfp.f
+++ b/SRC/sgeqrfp.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgerfs.f b/SRC/sgerfs.f
index dd01b847..cd0220da 100644
--- a/SRC/sgerfs.f
+++ b/SRC/sgerfs.f
@@ -161,12 +161,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/sgerfsx.f b/SRC/sgerfsx.f
index 1989949e..12f0a1b5 100644
--- a/SRC/sgerfsx.f
+++ b/SRC/sgerfsx.f
@@ -231,37 +231,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -270,8 +264,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -282,14 +275,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -297,26 +288,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -327,8 +314,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -347,8 +333,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -359,8 +344,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -370,8 +354,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/sgesvd.f b/SRC/sgesvd.f
index ddcc3cb3..2362c4ac 100644
--- a/SRC/sgesvd.f
+++ b/SRC/sgesvd.f
@@ -81,8 +81,7 @@
*> vectors) are overwritten on the array A;
*> = 'N': no rows of V**T (no right singular vectors) are
*> computed.
-*> \endverbatim
-*> \verbatim
+*>
*> JOBVT and JOBU cannot both be 'O'.
*> \endverbatim
*>
@@ -179,8 +178,7 @@
*> - PATH 1t (N much larger than M, JOBVT='N')
*> LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) for the other paths
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgesvj.f b/SRC/sgesvj.f
index 00fb8350..902dff94 100644
--- a/SRC/sgesvj.f
+++ b/SRC/sgesvj.f
@@ -224,8 +224,7 @@
*> The singular values of A are SCALE*SVA(1:N), and this
*> factored representation is due to the fact that some of the
*> singular values of A might underflow or overflow.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 :
*> the procedure SGESVJ did not converge in the given number of
*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
diff --git a/SRC/sgesvx.f b/SRC/sgesvx.f
index 7aebb2b0..88940fbe 100644
--- a/SRC/sgesvx.f
+++ b/SRC/sgesvx.f
@@ -137,8 +137,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -158,13 +157,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -184,13 +181,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by SGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
diff --git a/SRC/sgesvxx.f b/SRC/sgesvxx.f
index 0db0b03a..a1636350 100644
--- a/SRC/sgesvxx.f
+++ b/SRC/sgesvxx.f
@@ -168,8 +168,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -189,13 +188,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -215,13 +212,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by SGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -361,37 +356,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -400,8 +389,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -412,14 +400,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -427,26 +413,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -457,8 +439,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -477,8 +458,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -489,8 +469,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -500,8 +479,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/sgetri.f b/SRC/sgetri.f
index 2b1bfb04..1c1e340a 100644
--- a/SRC/sgetri.f
+++ b/SRC/sgetri.f
@@ -84,8 +84,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimal performance LWORK >= N*NB, where NB is
*> the optimal blocksize returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgges.f b/SRC/sgges.f
index e0c7f4f4..7bba3308 100644
--- a/SRC/sgges.f
+++ b/SRC/sgges.f
@@ -116,8 +116,7 @@
*> SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
*> one of a complex conjugate pair of eigenvalues is selected,
*> then both complex eigenvalues are selected.
-*> \endverbatim
-*> \verbatim
+*>
*> Note that in the ill-conditioned case, a selected complex
*> eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
*> BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
@@ -189,8 +188,7 @@
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*> positive, then the j-th and (j+1)-st eigenvalues are a
*> complex conjugate pair, with ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio.
@@ -239,8 +237,7 @@
*> The dimension of the array WORK.
*> If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16).
*> For good performance , LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sggesx.f b/SRC/sggesx.f
index 009d4d6b..c0b8a54c 100644
--- a/SRC/sggesx.f
+++ b/SRC/sggesx.f
@@ -204,8 +204,7 @@
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*> positive, then the j-th and (j+1)-st eigenvalues are a
*> complex conjugate pair, with ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio.
@@ -277,8 +276,7 @@
*> Note also that an error is only returned if
*> LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
*> this may not be large enough.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the bound on the optimal size of the WORK
*> array and the minimum size of the IWORK array, returns these
@@ -299,8 +297,7 @@
*> The dimension of the array IWORK.
*> If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
*> LIWORK >= N+6.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the bound on the optimal size of the
*> WORK array and the minimum size of the IWORK array, returns
diff --git a/SRC/sggev.f b/SRC/sggev.f
index 8efd5c05..07fbd3b3 100644
--- a/SRC/sggev.f
+++ b/SRC/sggev.f
@@ -129,8 +129,7 @@
*> the j-th eigenvalue is real; if positive, then the j-th and
*> (j+1)-st eigenvalues are a complex conjugate pair, with
*> ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio
@@ -192,8 +191,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,8*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sggevx.f b/SRC/sggevx.f
index c07a8398..daa51c4d 100644
--- a/SRC/sggevx.f
+++ b/SRC/sggevx.f
@@ -169,8 +169,7 @@
*> the j-th eigenvalue is real; if positive, then the j-th and
*> (j+1)-st eigenvalues are a complex conjugate pair, with
*> ALPHAI(j+1) negative.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio
@@ -314,8 +313,7 @@
*> LWORK >= max(1,6*N).
*> If SENSE = 'E', LWORK >= max(1,10*N).
*> If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sggglm.f b/SRC/sggglm.f
index 1b107819..d276de90 100644
--- a/SRC/sggglm.f
+++ b/SRC/sggglm.f
@@ -130,8 +130,7 @@
*> \param[out] Y
*> \verbatim
*> Y is REAL array, dimension (P)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, X and Y are the solutions of the GLM problem.
*> \endverbatim
*>
@@ -148,8 +147,7 @@
*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> SGEQRF, SGERQF, SORMQR and SORMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sgghrd.f b/SRC/sgghrd.f
index bc2dc485..fa54857d 100644
--- a/SRC/sgghrd.f
+++ b/SRC/sgghrd.f
@@ -104,8 +104,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI mark the rows and columns of A which are to be
*> reduced. It is assumed that A is already upper triangular
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
diff --git a/SRC/sgglse.f b/SRC/sgglse.f
index efc3a476..6a1bf5e5 100644
--- a/SRC/sgglse.f
+++ b/SRC/sgglse.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> SGEQRF, SGERQF, SORMQR and SORMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sggsvd.f b/SRC/sggsvd.f
index 9b0fc544..08633242 100644
--- a/SRC/sggsvd.f
+++ b/SRC/sggsvd.f
@@ -170,8 +170,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose.
*> K + L = effective numerical rank of (A**T,B**T)**T.
@@ -213,8 +212,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
@@ -296,12 +294,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, the Jacobi-type procedure failed to
*> converge. For further details, see subroutine STGSJA.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA REAL
*> TOLB REAL
*> TOLA and TOLB are the thresholds to determine the effective
diff --git a/SRC/sggsvp.f b/SRC/sggsvp.f
index e9b37e82..ae481213 100644
--- a/SRC/sggsvp.f
+++ b/SRC/sggsvp.f
@@ -143,8 +143,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the thresholds to determine the effective
*> numerical rank of matrix B and a subblock of A. Generally,
*> they are set to
@@ -162,8 +161,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose section.
*> K + L = effective numerical rank of (A**T,B**T)**T.
diff --git a/SRC/sgtrfs.f b/SRC/sgtrfs.f
index 7168ca18..98c22c77 100644
--- a/SRC/sgtrfs.f
+++ b/SRC/sgtrfs.f
@@ -184,12 +184,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/sgtsv.f b/SRC/sgtsv.f
index 59a13c53..7c16fd42 100644
--- a/SRC/sgtsv.f
+++ b/SRC/sgtsv.f
@@ -66,8 +66,7 @@
*> DL is REAL array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DL is overwritten by the (n-2) elements of the
*> second super-diagonal of the upper triangular matrix U from
*> the LU factorization of A, in DL(1), ..., DL(n-2).
@@ -77,8 +76,7 @@
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, D is overwritten by the n diagonal elements of U.
*> \endverbatim
*>
@@ -87,8 +85,7 @@
*> DU is REAL array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
diff --git a/SRC/sgtsvx.f b/SRC/sgtsvx.f
index 226823f6..766e6834 100644
--- a/SRC/sgtsvx.f
+++ b/SRC/sgtsvx.f
@@ -135,8 +135,7 @@
*> If FACT = 'F', then DLF is an input argument and on entry
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A as computed by SGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DLF is an output argument and on exit
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A.
@@ -148,8 +147,7 @@
*> If FACT = 'F', then DF is an input argument and on entry
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DF is an output argument and on exit
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
@@ -160,8 +158,7 @@
*> DUF is or output) REAL array, dimension (N-1)
*> If FACT = 'F', then DUF is an input argument and on entry
*> contains the (n-1) elements of the first superdiagonal of U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DUF is an output argument and on exit
*> contains the (n-1) elements of the first superdiagonal of U.
*> \endverbatim
@@ -172,8 +169,7 @@
*> If FACT = 'F', then DU2 is an input argument and on entry
*> contains the (n-2) elements of the second superdiagonal of
*> U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DU2 is an output argument and on exit
*> contains the (n-2) elements of the second superdiagonal of
*> U.
@@ -185,8 +181,7 @@
*> If FACT = 'F', then IPIV is an input argument and on entry
*> contains the pivot indices from the LU factorization of A as
*> computed by SGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the LU factorization of A;
*> row i of the matrix was interchanged with row IPIV(i).
diff --git a/SRC/sgttrf.f b/SRC/sgttrf.f
index 38a6be11..d85d51e7 100644
--- a/SRC/sgttrf.f
+++ b/SRC/sgttrf.f
@@ -59,8 +59,7 @@
*> DL is REAL array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DL is overwritten by the (n-1) multipliers that
*> define the matrix L from the LU factorization of A.
*> \endverbatim
@@ -69,8 +68,7 @@
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, D is overwritten by the n diagonal elements of the
*> upper triangular matrix U from the LU factorization of A.
*> \endverbatim
@@ -80,8 +78,7 @@
*> DU is REAL array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
diff --git a/SRC/shgeqz.f b/SRC/shgeqz.f
index 279bd84f..e573fcc9 100644
--- a/SRC/shgeqz.f
+++ b/SRC/shgeqz.f
@@ -255,8 +255,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/shsein.f b/SRC/shsein.f
index 5678fedf..0ac9bf6b 100644
--- a/SRC/shsein.f
+++ b/SRC/shsein.f
@@ -125,8 +125,7 @@
*> \param[in] WI
*> \verbatim
*> WI is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On entry, the real and imaginary parts of the eigenvalues of
*> H; a complex conjugate pair of eigenvalues must be stored in
*> consecutive elements of WR and WI.
diff --git a/SRC/shseqr.f b/SRC/shseqr.f
index 8c7113bb..0cf4a1e3 100644
--- a/SRC/shseqr.f
+++ b/SRC/shseqr.f
@@ -83,8 +83,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that H is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to SGEBAL, and then passed to ZGEHRD
@@ -107,8 +106,7 @@
*> contents of H are unspecified on exit. (The output value of
*> H when INFO.GT.0 is given under the description of INFO
*> below.)
-*> \endverbatim
-*> \verbatim
+*>
*> Unlike earlier versions of SHSEQR, this subroutine may
*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
*> or j = IHI+1, IHI+2, ... N.
@@ -128,8 +126,7 @@
*> \param[out] WI
*> \verbatim
*> WI is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> The real and imaginary parts, respectively, of the computed
*> eigenvalues. If two eigenvalues are computed as a complex
*> conjugate pair, they are stored in consecutive elements of
@@ -180,8 +177,7 @@
*> may be required for optimal performance. A workspace
*> query is recommended to determine the optimal workspace
*> size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then SHSEQR does a workspace query.
*> In this case, SHSEQR checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/sla_gbamv.f b/SRC/sla_gbamv.f
index d423ed7d..42579b9b 100644
--- a/SRC/sla_gbamv.f
+++ b/SRC/sla_gbamv.f
@@ -62,13 +62,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -168,8 +166,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/sla_geamv.f b/SRC/sla_geamv.f
index 7df9e8a4..b8376cad 100644
--- a/SRC/sla_geamv.f
+++ b/SRC/sla_geamv.f
@@ -62,13 +62,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -157,8 +155,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/sla_porfsx_extended.f b/SRC/sla_porfsx_extended.f
index 8a1c11a7..a7d7d429 100644
--- a/SRC/sla_porfsx_extended.f
+++ b/SRC/sla_porfsx_extended.f
@@ -190,37 +190,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -229,8 +223,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -243,14 +236,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -258,26 +249,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -288,8 +275,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/sla_syamv.f b/SRC/sla_syamv.f
index 9cf66d57..02e91503 100644
--- a/SRC/sla_syamv.f
+++ b/SRC/sla_syamv.f
@@ -62,16 +62,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/sla_syrfsx_extended.f b/SRC/sla_syrfsx_extended.f
index 63fecc83..3894d317 100644
--- a/SRC/sla_syrfsx_extended.f
+++ b/SRC/sla_syrfsx_extended.f
@@ -198,37 +198,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -237,8 +231,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -251,14 +244,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -266,26 +257,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -296,8 +283,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/slaed4.f b/SRC/slaed4.f
index 95ab425a..f365c555 100644
--- a/SRC/slaed4.f
+++ b/SRC/slaed4.f
@@ -106,24 +106,19 @@
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = 1, the updating process failed.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable ORGATI (origin-at-i?) is used for distinguishing
*> whether D(i) or D(i+1) is treated as the origin.
-*> \endverbatim
-*> \verbatim
+*>
*> ORGATI = .true. origin at i
*> ORGATI = .false. origin at i+1
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*> if we are working with THREE poles!
-*> \endverbatim
-*> \verbatim
+*>
*> MAXIT is the maximum number of iterations allowed for each
*> eigenvalue.
*> \endverbatim
diff --git a/SRC/slagtf.f b/SRC/slagtf.f
index 8bfef3ba..e8c7c685 100644
--- a/SRC/slagtf.f
+++ b/SRC/slagtf.f
@@ -67,8 +67,7 @@
*> \verbatim
*> A is REAL array, dimension (N)
*> On entry, A must contain the diagonal elements of T.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, A is overwritten by the n diagonal elements of the
*> upper triangular matrix U of the factorization of T.
*> \endverbatim
@@ -84,8 +83,7 @@
*> B is REAL array, dimension (N-1)
*> On entry, B must contain the (n-1) super-diagonal elements of
*> T.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, B is overwritten by the (n-1) super-diagonal
*> elements of the matrix U of the factorization of T.
*> \endverbatim
@@ -95,8 +93,7 @@
*> C is REAL array, dimension (N-1)
*> On entry, C must contain the (n-1) sub-diagonal elements of
*> T.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, C is overwritten by the (n-1) sub-diagonal elements
*> of the matrix L of the factorization of T.
*> \endverbatim
@@ -128,11 +125,9 @@
*> an interchange occurred at the kth step of the elimination,
*> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
*> returns the smallest positive integer j such that
-*> \endverbatim
-*> \verbatim
+*>
*> abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
-*> \endverbatim
-*> \verbatim
+*>
*> where norm( A(j) ) denotes the sum of the absolute values of
*> the jth row of the matrix A. If no such j exists then IN(n)
*> is returned as zero. If IN(n) is returned as positive, then a
diff --git a/SRC/slagts.f b/SRC/slagts.f
index d25f3248..3afaae72 100644
--- a/SRC/slagts.f
+++ b/SRC/slagts.f
@@ -129,8 +129,7 @@
*> is the relative machine precision, but if TOL is supplied as
*> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
*> If JOB .gt. 0 then TOL is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, TOL is changed as described above, only if TOL is
*> non-positive on entry. Otherwise TOL is unchanged.
*> \endverbatim
diff --git a/SRC/slahqr.f b/SRC/slahqr.f
index 3f2213ea..6cb3a6aa 100644
--- a/SRC/slahqr.f
+++ b/SRC/slahqr.f
@@ -159,22 +159,19 @@
*> per eigenvalue; elements i+1:ihi of WR and WI
*> contain those eigenvalues which have been
*> successfully computed.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the
*> eigenvalues of the upper Hessenberg matrix rows
*> and columns ILO thorugh INFO of the final, output
*> value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
*> (*) (initial value of H)*U = U*(final value of H)
*> where U is an orthognal matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*> (final value of Z) = (initial value of Z)*U
*> where U is the orthogonal matrix in (*)
diff --git a/SRC/slals0.f b/SRC/slals0.f
index 5e64889d..b0911444 100644
--- a/SRC/slals0.f
+++ b/SRC/slals0.f
@@ -101,8 +101,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
diff --git a/SRC/slaqgb.f b/SRC/slaqgb.f
index 6eb64275..886ab225 100644
--- a/SRC/slaqgb.f
+++ b/SRC/slaqgb.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix, in the same storage format
*> as A. See EQUED for the form of the equilibrated matrix.
*> \endverbatim
@@ -129,18 +128,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/slaqge.f b/SRC/slaqge.f
index db1385fe..b11e1ded 100644
--- a/SRC/slaqge.f
+++ b/SRC/slaqge.f
@@ -111,18 +111,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/slaqr0.f b/SRC/slaqr0.f
index 942674e6..94c1d3d3 100644
--- a/SRC/slaqr0.f
+++ b/SRC/slaqr0.f
@@ -102,8 +102,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -180,8 +179,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then SLAQR0 does a workspace query.
*> In this case, SLAQR0 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/slaqr2.f b/SRC/slaqr2.f
index 12f0145b..3c96a201 100644
--- a/SRC/slaqr2.f
+++ b/SRC/slaqr2.f
@@ -248,8 +248,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; SLAQR2
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/slaqr3.f b/SRC/slaqr3.f
index 264ca70b..4841606f 100644
--- a/SRC/slaqr3.f
+++ b/SRC/slaqr3.f
@@ -245,8 +245,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; SLAQR3
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/slaqr4.f b/SRC/slaqr4.f
index e77e1e21..cd261201 100644
--- a/SRC/slaqr4.f
+++ b/SRC/slaqr4.f
@@ -109,8 +109,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -187,8 +186,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then SLAQR4 does a workspace query.
*> In this case, SLAQR4 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/slaqsb.f b/SRC/slaqsb.f
index bfdb6e93..2a5ffb46 100644
--- a/SRC/slaqsb.f
+++ b/SRC/slaqsb.f
@@ -74,8 +74,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
@@ -112,17 +111,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/slaqsp.f b/SRC/slaqsp.f
index 22f33056..7facd59d 100644
--- a/SRC/slaqsp.f
+++ b/SRC/slaqsp.f
@@ -66,8 +66,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
@@ -97,17 +96,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/slaqsy.f b/SRC/slaqsy.f
index 36420a7a..19390482 100644
--- a/SRC/slaqsy.f
+++ b/SRC/slaqsy.f
@@ -68,8 +68,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED = 'Y', the equilibrated matrix:
*> diag(S) * A * diag(S).
*> \endverbatim
@@ -105,17 +104,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/slarrd.f b/SRC/slarrd.f
index fbb70bdd..43b261e8 100644
--- a/SRC/slarrd.f
+++ b/SRC/slarrd.f
@@ -279,12 +279,10 @@
*> floating-point arithmetic.
*> Cure: Increase the PARAMETER "FUDGE",
*> recompile, and try again.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> FUDGE REAL , default = 2
*> A "fudge factor" to widen the Gershgorin intervals. Ideally,
*> a value of 1 should work, but on machines with sloppy
@@ -292,8 +290,7 @@
*> publicly released versions should be large enough to handle
*> the worst machine around. Note that this has no effect
*> on accuracy of the solution.
-*> \endverbatim
-*> \verbatim
+*>
*> Based on contributions by
*> W. Kahan, University of California, Berkeley, USA
*> Beresford Parlett, University of California, Berkeley, USA
diff --git a/SRC/slarre.f b/SRC/slarre.f
index d09862a7..1c468d5c 100644
--- a/SRC/slarre.f
+++ b/SRC/slarre.f
@@ -249,8 +249,7 @@
*> < 0: One of the called subroutines signaled an internal problem.
*> Needs inspection of the corresponding parameter IINFO
*> for further information.
-*> \endverbatim
-*> \verbatim
+*>
*> =-1: Problem in SLARRD.
*> = 2: No base representation could be found in MAXTRY iterations.
*> Increasing MAXTRY and recompilation might be a remedy.
diff --git a/SRC/slarrk.f b/SRC/slarrk.f
index f7d8fd8e..aaf5d63c 100644
--- a/SRC/slarrk.f
+++ b/SRC/slarrk.f
@@ -120,12 +120,10 @@
*> INFO is INTEGER
*> = 0: Eigenvalue converged
*> = -1: Eigenvalue did NOT converge
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> FUDGE REAL , default = 2
*> A "fudge factor" to widen the Gershgorin intervals.
*> \endverbatim
diff --git a/SRC/slartg.f b/SRC/slartg.f
index bf94b6f4..f024f919 100644
--- a/SRC/slartg.f
+++ b/SRC/slartg.f
@@ -78,8 +78,7 @@
*> \verbatim
*> R is REAL
*> The nonzero component of the rotated vector.
-*> \endverbatim
-*> \verbatim
+*>
*> This version has a few statements commented out for thread safety
*> (machine parameters are computed on each entry). 10 feb 03, SJH.
*> \endverbatim
diff --git a/SRC/slartgp.f b/SRC/slartgp.f
index c08a8469..03b84b68 100644
--- a/SRC/slartgp.f
+++ b/SRC/slartgp.f
@@ -76,8 +76,7 @@
*> \verbatim
*> R is REAL
*> The nonzero component of the rotated vector.
-*> \endverbatim
-*> \verbatim
+*>
*> This version has a few statements commented out for thread safety
*> (machine parameters are computed on each entry). 10 feb 03, SJH.
*> \endverbatim
diff --git a/SRC/slascl.f b/SRC/slascl.f
index 20827b06..7ad115b5 100644
--- a/SRC/slascl.f
+++ b/SRC/slascl.f
@@ -86,8 +86,7 @@
*> \param[in] CTO
*> \verbatim
*> CTO is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*> without over/underflow if the final result CTO*A(I,J)/CFROM
*> can be represented without over/underflow. CFROM must be
diff --git a/SRC/slasd1.f b/SRC/slasd1.f
index 808ebe27..98711d10 100644
--- a/SRC/slasd1.f
+++ b/SRC/slasd1.f
@@ -97,8 +97,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
diff --git a/SRC/slasd2.f b/SRC/slasd2.f
index 8118b524..0baaaa16 100644
--- a/SRC/slasd2.f
+++ b/SRC/slasd2.f
@@ -71,8 +71,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
@@ -236,8 +235,7 @@
*> 2 : non-zero in the lower half only
*> 3 : dense
*> 4 : deflated
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, it is an array of dimension 4, with COLTYP(I) being
*> the dimension of the I-th type columns.
*> \endverbatim
diff --git a/SRC/slasd3.f b/SRC/slasd3.f
index 106c1fc9..ba89d980 100644
--- a/SRC/slasd3.f
+++ b/SRC/slasd3.f
@@ -75,8 +75,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
@@ -175,8 +174,7 @@
*> contains non-zero entries only at and below (or after) NL+2;
*> and the third is dense. The first column of U and the row of
*> VT are treated separately, however.
-*> \endverbatim
-*> \verbatim
+*>
*> The rows of the singular vectors found by SLASD4
*> must be likewise permuted before the matrix multiplies can
*> take place.
diff --git a/SRC/slasd4.f b/SRC/slasd4.f
index e730f76e..ee96ca14 100644
--- a/SRC/slasd4.f
+++ b/SRC/slasd4.f
@@ -114,24 +114,19 @@
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = 1, the updating process failed.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable ORGATI (origin-at-i?) is used for distinguishing
*> whether D(i) or D(i+1) is treated as the origin.
-*> \endverbatim
-*> \verbatim
+*>
*> ORGATI = .true. origin at i
*> ORGATI = .false. origin at i+1
-*> \endverbatim
-*> \verbatim
+*>
*> Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*> if we are working with THREE poles!
-*> \endverbatim
-*> \verbatim
+*>
*> MAXIT is the maximum number of iterations allowed for each
*> eigenvalue.
*> \endverbatim
diff --git a/SRC/slasd6.f b/SRC/slasd6.f
index 53c1f156..26561f33 100644
--- a/SRC/slasd6.f
+++ b/SRC/slasd6.f
@@ -118,8 +118,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
@@ -239,12 +238,10 @@
*> On exit, DIFR(I, 1) is the distance between I-th updated
*> (undeflated) singular value and the I+1-th (undeflated) old
*> singular value.
-*> \endverbatim
-*> \verbatim
+*>
*> If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
*> normalizing factors for the right singular vector matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> See SLASD8 for details on DIFL and DIFR.
*> \endverbatim
*>
diff --git a/SRC/slasd7.f b/SRC/slasd7.f
index 12da5cae..4f5e4615 100644
--- a/SRC/slasd7.f
+++ b/SRC/slasd7.f
@@ -83,8 +83,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
diff --git a/SRC/slasd8.f b/SRC/slasd8.f
index 74798899..21dc6e04 100644
--- a/SRC/slasd8.f
+++ b/SRC/slasd8.f
@@ -111,8 +111,7 @@
*> dimension ( K ) if ICOMPQ = 0.
*> On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
*> defined and will not be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
*> normalizing factors for the right singular vector matrix.
*> \endverbatim
diff --git a/SRC/slasdq.f b/SRC/slasdq.f
index ca266921..1157a482 100644
--- a/SRC/slasdq.f
+++ b/SRC/slasdq.f
@@ -72,8 +72,7 @@
*> = 0: then the input matrix is N-by-N.
*> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
*> (N+1)-by-N if UPLU = 'L'.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
diff --git a/SRC/slaset.f b/SRC/slaset.f
index 9532c444..ff5820e9 100644
--- a/SRC/slaset.f
+++ b/SRC/slaset.f
@@ -82,13 +82,11 @@
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On exit, the leading m-by-n submatrix of A is set as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
*> if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
*> otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
-*> \endverbatim
-*> \verbatim
+*>
*> and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
*> \endverbatim
*>
diff --git a/SRC/slasq3.f b/SRC/slasq3.f
index cbe8ce42..6f285836 100644
--- a/SRC/slasq3.f
+++ b/SRC/slasq3.f
@@ -161,8 +161,7 @@
*> \param[in,out] TAU
*> \verbatim
*> TAU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> These are passed as arguments in order to save their values
*> between calls to SLASQ3.
*> \endverbatim
diff --git a/SRC/slasyf.f b/SRC/slasyf.f
index 33f60c8f..832f6a24 100644
--- a/SRC/slasyf.f
+++ b/SRC/slasyf.f
@@ -112,8 +112,7 @@
*> Details of the interchanges and the block structure of D.
*> If UPLO = 'U', only the last KB elements of IPIV are set;
*> if UPLO = 'L', only the first KB elements are set.
-*> \endverbatim
-*> \verbatim
+*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
diff --git a/SRC/slatbs.f b/SRC/slatbs.f
index 4cb166b4..09745c2e 100644
--- a/SRC/slatbs.f
+++ b/SRC/slatbs.f
@@ -136,15 +136,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/slatps.f b/SRC/slatps.f
index 1a64ce7b..9e84b1db 100644
--- a/SRC/slatps.f
+++ b/SRC/slatps.f
@@ -123,15 +123,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/slatrs.f b/SRC/slatrs.f
index 72e44a46..59bf0eca 100644
--- a/SRC/slatrs.f
+++ b/SRC/slatrs.f
@@ -132,15 +132,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/slatzm.f b/SRC/slatzm.f
index 178c9cee..40d48643 100644
--- a/SRC/slatzm.f
+++ b/SRC/slatzm.f
@@ -107,8 +107,7 @@
*> (M,1) if SIDE = 'R'
*> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*> if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the first row of P*C if SIDE = 'L', or the first
*> column of C*P if SIDE = 'R'.
*> \endverbatim
@@ -120,8 +119,7 @@
*> (LDC, N-1) if SIDE = 'R'
*> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*> m x (n - 1) matrix C2 if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*> if SIDE = 'R'.
*> \endverbatim
diff --git a/SRC/sorbdb.f b/SRC/sorbdb.f
index 9f0428c6..a298ec85 100644
--- a/SRC/sorbdb.f
+++ b/SRC/sorbdb.f
@@ -234,8 +234,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= M-Q.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorcsd.f b/SRC/sorcsd.f
index 1051a680..154342ca 100644
--- a/SRC/sorcsd.f
+++ b/SRC/sorcsd.f
@@ -255,8 +255,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
@@ -275,12 +274,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: SBBCSD did not converge. See the description of WORK
*> above for details.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*> \endverbatim
diff --git a/SRC/sorgbr.f b/SRC/sorgbr.f
index 2c467008..2dbb47f2 100644
--- a/SRC/sorgbr.f
+++ b/SRC/sorgbr.f
@@ -129,8 +129,7 @@
*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*> For optimum performance LWORK >= min(M,N)*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorghr.f b/SRC/sorghr.f
index 80087ebc..3bfa6847 100644
--- a/SRC/sorghr.f
+++ b/SRC/sorghr.f
@@ -58,8 +58,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of SGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -99,8 +98,7 @@
*> The dimension of the array WORK. LWORK >= IHI-ILO.
*> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorglq.f b/SRC/sorglq.f
index 736f3ceb..1fa482dc 100644
--- a/SRC/sorglq.f
+++ b/SRC/sorglq.f
@@ -99,8 +99,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorgql.f b/SRC/sorgql.f
index 707b71c6..fa0130e9 100644
--- a/SRC/sorgql.f
+++ b/SRC/sorgql.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorgqr.f b/SRC/sorgqr.f
index 02241fea..524fe8a9 100644
--- a/SRC/sorgqr.f
+++ b/SRC/sorgqr.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorgrq.f b/SRC/sorgrq.f
index 053f1b19..2784dcfc 100644
--- a/SRC/sorgrq.f
+++ b/SRC/sorgrq.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sorgtr.f b/SRC/sorgtr.f
index d2c99aaf..f7842156 100644
--- a/SRC/sorgtr.f
+++ b/SRC/sorgtr.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N-1).
*> For optimum performance LWORK >= (N-1)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormbr.f b/SRC/sormbr.f
index f225c663..36a80d58 100644
--- a/SRC/sormbr.f
+++ b/SRC/sormbr.f
@@ -167,8 +167,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormhr.f b/SRC/sormhr.f
index 88fd9687..ca87aa29 100644
--- a/SRC/sormhr.f
+++ b/SRC/sormhr.f
@@ -87,8 +87,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of SGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -151,8 +150,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormlq.f b/SRC/sormlq.f
index 31b5a4cb..10797f47 100644
--- a/SRC/sormlq.f
+++ b/SRC/sormlq.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormql.f b/SRC/sormql.f
index 8e891a47..825fbdd0 100644
--- a/SRC/sormql.f
+++ b/SRC/sormql.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormqr.f b/SRC/sormqr.f
index b3fd9d3d..127ed656 100644
--- a/SRC/sormqr.f
+++ b/SRC/sormqr.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormrq.f b/SRC/sormrq.f
index 97bb34d3..0b1e7ad8 100644
--- a/SRC/sormrq.f
+++ b/SRC/sormrq.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormrz.f b/SRC/sormrz.f
index dcfb55a8..2b3d48f7 100644
--- a/SRC/sormrz.f
+++ b/SRC/sormrz.f
@@ -149,8 +149,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/sormtr.f b/SRC/sormtr.f
index 3b7fbf46..a309f0c9 100644
--- a/SRC/sormtr.f
+++ b/SRC/sormtr.f
@@ -143,8 +143,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/spbrfs.f b/SRC/spbrfs.f
index 2c8dea1a..5ce6964e 100644
--- a/SRC/spbrfs.f
+++ b/SRC/spbrfs.f
@@ -165,12 +165,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/spbsv.f b/SRC/spbsv.f
index cae04b48..37c076ca 100644
--- a/SRC/spbsv.f
+++ b/SRC/spbsv.f
@@ -90,8 +90,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/spbsvx.f b/SRC/spbsvx.f
index 6b13e133..9c5c9e76 100644
--- a/SRC/spbsvx.f
+++ b/SRC/spbsvx.f
@@ -146,8 +146,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -166,13 +165,11 @@
*> factorization A = U**T*U or A = L*L**T of the band matrix
*> A, in the same storage format as A (see AB). If EQUED = 'Y',
*> then AFB is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
diff --git a/SRC/spbtf2.f b/SRC/spbtf2.f
index 1012ed4d..79c63c73 100644
--- a/SRC/spbtf2.f
+++ b/SRC/spbtf2.f
@@ -81,8 +81,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/spbtrf.f b/SRC/spbtrf.f
index 4d4acc1b..5fbe3add 100644
--- a/SRC/spbtrf.f
+++ b/SRC/spbtrf.f
@@ -76,8 +76,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/spftrf.f b/SRC/spftrf.f
index e01d171f..9902166a 100644
--- a/SRC/spftrf.f
+++ b/SRC/spftrf.f
@@ -82,8 +82,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization RFP A = U**T*U or RFP A = L*L**T.
*> \endverbatim
diff --git a/SRC/spftri.f b/SRC/spftri.f
index c5bb5118..14dff1ac 100644
--- a/SRC/spftri.f
+++ b/SRC/spftri.f
@@ -76,8 +76,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the symmetric inverse of the original matrix, in the
*> same storage format.
*> \endverbatim
diff --git a/SRC/sporfs.f b/SRC/sporfs.f
index 43a7adfc..8d837ed1 100644
--- a/SRC/sporfs.f
+++ b/SRC/sporfs.f
@@ -159,12 +159,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/sporfsx.f b/SRC/sporfsx.f
index bc0df788..8cca00e6 100644
--- a/SRC/sporfsx.f
+++ b/SRC/sporfsx.f
@@ -211,37 +211,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -250,8 +244,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -262,14 +255,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -277,26 +268,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -307,8 +294,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -327,8 +313,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -339,8 +324,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -350,8 +334,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/sposv.f b/SRC/sposv.f
index 89a5f16f..8b6394a0 100644
--- a/SRC/sposv.f
+++ b/SRC/sposv.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
*> \endverbatim
diff --git a/SRC/sposvx.f b/SRC/sposvx.f
index cdc16d7b..f8ec2392 100644
--- a/SRC/sposvx.f
+++ b/SRC/sposvx.f
@@ -141,8 +141,7 @@
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -161,14 +160,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored form
*> of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
diff --git a/SRC/sposvxx.f b/SRC/sposvxx.f
index 6f31c410..f04e61eb 100644
--- a/SRC/sposvxx.f
+++ b/SRC/sposvxx.f
@@ -168,8 +168,7 @@
*> the strictly upper triangular part of A is not referenced. A is
*> not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
*> 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -188,14 +187,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored
*> form of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
@@ -314,37 +311,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -353,8 +344,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -365,14 +355,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -380,26 +368,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -410,8 +394,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -430,8 +413,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -442,8 +424,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -453,8 +434,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/spotf2.f b/SRC/spotf2.f
index d1b6453f..9cf510e7 100644
--- a/SRC/spotf2.f
+++ b/SRC/spotf2.f
@@ -74,8 +74,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T *U or A = L*L**T.
*> \endverbatim
diff --git a/SRC/spotrf.f b/SRC/spotrf.f
index c010bd76..865fcca0 100644
--- a/SRC/spotrf.f
+++ b/SRC/spotrf.f
@@ -72,8 +72,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
*> \endverbatim
diff --git a/SRC/spprfs.f b/SRC/spprfs.f
index 5b25215a..53fa3b8a 100644
--- a/SRC/spprfs.f
+++ b/SRC/spprfs.f
@@ -147,12 +147,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/sppsv.f b/SRC/sppsv.f
index 7245392d..192ff675 100644
--- a/SRC/sppsv.f
+++ b/SRC/sppsv.f
@@ -81,8 +81,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A.
diff --git a/SRC/sppsvx.f b/SRC/sppsvx.f
index cfa1a948..9841eaae 100644
--- a/SRC/sppsvx.f
+++ b/SRC/sppsvx.f
@@ -138,8 +138,7 @@
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -153,14 +152,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AFP is the factored
*> form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T * U or A = L * L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T * U or A = L * L**T of the equilibrated
diff --git a/SRC/spptrf.f b/SRC/spptrf.f
index 89766442..70ffdc5d 100644
--- a/SRC/spptrf.f
+++ b/SRC/spptrf.f
@@ -69,8 +69,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**T*U or A = L*L**T, in the same
*> storage format as A.
diff --git a/SRC/spptri.f b/SRC/spptri.f
index 092ef9af..444ca85d 100644
--- a/SRC/spptri.f
+++ b/SRC/spptri.f
@@ -65,8 +65,7 @@
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the upper or lower triangle of the (symmetric)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
diff --git a/SRC/spstf2.f b/SRC/spstf2.f
index 81efae7d..3d43eb70 100644
--- a/SRC/spstf2.f
+++ b/SRC/spstf2.f
@@ -78,8 +78,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/spstrf.f b/SRC/spstrf.f
index 4fe1ca10..72377370 100644
--- a/SRC/spstrf.f
+++ b/SRC/spstrf.f
@@ -78,8 +78,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/sptrfs.f b/SRC/sptrfs.f
index c109007e..402c80ed 100644
--- a/SRC/sptrfs.f
+++ b/SRC/sptrfs.f
@@ -139,12 +139,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/ssbev.f b/SRC/ssbev.f
index 780bab5e..82e0da37 100644
--- a/SRC/ssbev.f
+++ b/SRC/ssbev.f
@@ -79,8 +79,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
diff --git a/SRC/ssbevd.f b/SRC/ssbevd.f
index bdd4e957..64645f72 100644
--- a/SRC/ssbevd.f
+++ b/SRC/ssbevd.f
@@ -88,8 +88,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
@@ -141,8 +140,7 @@
*> If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
*> If JOBZ = 'V' and N > 2, LWORK must be at least
*> ( 1 + 5*N + 2*N**2 ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -162,8 +160,7 @@
*> The dimension of the array LIWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/ssbevx.f b/SRC/ssbevx.f
index 8e50f4c6..28cf7a3a 100644
--- a/SRC/ssbevx.f
+++ b/SRC/ssbevx.f
@@ -94,8 +94,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
@@ -159,24 +158,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AB to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/ssbgst.f b/SRC/ssbgst.f
index 903884f8..2bd5dd0d 100644
--- a/SRC/ssbgst.f
+++ b/SRC/ssbgst.f
@@ -93,8 +93,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the transformed matrix X**T*A*X, stored in the same
*> format as A.
*> \endverbatim
diff --git a/SRC/ssbgv.f b/SRC/ssbgv.f
index 2916d66d..2f79900c 100644
--- a/SRC/ssbgv.f
+++ b/SRC/ssbgv.f
@@ -89,8 +89,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -109,8 +108,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**T*S, as returned by SPBSTF.
*> \endverbatim
diff --git a/SRC/ssbgvd.f b/SRC/ssbgvd.f
index c133b6c5..28b96642 100644
--- a/SRC/ssbgvd.f
+++ b/SRC/ssbgvd.f
@@ -98,8 +98,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -118,8 +117,7 @@
*> as follows:
*> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**T*S, as returned by SPBSTF.
*> \endverbatim
@@ -166,8 +164,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= 3*N.
*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -187,8 +184,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/ssbgvx.f b/SRC/ssbgvx.f
index ee291c69..747b9a6f 100644
--- a/SRC/ssbgvx.f
+++ b/SRC/ssbgvx.f
@@ -104,8 +104,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -124,8 +123,7 @@
*> as follows:
*> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**T*S, as returned by SPBSTF.
*> \endverbatim
@@ -160,8 +158,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -175,8 +172,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -190,17 +186,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
diff --git a/SRC/ssbtrd.f b/SRC/ssbtrd.f
index 9ca9559e..51e0d200 100644
--- a/SRC/ssbtrd.f
+++ b/SRC/ssbtrd.f
@@ -114,8 +114,7 @@
*> Q is REAL array, dimension (LDQ,N)
*> On entry, if VECT = 'U', then Q must contain an N-by-N
*> matrix X; if VECT = 'N' or 'V', then Q need not be set.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit:
*> if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
*> if VECT = 'U', Q contains the product X*Q;
diff --git a/SRC/ssfrk.f b/SRC/ssfrk.f
index 895b1135..f2754021 100644
--- a/SRC/ssfrk.f
+++ b/SRC/ssfrk.f
@@ -68,16 +68,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,14 +83,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/sspev.f b/SRC/sspev.f
index aeea31ee..e87bee32 100644
--- a/SRC/sspev.f
+++ b/SRC/sspev.f
@@ -70,8 +70,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
diff --git a/SRC/sspevd.f b/SRC/sspevd.f
index 19e37223..3abbc72a 100644
--- a/SRC/sspevd.f
+++ b/SRC/sspevd.f
@@ -80,8 +80,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -126,8 +125,7 @@
*> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
*> If JOBZ = 'V' and N > 1, LWORK must be at least
*> 1 + 6*N + N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -147,8 +145,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/sspevx.f b/SRC/sspevx.f
index d8415bbc..bb059b7f 100644
--- a/SRC/sspevx.f
+++ b/SRC/sspevx.f
@@ -85,8 +85,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -129,24 +128,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/sspgst.f b/SRC/sspgst.f
index d0ff02e3..d011afc7 100644
--- a/SRC/sspgst.f
+++ b/SRC/sspgst.f
@@ -80,8 +80,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/sspgv.f b/SRC/sspgv.f
index 5e3c4af5..27be82a4 100644
--- a/SRC/sspgv.f
+++ b/SRC/sspgv.f
@@ -85,8 +85,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -98,8 +97,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T, in the same storage
*> format as B.
diff --git a/SRC/sspgvd.f b/SRC/sspgvd.f
index c9edcf57..a03b3582 100644
--- a/SRC/sspgvd.f
+++ b/SRC/sspgvd.f
@@ -93,8 +93,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -106,8 +105,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T, in the same storage
*> format as B.
@@ -149,8 +147,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= 2*N.
*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -170,8 +167,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/sspgvx.f b/SRC/sspgvx.f
index c135485f..2da83251 100644
--- a/SRC/sspgvx.f
+++ b/SRC/sspgvx.f
@@ -98,8 +98,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -111,8 +110,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T, in the same storage
*> format as B.
@@ -126,8 +124,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -141,8 +138,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -156,17 +152,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -199,8 +192,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
diff --git a/SRC/ssprfs.f b/SRC/ssprfs.f
index 2bf5ef41..8d27b39b 100644
--- a/SRC/ssprfs.f
+++ b/SRC/ssprfs.f
@@ -155,12 +155,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/sspsv.f b/SRC/sspsv.f
index f790cf4d..72fb0620 100644
--- a/SRC/sspsv.f
+++ b/SRC/sspsv.f
@@ -83,8 +83,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
diff --git a/SRC/sspsvx.f b/SRC/sspsvx.f
index a1d66e2c..aa821581 100644
--- a/SRC/sspsvx.f
+++ b/SRC/sspsvx.f
@@ -128,8 +128,7 @@
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -150,8 +149,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by SSPTRF.
diff --git a/SRC/ssptrf.f b/SRC/ssptrf.f
index 72525c91..9f127306 100644
--- a/SRC/ssptrf.f
+++ b/SRC/ssptrf.f
@@ -70,8 +70,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L, stored as a packed triangular
*> matrix overwriting A (see below for further details).
diff --git a/SRC/ssptri.f b/SRC/ssptri.f
index 0bc33a75..b17a0730 100644
--- a/SRC/ssptri.f
+++ b/SRC/ssptri.f
@@ -65,8 +65,7 @@
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by SSPTRF,
*> stored as a packed triangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
diff --git a/SRC/sstebz.f b/SRC/sstebz.f
index 7d1ace0a..41c1045f 100644
--- a/SRC/sstebz.f
+++ b/SRC/sstebz.f
@@ -93,8 +93,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. Eigenvalues less than or equal
*> to VL, or greater than VU, will not be returned. VL < VU.
@@ -109,8 +108,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -125,8 +123,7 @@
*> determined to lie in an interval whose width is ABSTOL or
*> less. If ABSTOL is less than or equal to zero, then ULP*|T|
*> will be used, where |T| means the 1-norm of T.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> \endverbatim
@@ -229,19 +226,16 @@
*> floating-point arithmetic.
*> Cure: Increase the PARAMETER "FUDGE",
*> recompile, and try again.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> RELFAC REAL, default = 2.0e0
*> The relative tolerance. An interval (a,b] lies within
*> "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
*> where "ulp" is the machine precision (distance from 1 to
*> the next larger floating point number.)
-*> \endverbatim
-*> \verbatim
+*>
*> FUDGE REAL, default = 2
*> A "fudge factor" to widen the Gershgorin intervals. Ideally,
*> a value of 1 should work, but on machines with sloppy
diff --git a/SRC/sstedc.f b/SRC/sstedc.f
index d02a4849..5f689f06 100644
--- a/SRC/sstedc.f
+++ b/SRC/sstedc.f
@@ -124,8 +124,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LWORK need
*> only be max(1,2*(N-1)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -150,8 +149,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LIWORK
*> need only be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/sstegr.f b/SRC/sstegr.f
index 792ec3b9..a00ed992 100644
--- a/SRC/sstegr.f
+++ b/SRC/sstegr.f
@@ -111,8 +111,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -126,8 +125,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/sstein.f b/SRC/sstein.f
index aecec548..d2228479 100644
--- a/SRC/sstein.f
+++ b/SRC/sstein.f
@@ -145,16 +145,13 @@
*> > 0: if INFO = i, then i eigenvectors failed to converge
*> in MAXITS iterations. Their indices are stored in
*> array IFAIL.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITS INTEGER, default = 5
*> The maximum number of iterations performed.
-*> \endverbatim
-*> \verbatim
+*>
*> EXTRA INTEGER, default = 2
*> The number of iterations performed after norm growth
*> criterion is satisfied, should be at least 1.
diff --git a/SRC/sstemr.f b/SRC/sstemr.f
index b2c13a81..e09c068a 100644
--- a/SRC/sstemr.f
+++ b/SRC/sstemr.f
@@ -142,8 +142,7 @@
*> \param[in] VU
*> \verbatim
*> VU is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -157,8 +156,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/sstevd.f b/SRC/sstevd.f
index 07095df5..d2b423e7 100644
--- a/SRC/sstevd.f
+++ b/SRC/sstevd.f
@@ -111,8 +111,7 @@
*> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
*> If JOBZ = 'V' and N > 1 then LWORK must be at least
*> ( 1 + 4*N + N**2 ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -132,8 +131,7 @@
*> The dimension of the array IWORK.
*> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/sstevr.f b/SRC/sstevr.f
index 44192fa2..c55a9f2d 100644
--- a/SRC/sstevr.f
+++ b/SRC/sstevr.f
@@ -160,22 +160,18 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
-*> \endverbatim
-*> \verbatim
+*>
*> If high relative accuracy is important, set ABSTOL to
*> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
@@ -242,8 +238,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= 20*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -262,8 +257,7 @@
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= 10*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/sstevx.f b/SRC/sstevx.f
index 215a6c30..42dd8d94 100644
--- a/SRC/sstevx.f
+++ b/SRC/sstevx.f
@@ -121,24 +121,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less
*> than or equal to zero, then EPS*|T| will be used in
*> its place, where |T| is the 1-norm of the tridiagonal
*> matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/ssyev.f b/SRC/ssyev.f
index 05f5219a..82ee4614 100644
--- a/SRC/ssyev.f
+++ b/SRC/ssyev.f
@@ -101,8 +101,7 @@
*> The length of the array WORK. LWORK >= max(1,3*N-1).
*> For optimal efficiency, LWORK >= (NB+2)*N,
*> where NB is the blocksize for SSYTRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssyevd.f b/SRC/ssyevd.f
index bde96fc2..2c188a23 100644
--- a/SRC/ssyevd.f
+++ b/SRC/ssyevd.f
@@ -117,8 +117,7 @@
*> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
*> If JOBZ = 'V' and N > 1, LWORK must be at least
*> 1 + 6*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -139,8 +138,7 @@
*> If N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/ssyevr.f b/SRC/ssyevr.f
index 8bd78f17..1ee75462 100644
--- a/SRC/ssyevr.f
+++ b/SRC/ssyevr.f
@@ -185,22 +185,18 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
-*> \endverbatim
-*> \verbatim
+*>
*> If high relative accuracy is important, set ABSTOL to
*> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
@@ -271,8 +267,7 @@
*> For optimal efficiency, LWORK >= (NB+6)*N,
*> where NB is the max of the blocksize for SSYTRD and SORMTR
*> returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -290,8 +285,7 @@
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/ssyevx.f b/SRC/ssyevx.f
index be1c70c3..389f6f37 100644
--- a/SRC/ssyevx.f
+++ b/SRC/ssyevx.f
@@ -130,24 +130,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
@@ -204,8 +200,7 @@
*> For optimal efficiency, LWORK >= (NB+3)*N,
*> where NB is the max of the blocksize for SSYTRD and SORMTR
*> returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssygs2.f b/SRC/ssygs2.f
index 99a8894e..53e4d929 100644
--- a/SRC/ssygs2.f
+++ b/SRC/ssygs2.f
@@ -82,8 +82,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/ssygst.f b/SRC/ssygst.f
index eb827ab0..29afe23f 100644
--- a/SRC/ssygst.f
+++ b/SRC/ssygst.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/ssygv.f b/SRC/ssygv.f
index 4111749f..79dd4bba 100644
--- a/SRC/ssygv.f
+++ b/SRC/ssygv.f
@@ -83,8 +83,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -109,8 +108,7 @@
*> contains the upper triangular part of the matrix B.
*> If UPLO = 'L', the leading N-by-N lower triangular part of B
*> contains the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T.
@@ -140,8 +138,7 @@
*> The length of the array WORK. LWORK >= max(1,3*N-1).
*> For optimal efficiency, LWORK >= (NB+2)*N,
*> where NB is the blocksize for SSYTRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssygvd.f b/SRC/ssygvd.f
index b1798af4..28b90816 100644
--- a/SRC/ssygvd.f
+++ b/SRC/ssygvd.f
@@ -91,8 +91,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -117,8 +116,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T.
@@ -149,8 +147,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK and IWORK
*> arrays, returns these values as the first entries of the WORK
@@ -171,8 +168,7 @@
*> If N <= 1, LIWORK >= 1.
*> If JOBZ = 'N' and N > 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK and
*> IWORK arrays, returns these values as the first entries of
diff --git a/SRC/ssygvx.f b/SRC/ssygvx.f
index 3fe5ad0f..ffe4bf53 100644
--- a/SRC/ssygvx.f
+++ b/SRC/ssygvx.f
@@ -97,8 +97,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the lower triangle (if UPLO='L') or the upper
*> triangle (if UPLO='U') of A, including the diagonal, is
*> destroyed.
@@ -118,8 +117,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**T*U or B = L*L**T.
@@ -165,19 +163,16 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing C to tridiagonal form, where C is the symmetric
*> matrix of the standard symmetric problem to which the
*> generalized problem is transformed.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -210,8 +205,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
@@ -239,8 +233,7 @@
*> The length of the array WORK. LWORK >= max(1,8*N).
*> For optimal efficiency, LWORK >= (NB+3)*N,
*> where NB is the blocksize for SSYTRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssyrfs.f b/SRC/ssyrfs.f
index d154f68f..f5a06401 100644
--- a/SRC/ssyrfs.f
+++ b/SRC/ssyrfs.f
@@ -167,12 +167,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/ssyrfsx.f b/SRC/ssyrfsx.f
index b0febebc..67830e4e 100644
--- a/SRC/ssyrfsx.f
+++ b/SRC/ssyrfsx.f
@@ -219,37 +219,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -258,8 +252,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -270,14 +263,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -285,26 +276,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -315,8 +302,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -335,8 +321,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -347,8 +332,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -358,8 +342,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/ssysv.f b/SRC/ssysv.f
index 4fce6de3..baf78b94 100644
--- a/SRC/ssysv.f
+++ b/SRC/ssysv.f
@@ -85,8 +85,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the block diagonal matrix D and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*D*U**T or A = L*D*L**T as computed by
@@ -140,8 +139,7 @@
*> SSYTRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssysvx.f b/SRC/ssysvx.f
index f1315002..9494b18d 100644
--- a/SRC/ssysvx.f
+++ b/SRC/ssysvx.f
@@ -135,8 +135,7 @@
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -162,8 +161,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by SSYTRF.
@@ -236,8 +234,7 @@
*> The length of WORK. LWORK >= max(1,3*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
*> NB is the optimal blocksize for SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssysvxx.f b/SRC/ssysvxx.f
index 3824bebb..aa45f3fa 100644
--- a/SRC/ssysvxx.f
+++ b/SRC/ssysvxx.f
@@ -167,8 +167,7 @@
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -186,8 +185,7 @@
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
@@ -213,8 +211,7 @@
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by SSYTRF.
@@ -325,37 +322,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -364,8 +355,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -376,14 +366,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -391,26 +379,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -421,8 +405,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -441,8 +424,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
@@ -453,8 +435,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -464,8 +445,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/ssyswapr.f b/SRC/ssyswapr.f
index 2ebdfd2a..2f4f85c1 100644
--- a/SRC/ssyswapr.f
+++ b/SRC/ssyswapr.f
@@ -61,8 +61,7 @@
*> A is REAL array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/ssytf2.f b/SRC/ssytf2.f
index b3c77310..2ac172a3 100644
--- a/SRC/ssytf2.f
+++ b/SRC/ssytf2.f
@@ -76,8 +76,7 @@
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/ssytrf.f b/SRC/ssytrf.f
index 23a4869d..7d33f857 100644
--- a/SRC/ssytrf.f
+++ b/SRC/ssytrf.f
@@ -75,8 +75,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
@@ -111,8 +110,7 @@
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ssytri.f b/SRC/ssytri.f
index a0bc5000..ed93bdd0 100644
--- a/SRC/ssytri.f
+++ b/SRC/ssytri.f
@@ -64,8 +64,7 @@
*> A is REAL array, dimension (LDA,N)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/ssytri2.f b/SRC/ssytri2.f
index 30cc2bb7..021fd63a 100644
--- a/SRC/ssytri2.f
+++ b/SRC/ssytri2.f
@@ -65,8 +65,7 @@
*> A is REAL array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/ssytri2x.f b/SRC/ssytri2x.f
index 09e0da46..860366bb 100644
--- a/SRC/ssytri2x.f
+++ b/SRC/ssytri2x.f
@@ -64,8 +64,7 @@
*> A is REAL array, dimension (LDA,N)
*> On entry, the NNB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by SSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/stfsm.f b/SRC/stfsm.f
index 51ad0e7b..e2639546 100644
--- a/SRC/stfsm.f
+++ b/SRC/stfsm.f
@@ -68,14 +68,11 @@
*> SIDE is CHARACTER*1
*> On entry, SIDE specifies whether op( A ) appears on the left
*> or right of X as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,8 +83,7 @@
*> an upper or lower triangular matrix as follows:
*> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
*> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -96,14 +92,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the form of op( A ) to be used
*> in the matrix multiplication as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' op( A ) = A.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'T' or 't' op( A ) = A'.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -112,15 +105,12 @@
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not RFP A is unit
*> triangular as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/stftri.f b/SRC/stftri.f
index e2db8abc..15dfee70 100644
--- a/SRC/stftri.f
+++ b/SRC/stftri.f
@@ -86,8 +86,7 @@
*> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
*> TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
*> even and N is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/stgevc.f b/SRC/stgevc.f
index 2bcabf22..d382322a 100644
--- a/SRC/stgevc.f
+++ b/SRC/stgevc.f
@@ -146,13 +146,11 @@
*> if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
*> SELECT, stored consecutively in the columns of
*> VL, in the same order as their eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part, and the second the imaginary part.
-*> \endverbatim
-*> \verbatim
+*>
*> Not referenced if SIDE = 'R'.
*> \endverbatim
*>
@@ -169,8 +167,7 @@
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*> contain an N-by-N matrix Z (usually the orthogonal matrix Z
*> of right Schur vectors returned by SHGEQZ).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
*> if HOWMNY = 'B' or 'b', the matrix Z*X;
@@ -178,8 +175,7 @@
*> specified by SELECT, stored consecutively in the
*> columns of VR, in the same order as their
*> eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part and the second the imaginary part.
diff --git a/SRC/stgexc.f b/SRC/stgexc.f
index 5d4ffb6d..154aa2cb 100644
--- a/SRC/stgexc.f
+++ b/SRC/stgexc.f
@@ -169,8 +169,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/stgsen.f b/SRC/stgsen.f
index d3189ee7..43e413b2 100644
--- a/SRC/stgsen.f
+++ b/SRC/stgsen.f
@@ -164,8 +164,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*> be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
*> and BETA(j),j=1,...,N are the diagonals of the complex Schur
@@ -228,8 +227,7 @@
*> \param[out] PR
*> \verbatim
*> PR is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
*> reciprocal of the norm of "projections" onto left and right
*> eigenspaces with respect to the selected cluster.
@@ -261,8 +259,7 @@
*> The dimension of the array WORK. LWORK >= 4*N+16.
*> If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
*> If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -281,8 +278,7 @@
*> The dimension of the array IWORK. LIWORK >= 1.
*> If IJOB = 1, 2 or 4, LIWORK >= N+6.
*> If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/stgsja.f b/SRC/stgsja.f
index 3dbd1b87..a53e4a82 100644
--- a/SRC/stgsja.f
+++ b/SRC/stgsja.f
@@ -185,8 +185,7 @@
*> \param[in] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> K and L specify the subblocks in the input matrices A and B:
*> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
*> of A and B, whose GSVD is going to be computed by STGSJA.
@@ -229,8 +228,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is REAL
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the convergence criteria for the Jacobi-
*> Kogbetliantz iteration procedure. Generally, they are the
*> same as used in the preprocessing step, say
@@ -246,8 +244,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
diff --git a/SRC/stgsna.f b/SRC/stgsna.f
index 6d80e97d..03f6a9b0 100644
--- a/SRC/stgsna.f
+++ b/SRC/stgsna.f
@@ -203,8 +203,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*> If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/stgsyl.f b/SRC/stgsyl.f
index 52353777..ac8edab4 100644
--- a/SRC/stgsyl.f
+++ b/SRC/stgsyl.f
@@ -234,8 +234,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK > = 1.
*> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/strexc.f b/SRC/strexc.f
index 507e3924..8609b9c4 100644
--- a/SRC/strexc.f
+++ b/SRC/strexc.f
@@ -104,8 +104,7 @@
*> \param[in,out] ILST
*> \verbatim
*> ILST is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> Specify the reordering of the diagonal blocks of T.
*> The block with row index IFST is moved to row ILST, by a
*> sequence of transpositions between adjacent blocks.
diff --git a/SRC/strsen.f b/SRC/strsen.f
index fad507a2..877de3ce 100644
--- a/SRC/strsen.f
+++ b/SRC/strsen.f
@@ -137,8 +137,7 @@
*> \param[out] WI
*> \verbatim
*> WI is REAL array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> The real and imaginary parts, respectively, of the reordered
*> eigenvalues of T. The eigenvalues are stored in the same
*> order as on the diagonal of T, with WR(i) = T(i,i) and, if
@@ -187,8 +186,7 @@
*> If JOB = 'N', LWORK >= max(1,N);
*> if JOB = 'E', LWORK >= max(1,M*(N-M));
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -207,8 +205,7 @@
*> The dimension of the array IWORK.
*> If JOB = 'N' or 'E', LIWORK >= 1;
*> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/strti2.f b/SRC/strti2.f
index d8f7cde5..911a6ed5 100644
--- a/SRC/strti2.f
+++ b/SRC/strti2.f
@@ -78,8 +78,7 @@
*> triangular part of A is not referenced. If DIAG = 'U', the
*> diagonal elements of A are also not referenced and are
*> assumed to be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/stzrzf.f b/SRC/stzrzf.f
index 886eeaf7..2b9999bf 100644
--- a/SRC/stzrzf.f
+++ b/SRC/stzrzf.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zbbcsd.f b/SRC/zbbcsd.f
index ab54ebb6..7911a4a9 100644
--- a/SRC/zbbcsd.f
+++ b/SRC/zbbcsd.f
@@ -282,8 +282,7 @@
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the RWORK array,
*> returns this value as the first entry of the work array, and
@@ -298,20 +297,16 @@
*> > 0: if ZBBCSD did not converge, INFO specifies the number
*> of nonzero entries in PHI, and B11D, B11E, etc.,
*> contain the partially reduced matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
diff --git a/SRC/zbdsqr.f b/SRC/zbdsqr.f
index fafad639..0e2bda02 100644
--- a/SRC/zbdsqr.f
+++ b/SRC/zbdsqr.f
@@ -180,12 +180,10 @@
*> elements of a bidiagonal matrix which is orthogonally
*> similar to the input matrix B; if INFO = i, i
*> elements of E have not converged to zero.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> If it is positive, TOLMUL*EPS is the desired relative
@@ -200,8 +198,7 @@
*> Default is to lose at either one eighth or 2 of the
*> available decimal digits in each computed singular value
*> (whichever is smaller).
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITR INTEGER, default = 6
*> MAXITR controls the maximum number of passes of the
*> algorithm through its inner loop. The algorithms stops
diff --git a/SRC/zcposv.f b/SRC/zcposv.f
index 54d7b5b2..ee010e43 100644
--- a/SRC/zcposv.f
+++ b/SRC/zcposv.f
@@ -107,12 +107,10 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Note that the imaginary parts of the diagonal
*> elements need not be set and are assumed to be zero.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if iterative refinement has been successfully used
*> (INFO.EQ.0 and ITER.GE.0, see description below), then A is
*> unchanged, if double precision factorization has been used
diff --git a/SRC/zgbrfs.f b/SRC/zgbrfs.f
index 69644b53..25a04c9a 100644
--- a/SRC/zgbrfs.f
+++ b/SRC/zgbrfs.f
@@ -181,12 +181,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zgbrfsx.f b/SRC/zgbrfsx.f
index 93e7797d..ef608537 100644
--- a/SRC/zgbrfsx.f
+++ b/SRC/zgbrfsx.f
@@ -256,37 +256,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -295,8 +289,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -307,14 +300,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -322,26 +313,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -352,8 +339,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -372,8 +358,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -384,8 +369,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -395,8 +379,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zgbsvx.f b/SRC/zgbsvx.f
index 9e026149..cbe43b20 100644
--- a/SRC/zgbsvx.f
+++ b/SRC/zgbsvx.f
@@ -151,14 +151,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then A must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -181,12 +179,10 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns details of the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns details of the LU factorization of the equilibrated
*> matrix A (see the description of AB for the form of the
@@ -206,13 +202,11 @@
*> contains the pivot indices from the factorization A = L*U
*> as computed by ZGBTRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = L*U
*> of the equilibrated matrix A.
diff --git a/SRC/zgbsvxx.f b/SRC/zgbsvxx.f
index 390ec7fa..955df209 100644
--- a/SRC/zgbsvxx.f
+++ b/SRC/zgbsvxx.f
@@ -178,14 +178,12 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'F' and EQUED is not 'N', then AB must have been
*> equilibrated by the scaling factors in R and/or C. AB is not
*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
*> EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -208,13 +206,11 @@
*> and the multipliers used during the factorization are stored
*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
*> the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -234,13 +230,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by DGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -380,37 +374,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -419,8 +407,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -431,14 +418,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -446,26 +431,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -476,8 +457,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -496,8 +476,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -505,8 +484,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -516,8 +494,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zgbtf2.f b/SRC/zgbtf2.f
index ed68af22..c5f12329 100644
--- a/SRC/zgbtf2.f
+++ b/SRC/zgbtf2.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/zgbtrf.f b/SRC/zgbtrf.f
index f9c31f36..ee891551 100644
--- a/SRC/zgbtrf.f
+++ b/SRC/zgbtrf.f
@@ -76,8 +76,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, details of the factorization: U is stored as an
*> upper triangular band matrix with KL+KU superdiagonals in
*> rows 1 to KL+KU+1, and the multipliers used during the
diff --git a/SRC/zgebrd.f b/SRC/zgebrd.f
index f6ea3069..6a2881e0 100644
--- a/SRC/zgebrd.f
+++ b/SRC/zgebrd.f
@@ -126,8 +126,7 @@
*> The length of the array WORK. LWORK >= max(1,M,N).
*> For optimum performance LWORK >= (M+N)*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgees.f b/SRC/zgees.f
index 02f6497f..27083007 100644
--- a/SRC/zgees.f
+++ b/SRC/zgees.f
@@ -143,8 +143,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgeesx.f b/SRC/zgeesx.f
index 2b92751f..2181038b 100644
--- a/SRC/zgeesx.f
+++ b/SRC/zgeesx.f
@@ -184,8 +184,7 @@
*> that an error is only returned if LWORK < max(1,2*N), but if
*> SENSE = 'E' or 'V' or 'B' this may not be large enough.
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates upper bound on the optimal size of the
*> array WORK, returns this value as the first entry of the WORK
diff --git a/SRC/zgeev.f b/SRC/zgeev.f
index c0466f6b..73f1b27a 100644
--- a/SRC/zgeev.f
+++ b/SRC/zgeev.f
@@ -139,8 +139,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgeevx.f b/SRC/zgeevx.f
index abf6789c..3e14a9ba 100644
--- a/SRC/zgeevx.f
+++ b/SRC/zgeevx.f
@@ -89,8 +89,7 @@
*> to make the rows and columns of A more equal in
*> norm. Do not permute;
*> = 'B': Both diagonally scale and permute A.
-*> \endverbatim
-*> \verbatim
+*>
*> Computed reciprocal condition numbers will be for the matrix
*> after balancing and/or permuting. Permuting does not change
*> condition numbers (in exact arithmetic), but balancing does.
@@ -120,8 +119,7 @@
*> = 'E': Computed for eigenvalues only;
*> = 'V': Computed for right eigenvectors only;
*> = 'B': Computed for eigenvalues and right eigenvectors.
-*> \endverbatim
-*> \verbatim
+*>
*> If SENSE = 'E' or 'B', both left and right eigenvectors
*> must also be computed (JOBVL = 'V' and JOBVR = 'V').
*> \endverbatim
@@ -248,8 +246,7 @@
*> LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
*> LWORK >= N*N+2*N.
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgegs.f b/SRC/zgegs.f
index f164962d..3859be54 100644
--- a/SRC/zgegs.f
+++ b/SRC/zgegs.f
@@ -124,8 +124,7 @@
*> The non-negative real scalars beta that define the
*> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
*> of the triangular factor T.
-*> \endverbatim
-*> \verbatim
+*>
*> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
*> represent the j-th eigenvalue of the matrix pair (A,B), in
*> one of the forms lambda = alpha/beta or mu = beta/alpha.
@@ -176,8 +175,7 @@
*> blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute:
*> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
*> the optimal LWORK is N*(NB+1).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgegv.f b/SRC/zgegv.f
index 9c8dc6c0..f12cbdcb 100644
--- a/SRC/zgegv.f
+++ b/SRC/zgegv.f
@@ -200,8 +200,7 @@
*> blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.) Then compute:
*> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR;
*> The optimal LWORK is MAX( 2*N, N*(NB+1) ).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgehd2.f b/SRC/zgehd2.f
index 67f24e6f..6a8ae738 100644
--- a/SRC/zgehd2.f
+++ b/SRC/zgehd2.f
@@ -55,8 +55,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to ZGEBAL; otherwise they should be
diff --git a/SRC/zgehrd.f b/SRC/zgehrd.f
index ff81af1e..c546808e 100644
--- a/SRC/zgehrd.f
+++ b/SRC/zgehrd.f
@@ -55,8 +55,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that A is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to ZGEBAL; otherwise they should be
@@ -101,8 +100,7 @@
*> The length of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgels.f b/SRC/zgels.f
index d0ea510e..05cdfe6f 100644
--- a/SRC/zgels.f
+++ b/SRC/zgels.f
@@ -149,8 +149,7 @@
*> For optimal performance,
*> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgelsd.f b/SRC/zgelsd.f
index 2a55ade4..ef7064a9 100644
--- a/SRC/zgelsd.f
+++ b/SRC/zgelsd.f
@@ -159,8 +159,7 @@
*> 2*M + M*NRHS
*> if M is less than N, the code will execute correctly.
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the array WORK and the
*> minimum sizes of the arrays RWORK and IWORK, and returns
diff --git a/SRC/zgelss.f b/SRC/zgelss.f
index 097e3767..6e628463 100644
--- a/SRC/zgelss.f
+++ b/SRC/zgelss.f
@@ -141,8 +141,7 @@
*> The dimension of the array WORK. LWORK >= 1, and also:
*> LWORK >= 2*min(M,N) + max(M,N,NRHS)
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgelsy.f b/SRC/zgelsy.f
index 3aaf57ba..c0126773 100644
--- a/SRC/zgelsy.f
+++ b/SRC/zgelsy.f
@@ -169,8 +169,7 @@
*> where NB is an upper bound on the blocksize returned
*> by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
*> and ZUNMRZ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgeqlf.f b/SRC/zgeqlf.f
index 40ab0b2a..beaaf5e1 100644
--- a/SRC/zgeqlf.f
+++ b/SRC/zgeqlf.f
@@ -92,8 +92,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgeqp3.f b/SRC/zgeqp3.f
index a39c87a0..e98296a6 100644
--- a/SRC/zgeqp3.f
+++ b/SRC/zgeqp3.f
@@ -101,8 +101,7 @@
*> The dimension of the array WORK. LWORK >= N+1.
*> For optimal performance LWORK >= ( N+1 )*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgeqrf.f b/SRC/zgeqrf.f
index 81047ea2..e11b19d8 100644
--- a/SRC/zgeqrf.f
+++ b/SRC/zgeqrf.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgeqrfp.f b/SRC/zgeqrfp.f
index 936eced3..bd084038 100644
--- a/SRC/zgeqrfp.f
+++ b/SRC/zgeqrfp.f
@@ -90,8 +90,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgerfs.f b/SRC/zgerfs.f
index 5892610c..a720ac95 100644
--- a/SRC/zgerfs.f
+++ b/SRC/zgerfs.f
@@ -162,12 +162,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zgerfsx.f b/SRC/zgerfsx.f
index 405b66d2..4e5aaa19 100644
--- a/SRC/zgerfsx.f
+++ b/SRC/zgerfsx.f
@@ -231,37 +231,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -270,8 +264,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -282,14 +275,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -297,26 +288,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -327,8 +314,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -347,8 +333,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -359,8 +344,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -370,8 +354,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zgesdd.f b/SRC/zgesdd.f
index 74b40920..42c53ca6 100644
--- a/SRC/zgesdd.f
+++ b/SRC/zgesdd.f
@@ -174,8 +174,7 @@
*> if JOBZ = 'S' or 'A',
*> LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, a workspace query is assumed. The optimal
*> size for the WORK array is calculated and stored in WORK(1),
*> and no other work except argument checking is performed.
diff --git a/SRC/zgesvd.f b/SRC/zgesvd.f
index f2b02165..3609a381 100644
--- a/SRC/zgesvd.f
+++ b/SRC/zgesvd.f
@@ -82,8 +82,7 @@
*> vectors) are overwritten on the array A;
*> = 'N': no rows of V**H (no right singular vectors) are
*> computed.
-*> \endverbatim
-*> \verbatim
+*>
*> JOBVT and JOBU cannot both be 'O'.
*> \endverbatim
*>
@@ -172,8 +171,7 @@
*> The dimension of the array WORK.
*> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)).
*> For good performance, LWORK should generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgesvx.f b/SRC/zgesvx.f
index 833c7076..48b29df3 100644
--- a/SRC/zgesvx.f
+++ b/SRC/zgesvx.f
@@ -138,8 +138,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -159,13 +158,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by ZGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -185,13 +182,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by ZGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
diff --git a/SRC/zgesvxx.f b/SRC/zgesvxx.f
index aa5be45d..e7ee1295 100644
--- a/SRC/zgesvxx.f
+++ b/SRC/zgesvxx.f
@@ -168,8 +168,7 @@
*> not 'N', then A must have been equilibrated by the scaling
*> factors in R and/or C. A is not modified if FACT = 'F' or
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED .ne. 'N', A is scaled as follows:
*> EQUED = 'R': A := diag(R) * A
*> EQUED = 'C': A := A * diag(C)
@@ -189,13 +188,11 @@
*> contains the factors L and U from the factorization
*> A = P*L*U as computed by ZGETRF. If EQUED .ne. 'N', then
*> AF is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the factors L and U from the factorization A = P*L*U
*> of the equilibrated matrix A (see the description of A for
@@ -215,13 +212,11 @@
*> contains the pivot indices from the factorization A = P*L*U
*> as computed by ZGETRF; row i of the matrix was interchanged
*> with row IPIV(i).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the original matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then IPIV is an output argument and on exit
*> contains the pivot indices from the factorization A = P*L*U
*> of the equilibrated matrix A.
@@ -361,37 +356,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -400,8 +389,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -412,14 +400,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -427,26 +413,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -457,8 +439,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -477,8 +458,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -486,8 +466,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -497,8 +476,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zgetri.f b/SRC/zgetri.f
index 8605ef13..8e929bfd 100644
--- a/SRC/zgetri.f
+++ b/SRC/zgetri.f
@@ -84,8 +84,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimal performance LWORK >= N*NB, where NB is
*> the optimal blocksize returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgges.f b/SRC/zgges.f
index 403d5f6a..5c1456ef 100644
--- a/SRC/zgges.f
+++ b/SRC/zgges.f
@@ -108,8 +108,7 @@
*> to the top left of the Schur form.
*> An eigenvalue ALPHA(j)/BETA(j) is selected if
*> SELCTG(ALPHA(j),BETA(j)) is true.
-*> \endverbatim
-*> \verbatim
+*>
*> Note that a selected complex eigenvalue may no longer satisfy
*> SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
*> ordering may change the value of complex eigenvalues
@@ -171,8 +170,7 @@
*> generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j),
*> j=1,...,N are the diagonals of the complex Schur form (A,B)
*> output by ZGGES. The BETA(j) will be non-negative real.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio alpha/beta.
@@ -220,8 +218,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zggesx.f b/SRC/zggesx.f
index b80b1e23..e7f8329e 100644
--- a/SRC/zggesx.f
+++ b/SRC/zggesx.f
@@ -182,8 +182,7 @@
*> generalized eigenvalues. ALPHA(j) and BETA(j),j=1,...,N are
*> the diagonals of the complex Schur form (S,T). BETA(j) will
*> be non-negative real.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio alpha/beta.
@@ -254,8 +253,7 @@
*> Note also that an error is only returned if
*> LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may
*> not be large enough.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the bound on the optimal size of the WORK
*> array and the minimum size of the IWORK array, returns these
@@ -282,8 +280,7 @@
*> The dimension of the array IWORK.
*> If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
*> LIWORK >= N+2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the bound on the optimal size of the
*> WORK array and the minimum size of the IWORK array, returns
diff --git a/SRC/zggev.f b/SRC/zggev.f
index eaf61ffe..155b19ce 100644
--- a/SRC/zggev.f
+++ b/SRC/zggev.f
@@ -121,8 +121,7 @@
*> BETA is COMPLEX*16 array, dimension (N)
*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
*> generalized eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio alpha/beta.
@@ -178,8 +177,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> For good performance, LWORK must generally be larger.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zggevx.f b/SRC/zggevx.f
index 001067e1..a02451af 100644
--- a/SRC/zggevx.f
+++ b/SRC/zggevx.f
@@ -158,8 +158,7 @@
*> BETA is COMPLEX*16 array, dimension (N)
*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
*> eigenvalues.
-*> \endverbatim
-*> \verbatim
+*>
*> Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
*> underflow, and BETA(j) may even be zero. Thus, the user
*> should avoid naively computing the ratio ALPHA/BETA.
@@ -289,8 +288,7 @@
*> The dimension of the array WORK. LWORK >= max(1,2*N).
*> If SENSE = 'E', LWORK >= max(1,4*N).
*> If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zggglm.f b/SRC/zggglm.f
index bbfd4f72..fd48a9db 100644
--- a/SRC/zggglm.f
+++ b/SRC/zggglm.f
@@ -130,8 +130,7 @@
*> \param[out] Y
*> \verbatim
*> Y is COMPLEX*16 array, dimension (P)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, X and Y are the solutions of the GLM problem.
*> \endverbatim
*>
@@ -148,8 +147,7 @@
*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zgghrd.f b/SRC/zgghrd.f
index 309749f2..a9ae228f 100644
--- a/SRC/zgghrd.f
+++ b/SRC/zgghrd.f
@@ -101,8 +101,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI mark the rows and columns of A which are to be
*> reduced. It is assumed that A is already upper triangular
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
diff --git a/SRC/zgglse.f b/SRC/zgglse.f
index 068e1a74..56629ca6 100644
--- a/SRC/zgglse.f
+++ b/SRC/zgglse.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> ZGEQRF, CGERQF, ZUNMQR and CUNMRQ.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zggsvd.f b/SRC/zggsvd.f
index 1210f102..0928f177 100644
--- a/SRC/zggsvd.f
+++ b/SRC/zggsvd.f
@@ -169,8 +169,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose.
*> K + L = effective numerical rank of (A**H,B**H)**H.
@@ -212,8 +211,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
@@ -299,12 +297,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, the Jacobi-type procedure failed to
*> converge. For further details, see subroutine ZTGSJA.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA DOUBLE PRECISION
*> TOLB DOUBLE PRECISION
*> TOLA and TOLB are the thresholds to determine the effective
diff --git a/SRC/zggsvp.f b/SRC/zggsvp.f
index 137ca5ed..005f361a 100644
--- a/SRC/zggsvp.f
+++ b/SRC/zggsvp.f
@@ -144,8 +144,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the thresholds to determine the effective
*> numerical rank of matrix B and a subblock of A. Generally,
*> they are set to
@@ -163,8 +162,7 @@
*> \param[out] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, K and L specify the dimension of the subblocks
*> described in Purpose section.
*> K + L = effective numerical rank of (A**H,B**H)**H.
diff --git a/SRC/zgtrfs.f b/SRC/zgtrfs.f
index 77e34d81..e6902eb9 100644
--- a/SRC/zgtrfs.f
+++ b/SRC/zgtrfs.f
@@ -185,12 +185,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zgtsvx.f b/SRC/zgtsvx.f
index aeb65a88..9bf49032 100644
--- a/SRC/zgtsvx.f
+++ b/SRC/zgtsvx.f
@@ -136,8 +136,7 @@
*> If FACT = 'F', then DLF is an input argument and on entry
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A as computed by ZGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DLF is an output argument and on exit
*> contains the (n-1) multipliers that define the matrix L from
*> the LU factorization of A.
@@ -149,8 +148,7 @@
*> If FACT = 'F', then DF is an input argument and on entry
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DF is an output argument and on exit
*> contains the n diagonal elements of the upper triangular
*> matrix U from the LU factorization of A.
@@ -161,8 +159,7 @@
*> DUF is or output) COMPLEX*16 array, dimension (N-1)
*> If FACT = 'F', then DUF is an input argument and on entry
*> contains the (n-1) elements of the first superdiagonal of U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DUF is an output argument and on exit
*> contains the (n-1) elements of the first superdiagonal of U.
*> \endverbatim
@@ -173,8 +170,7 @@
*> If FACT = 'F', then DU2 is an input argument and on entry
*> contains the (n-2) elements of the second superdiagonal of
*> U.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then DU2 is an output argument and on exit
*> contains the (n-2) elements of the second superdiagonal of
*> U.
@@ -186,8 +182,7 @@
*> If FACT = 'F', then IPIV is an input argument and on entry
*> contains the pivot indices from the LU factorization of A as
*> computed by ZGTTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains the pivot indices from the LU factorization of A;
*> row i of the matrix was interchanged with row IPIV(i).
diff --git a/SRC/zgttrf.f b/SRC/zgttrf.f
index 18fafe4f..cd46a004 100644
--- a/SRC/zgttrf.f
+++ b/SRC/zgttrf.f
@@ -59,8 +59,7 @@
*> DL is COMPLEX*16 array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DL is overwritten by the (n-1) multipliers that
*> define the matrix L from the LU factorization of A.
*> \endverbatim
@@ -69,8 +68,7 @@
*> \verbatim
*> D is COMPLEX*16 array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, D is overwritten by the n diagonal elements of the
*> upper triangular matrix U from the LU factorization of A.
*> \endverbatim
@@ -80,8 +78,7 @@
*> DU is COMPLEX*16 array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
diff --git a/SRC/zhbev.f b/SRC/zhbev.f
index 2341fd72..4d7f6f27 100644
--- a/SRC/zhbev.f
+++ b/SRC/zhbev.f
@@ -80,8 +80,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
diff --git a/SRC/zhbevd.f b/SRC/zhbevd.f
index 6458086a..cf745abb 100644
--- a/SRC/zhbevd.f
+++ b/SRC/zhbevd.f
@@ -89,8 +89,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the first
*> superdiagonal and the diagonal of the tridiagonal matrix T
@@ -140,8 +139,7 @@
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -164,8 +162,7 @@
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
*> 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -185,8 +182,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zhbevx.f b/SRC/zhbevx.f
index 38786534..16cb51e9 100644
--- a/SRC/zhbevx.f
+++ b/SRC/zhbevx.f
@@ -95,8 +95,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AB is overwritten by values generated during the
*> reduction to tridiagonal form.
*> \endverbatim
@@ -156,24 +155,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AB to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/zhbgst.f b/SRC/zhbgst.f
index 2903db6d..82c1df9c 100644
--- a/SRC/zhbgst.f
+++ b/SRC/zhbgst.f
@@ -94,8 +94,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the transformed matrix X**H*A*X, stored in the same
*> format as A.
*> \endverbatim
diff --git a/SRC/zhbgv.f b/SRC/zhbgv.f
index 7fbb2aa3..108c5403 100644
--- a/SRC/zhbgv.f
+++ b/SRC/zhbgv.f
@@ -90,8 +90,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -110,8 +109,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by ZPBSTF.
*> \endverbatim
diff --git a/SRC/zhbgvd.f b/SRC/zhbgvd.f
index 4cb21953..77f37dc3 100644
--- a/SRC/zhbgvd.f
+++ b/SRC/zhbgvd.f
@@ -101,8 +101,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -121,8 +120,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by ZPBSTF.
*> \endverbatim
@@ -169,8 +167,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -191,8 +188,7 @@
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -212,8 +208,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zhbgvx.f b/SRC/zhbgvx.f
index fc9e112e..c5bbfb86 100644
--- a/SRC/zhbgvx.f
+++ b/SRC/zhbgvx.f
@@ -105,8 +105,7 @@
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
@@ -125,8 +124,7 @@
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by ZPBSTF.
*> \endverbatim
@@ -161,8 +159,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -176,8 +173,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -191,17 +187,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
diff --git a/SRC/zhbtrd.f b/SRC/zhbtrd.f
index 167b01b6..0fa7f4ea 100644
--- a/SRC/zhbtrd.f
+++ b/SRC/zhbtrd.f
@@ -114,8 +114,7 @@
*> Q is COMPLEX*16 array, dimension (LDQ,N)
*> On entry, if VECT = 'U', then Q must contain an N-by-N
*> matrix X; if VECT = 'N' or 'V', then Q need not be set.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit:
*> if VECT = 'V', Q contains the N-by-N unitary matrix Q;
*> if VECT = 'U', Q contains the product X*Q;
diff --git a/SRC/zheev.f b/SRC/zheev.f
index a7cdfceb..3a0c65c2 100644
--- a/SRC/zheev.f
+++ b/SRC/zheev.f
@@ -103,8 +103,7 @@
*> The length of the array WORK. LWORK >= max(1,2*N-1).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for ZHETRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zheevd.f b/SRC/zheevd.f
index 04ba3314..20d932a9 100644
--- a/SRC/zheevd.f
+++ b/SRC/zheevd.f
@@ -113,8 +113,7 @@
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -137,8 +136,7 @@
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
*> 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -159,8 +157,7 @@
*> If N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zheevr.f b/SRC/zheevr.f
index 980d22d8..c59f26c0 100644
--- a/SRC/zheevr.f
+++ b/SRC/zheevr.f
@@ -187,22 +187,18 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
-*> \endverbatim
-*> \verbatim
+*>
*> If high relative accuracy is important, set ABSTOL to
*> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
*> eigenvalues are computed to high relative accuracy when
@@ -272,8 +268,7 @@
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the max of the blocksize for ZHETRD and for
*> ZUNMTR as returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -292,8 +287,7 @@
*> \verbatim
*> LRWORK is INTEGER
*> The length of the array RWORK. LRWORK >= max(1,24*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -312,8 +306,7 @@
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zheevx.f b/SRC/zheevx.f
index 3b96e40f..02bac469 100644
--- a/SRC/zheevx.f
+++ b/SRC/zheevx.f
@@ -131,24 +131,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing A to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
@@ -205,8 +201,7 @@
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the max of the blocksize for ZHETRD and for
*> ZUNMTR as returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zhegs2.f b/SRC/zhegs2.f
index 4a40b25c..eaa65340 100644
--- a/SRC/zhegs2.f
+++ b/SRC/zhegs2.f
@@ -82,8 +82,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/zhegst.f b/SRC/zhegst.f
index 42da2982..dd95053d 100644
--- a/SRC/zhegst.f
+++ b/SRC/zhegst.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/zhegv.f b/SRC/zhegv.f
index 8f3c647c..f51a7df0 100644
--- a/SRC/zhegv.f
+++ b/SRC/zhegv.f
@@ -84,8 +84,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -110,8 +109,7 @@
*> contains the upper triangular part of the matrix B.
*> If UPLO = 'L', the leading N-by-N lower triangular part of B
*> contains the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
@@ -141,8 +139,7 @@
*> The length of the array WORK. LWORK >= max(1,2*N-1).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for ZHETRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zhegvd.f b/SRC/zhegvd.f
index 5736fab8..ca7c8435 100644
--- a/SRC/zhegvd.f
+++ b/SRC/zhegvd.f
@@ -92,8 +92,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
@@ -118,8 +117,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
@@ -150,8 +148,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -172,8 +169,7 @@
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -194,8 +190,7 @@
*> If N <= 1, LIWORK >= 1.
*> If JOBZ = 'N' and N > 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zhegvx.f b/SRC/zhegvx.f
index 3eb5f7f3..331f6bbe 100644
--- a/SRC/zhegvx.f
+++ b/SRC/zhegvx.f
@@ -138,8 +138,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -153,8 +152,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -238,8 +236,7 @@
*> The length of the array WORK. LWORK >= max(1,2*N).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for ZHETRD returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zherfs.f b/SRC/zherfs.f
index 176744a4..eee0f291 100644
--- a/SRC/zherfs.f
+++ b/SRC/zherfs.f
@@ -168,12 +168,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zherfsx.f b/SRC/zherfsx.f
index d26362a8..0a5e13c7 100644
--- a/SRC/zherfsx.f
+++ b/SRC/zherfsx.f
@@ -218,37 +218,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -257,8 +251,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -269,14 +262,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -284,26 +275,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -314,8 +301,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -334,8 +320,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -346,8 +331,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -357,8 +341,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zhesv.f b/SRC/zhesv.f
index 6fddcf6b..837d60e8 100644
--- a/SRC/zhesv.f
+++ b/SRC/zhesv.f
@@ -85,8 +85,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the block diagonal matrix D and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*D*U**H or A = L*D*L**H as computed by
@@ -140,8 +139,7 @@
*> ZHETRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zhesvx.f b/SRC/zhesvx.f
index ac993176..86f88665 100644
--- a/SRC/zhesvx.f
+++ b/SRC/zhesvx.f
@@ -136,8 +136,7 @@
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**H or A = L*D*L**H as computed by ZHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -163,8 +162,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by ZHETRF.
@@ -237,8 +235,7 @@
*> The length of WORK. LWORK >= max(1,2*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
*> NB is the optimal blocksize for ZHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zhesvxx.f b/SRC/zhesvxx.f
index c180cbed..01063ade 100644
--- a/SRC/zhesvxx.f
+++ b/SRC/zhesvxx.f
@@ -168,8 +168,7 @@
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -187,8 +186,7 @@
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
@@ -214,8 +212,7 @@
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by ZHETRF.
@@ -326,37 +323,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -365,8 +356,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -377,14 +367,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -392,26 +380,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -422,8 +406,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -442,8 +425,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -451,8 +433,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -462,8 +443,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zheswapr.f b/SRC/zheswapr.f
index 58720bcd..80b01358 100644
--- a/SRC/zheswapr.f
+++ b/SRC/zheswapr.f
@@ -61,8 +61,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zhetf2.f b/SRC/zhetf2.f
index 68e95261..d28ba0a9 100644
--- a/SRC/zhetf2.f
+++ b/SRC/zhetf2.f
@@ -76,8 +76,7 @@
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/zhetrd.f b/SRC/zhetrd.f
index 3eeb574a..e2b1ae76 100644
--- a/SRC/zhetrd.f
+++ b/SRC/zhetrd.f
@@ -118,8 +118,7 @@
*> The dimension of the array WORK. LWORK >= 1.
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zhetrf.f b/SRC/zhetrf.f
index e6bf0f34..38c84d0d 100644
--- a/SRC/zhetrf.f
+++ b/SRC/zhetrf.f
@@ -75,8 +75,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/zhetri.f b/SRC/zhetri.f
index 299f88d8..d7e69fed 100644
--- a/SRC/zhetri.f
+++ b/SRC/zhetri.f
@@ -64,8 +64,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (Hermitian) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zhetri2.f b/SRC/zhetri2.f
index 2ec6a01b..a79684e6 100644
--- a/SRC/zhetri2.f
+++ b/SRC/zhetri2.f
@@ -65,8 +65,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zhetri2x.f b/SRC/zhetri2x.f
index 9398a2d6..789b88d5 100644
--- a/SRC/zhetri2x.f
+++ b/SRC/zhetri2x.f
@@ -64,8 +64,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the NNB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZHETRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zhfrk.f b/SRC/zhfrk.f
index 6d7b8898..22375210 100644
--- a/SRC/zhfrk.f
+++ b/SRC/zhfrk.f
@@ -68,16 +68,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,14 +83,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zhgeqz.f b/SRC/zhgeqz.f
index 30a9f865..9630edaa 100644
--- a/SRC/zhgeqz.f
+++ b/SRC/zhgeqz.f
@@ -180,8 +180,7 @@
*> The real non-negative scalars beta that define the
*> eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized
*> Schur factorization.
-*> \endverbatim
-*> \verbatim
+*>
*> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
*> represent the j-th eigenvalue of the matrix pair (A,B), in
*> one of the forms lambda = alpha/beta or mu = beta/alpha.
@@ -235,8 +234,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zhpev.f b/SRC/zhpev.f
index 333b38e9..11cc330e 100644
--- a/SRC/zhpev.f
+++ b/SRC/zhpev.f
@@ -72,8 +72,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
diff --git a/SRC/zhpevd.f b/SRC/zhpevd.f
index 5a47db45..0b035545 100644
--- a/SRC/zhpevd.f
+++ b/SRC/zhpevd.f
@@ -81,8 +81,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -126,8 +125,7 @@
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -150,8 +148,7 @@
*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
*> If JOBZ = 'V' and N > 1, LRWORK must be at least
*> 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -171,8 +168,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zhpevx.f b/SRC/zhpevx.f
index 7ee20df3..05590799 100644
--- a/SRC/zhpevx.f
+++ b/SRC/zhpevx.f
@@ -86,8 +86,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, AP is overwritten by values generated during the
*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
*> and first superdiagonal of the tridiagonal matrix T overwrite
@@ -130,24 +129,20 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*DLAMCH('S').
-*> \endverbatim
-*> \verbatim
+*>
*> See "Computing Small Singular Values of Bidiagonal Matrices
*> with Guaranteed High Relative Accuracy," by Demmel and
*> Kahan, LAPACK Working Note #3.
diff --git a/SRC/zhpgst.f b/SRC/zhpgst.f
index 782d640c..41640849 100644
--- a/SRC/zhpgst.f
+++ b/SRC/zhpgst.f
@@ -80,8 +80,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
diff --git a/SRC/zhpgv.f b/SRC/zhpgv.f
index 6934af12..67f8674b 100644
--- a/SRC/zhpgv.f
+++ b/SRC/zhpgv.f
@@ -84,8 +84,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -97,8 +96,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H, in the same storage
*> format as B.
diff --git a/SRC/zhpgvd.f b/SRC/zhpgvd.f
index b999ba9d..76cf7d82 100644
--- a/SRC/zhpgvd.f
+++ b/SRC/zhpgvd.f
@@ -93,8 +93,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -106,8 +105,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H, in the same storage
*> format as B.
@@ -149,8 +147,7 @@
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the required sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -171,8 +168,7 @@
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -192,8 +188,7 @@
*> The dimension of array IWORK.
*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the required sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zhpgvx.f b/SRC/zhpgvx.f
index 284aaa7d..42821bde 100644
--- a/SRC/zhpgvx.f
+++ b/SRC/zhpgvx.f
@@ -98,8 +98,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the contents of AP are destroyed.
*> \endverbatim
*>
@@ -111,8 +110,7 @@
*> is stored in the array BP as follows:
*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H, in the same storage
*> format as B.
@@ -126,8 +124,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -141,8 +138,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
@@ -156,17 +152,14 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -199,8 +192,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**H*B*Z = I;
*> if ITYPE = 3, Z**H*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.
diff --git a/SRC/zhprfs.f b/SRC/zhprfs.f
index 8312fb95..214fc50a 100644
--- a/SRC/zhprfs.f
+++ b/SRC/zhprfs.f
@@ -156,12 +156,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zhpsv.f b/SRC/zhpsv.f
index ef5b665c..2e6cc1b8 100644
--- a/SRC/zhpsv.f
+++ b/SRC/zhpsv.f
@@ -83,8 +83,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
diff --git a/SRC/zhpsvx.f b/SRC/zhpsvx.f
index 62372598..95b1ecb7 100644
--- a/SRC/zhpsvx.f
+++ b/SRC/zhpsvx.f
@@ -128,8 +128,7 @@
*> to obtain the factor U or L from the factorization
*> A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -150,8 +149,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by ZHPTRF.
diff --git a/SRC/zhptrf.f b/SRC/zhptrf.f
index d5f7df25..97007053 100644
--- a/SRC/zhptrf.f
+++ b/SRC/zhptrf.f
@@ -70,8 +70,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L, stored as a packed triangular
*> matrix overwriting A (see below for further details).
diff --git a/SRC/zhptri.f b/SRC/zhptri.f
index 43b2eb82..7cc6a139 100644
--- a/SRC/zhptri.f
+++ b/SRC/zhptri.f
@@ -65,8 +65,7 @@
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZHPTRF,
*> stored as a packed triangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (Hermitian) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
diff --git a/SRC/zhseqr.f b/SRC/zhseqr.f
index 838d54bd..00856d8b 100644
--- a/SRC/zhseqr.f
+++ b/SRC/zhseqr.f
@@ -82,8 +82,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that H is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*> set by a previous call to ZGEBAL, and then passed to ZGEHRD
@@ -102,8 +101,7 @@
*> Schur form). If INFO = 0 and JOB = 'E', the contents of
*> H are unspecified on exit. (The output value of H when
*> INFO.GT.0 is given under the description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> Unlike earlier versions of ZHSEQR, this subroutine may
*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
*> or j = IHI+1, IHI+2, ... N.
@@ -162,8 +160,7 @@
*> may be required for optimal performance. A workspace
*> query is recommended to determine the optimal workspace
*> size.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then ZHSEQR does a workspace query.
*> In this case, ZHSEQR checks the input parameters and
*> estimates the optimal workspace size for the given
@@ -182,42 +179,33 @@
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and JOB = 'E', then on exit, the
*> remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and JOB = 'S', then on exit
-*> \endverbatim
-*> \verbatim
+*>
*> (*) (initial value of H)*U = U*(final value of H)
-*> \endverbatim
-*> \verbatim
+*>
*> where U is a unitary matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'V', then on exit
-*> \endverbatim
-*> \verbatim
+*>
*> (final value of Z) = (initial value of Z)*U
-*> \endverbatim
-*> \verbatim
+*>
*> where U is the unitary matrix in (*) (regard-
*> less of the value of JOB.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'I', then on exit
*> (final value of Z) = U
*> where U is the unitary matrix in (*) (regard-
*> less of the value of JOB.)
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and COMPZ = 'N', then Z is not
*> accessed.
*> \endverbatim
diff --git a/SRC/zla_gbamv.f b/SRC/zla_gbamv.f
index b369f1de..1b9fa777 100644
--- a/SRC/zla_gbamv.f
+++ b/SRC/zla_gbamv.f
@@ -63,13 +63,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -169,8 +167,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/zla_geamv.f b/SRC/zla_geamv.f
index 949c7e8e..cbf1516a 100644
--- a/SRC/zla_geamv.f
+++ b/SRC/zla_geamv.f
@@ -64,13 +64,11 @@
*> TRANS is INTEGER
*> On entry, TRANS specifies the operation to be performed as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -158,8 +156,7 @@
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> Level 2 Blas routine.
*> \endverbatim
*>
diff --git a/SRC/zla_heamv.f b/SRC/zla_heamv.f
index ed87815f..616c3864 100644
--- a/SRC/zla_heamv.f
+++ b/SRC/zla_heamv.f
@@ -63,16 +63,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zla_herfsx_extended.f b/SRC/zla_herfsx_extended.f
index aeaeb9d1..bd075d97 100644
--- a/SRC/zla_herfsx_extended.f
+++ b/SRC/zla_herfsx_extended.f
@@ -200,37 +200,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -239,8 +233,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -254,14 +247,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -269,26 +260,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -299,8 +286,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/zla_porfsx_extended.f b/SRC/zla_porfsx_extended.f
index 930ce6ac..53eaefc2 100644
--- a/SRC/zla_porfsx_extended.f
+++ b/SRC/zla_porfsx_extended.f
@@ -192,37 +192,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -231,8 +225,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -246,14 +239,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -261,26 +252,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -291,8 +278,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/zla_syamv.f b/SRC/zla_syamv.f
index 8aead800..3d1e6918 100644
--- a/SRC/zla_syamv.f
+++ b/SRC/zla_syamv.f
@@ -64,16 +64,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_UPPER Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = BLAS_LOWER Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zla_syrfsx_extended.f b/SRC/zla_syrfsx_extended.f
index 3ceb9da0..ae0c7ae6 100644
--- a/SRC/zla_syrfsx_extended.f
+++ b/SRC/zla_syrfsx_extended.f
@@ -200,37 +200,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -239,8 +233,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
@@ -254,14 +247,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -269,26 +260,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * slamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * slamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * slamch('Epsilon') to determine if the error
@@ -299,8 +286,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine is only responsible for setting the second field
*> above.
*> See Lapack Working Note 165 for further details and extra
diff --git a/SRC/zlahef.f b/SRC/zlahef.f
index 4a056757..04650bda 100644
--- a/SRC/zlahef.f
+++ b/SRC/zlahef.f
@@ -113,8 +113,7 @@
*> Details of the interchanges and the block structure of D.
*> If UPLO = 'U', only the last KB elements of IPIV are set;
*> if UPLO = 'L', only the first KB elements are set.
-*> \endverbatim
-*> \verbatim
+*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
diff --git a/SRC/zlahqr.f b/SRC/zlahqr.f
index 73964b9f..4c955ce2 100644
--- a/SRC/zlahqr.f
+++ b/SRC/zlahqr.f
@@ -145,22 +145,19 @@
*> per eigenvalue; elements i+1:ihi of W contain
*> those eigenvalues which have been successfully
*> computed.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the
*> eigenvalues of the upper Hessenberg matrix
*> rows and columns ILO thorugh INFO of the final,
*> output value of H.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
*> (*) (initial value of H)*U = U*(final value of H)
*> where U is an orthognal matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
-*> \endverbatim
-*> \verbatim
+*>
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*> (final value of Z) = (initial value of Z)*U
*> where U is the orthogonal matrix in (*)
diff --git a/SRC/zlals0.f b/SRC/zlals0.f
index ae421c9f..c7a68817 100644
--- a/SRC/zlals0.f
+++ b/SRC/zlals0.f
@@ -102,8 +102,7 @@
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
diff --git a/SRC/zlanhf.f b/SRC/zlanhf.f
index 635fee2e..7e9e136d 100644
--- a/SRC/zlanhf.f
+++ b/SRC/zlanhf.f
@@ -83,12 +83,10 @@
*> UPLO is CHARACTER
*> On entry, UPLO specifies whether the RFP matrix A came from
*> an upper or lower triangular matrix as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' RFP A came from an upper triangular
*> matrix
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' RFP A came from a lower triangular
*> matrix
*> \endverbatim
diff --git a/SRC/zlaqgb.f b/SRC/zlaqgb.f
index 88b144a5..927ec89f 100644
--- a/SRC/zlaqgb.f
+++ b/SRC/zlaqgb.f
@@ -77,8 +77,7 @@
*> The j-th column of A is stored in the j-th column of the
*> array AB as follows:
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix, in the same storage format
*> as A. See EQUED for the form of the equilibrated matrix.
*> \endverbatim
@@ -130,18 +129,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/zlaqge.f b/SRC/zlaqge.f
index 60134dbc..857b088b 100644
--- a/SRC/zlaqge.f
+++ b/SRC/zlaqge.f
@@ -112,18 +112,15 @@
*> by diag(C).
*> = 'B': Both row and column equilibration, i.e., A has been
*> replaced by diag(R) * A * diag(C).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if row or column scaling
*> should be done based on the ratio of the row or column scaling
*> factors. If ROWCND < THRESH, row scaling is done, and if
*> COLCND < THRESH, column scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if row scaling
*> should be done based on the absolute size of the largest matrix
*> element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
diff --git a/SRC/zlaqhb.f b/SRC/zlaqhb.f
index 7a4acfb1..c96a1081 100644
--- a/SRC/zlaqhb.f
+++ b/SRC/zlaqhb.f
@@ -75,8 +75,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
@@ -113,17 +112,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/zlaqhe.f b/SRC/zlaqhe.f
index c63fbca7..1028cdca 100644
--- a/SRC/zlaqhe.f
+++ b/SRC/zlaqhe.f
@@ -69,8 +69,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED = 'Y', the equilibrated matrix:
*> diag(S) * A * diag(S).
*> \endverbatim
@@ -106,17 +105,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/zlaqhp.f b/SRC/zlaqhp.f
index 23b5b4cd..f2ae7067 100644
--- a/SRC/zlaqhp.f
+++ b/SRC/zlaqhp.f
@@ -67,8 +67,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
@@ -98,17 +97,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/zlaqr0.f b/SRC/zlaqr0.f
index dc2f81b4..71f45987 100644
--- a/SRC/zlaqr0.f
+++ b/SRC/zlaqr0.f
@@ -78,8 +78,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> It is assumed that H is already upper triangular in rows
*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
@@ -100,8 +99,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -166,8 +164,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then ZLAQR0 does a workspace query.
*> In this case, ZLAQR0 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/zlaqr1.f b/SRC/zlaqr1.f
index 6239c161..461d6048 100644
--- a/SRC/zlaqr1.f
+++ b/SRC/zlaqr1.f
@@ -76,8 +76,7 @@
*> \param[in] S2
*> \verbatim
*> S2 is COMPLEX*16
-*> \endverbatim
-*> \verbatim
+*>
*> S1 and S2 are the shifts defining K in (*) above.
*> \endverbatim
*>
diff --git a/SRC/zlaqr2.f b/SRC/zlaqr2.f
index 00cdb3d0..7e3b5d0a 100644
--- a/SRC/zlaqr2.f
+++ b/SRC/zlaqr2.f
@@ -240,8 +240,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; ZLAQR2
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/zlaqr3.f b/SRC/zlaqr3.f
index 425fa9fa..864221ea 100644
--- a/SRC/zlaqr3.f
+++ b/SRC/zlaqr3.f
@@ -237,8 +237,7 @@
*> The dimension of the work array WORK. LWORK = 2*NW
*> suffices, but greater efficiency may result from larger
*> values of LWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; ZLAQR3
*> only estimates the optimal workspace size for the given
*> values of N, NW, KTOP and KBOT. The estimate is returned
diff --git a/SRC/zlaqr4.f b/SRC/zlaqr4.f
index 43279b98..94042bdb 100644
--- a/SRC/zlaqr4.f
+++ b/SRC/zlaqr4.f
@@ -105,8 +105,7 @@
*> .FALSE., then the contents of H are unspecified on exit.
*> (The output value of H when INFO.GT.0 is given under the
*> description of INFO below.)
-*> \endverbatim
-*> \verbatim
+*>
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
@@ -171,8 +170,7 @@
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then ZLAQR4 does a workspace query.
*> In this case, ZLAQR4 checks the input parameters and
*> estimates the optimal workspace size for the given
diff --git a/SRC/zlaqsb.f b/SRC/zlaqsb.f
index 7f647116..81029b8f 100644
--- a/SRC/zlaqsb.f
+++ b/SRC/zlaqsb.f
@@ -75,8 +75,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
@@ -113,17 +112,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/zlaqsp.f b/SRC/zlaqsp.f
index c2ca10bb..edea5462 100644
--- a/SRC/zlaqsp.f
+++ b/SRC/zlaqsp.f
@@ -67,8 +67,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
@@ -98,17 +97,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/zlaqsy.f b/SRC/zlaqsy.f
index 05a6a7ed..dc4e8e91 100644
--- a/SRC/zlaqsy.f
+++ b/SRC/zlaqsy.f
@@ -69,8 +69,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if EQUED = 'Y', the equilibrated matrix:
*> diag(S) * A * diag(S).
*> \endverbatim
@@ -106,17 +105,14 @@
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
-*> \endverbatim
-*> \verbatim
+*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
diff --git a/SRC/zlascl.f b/SRC/zlascl.f
index 6fff6e13..55ab2ded 100644
--- a/SRC/zlascl.f
+++ b/SRC/zlascl.f
@@ -86,8 +86,7 @@
*> \param[in] CTO
*> \verbatim
*> CTO is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*> without over/underflow if the final result CTO*A(I,J)/CFROM
*> can be represented without over/underflow. CFROM must be
diff --git a/SRC/zlasyf.f b/SRC/zlasyf.f
index 83d5665f..8a1b39a9 100644
--- a/SRC/zlasyf.f
+++ b/SRC/zlasyf.f
@@ -113,8 +113,7 @@
*> Details of the interchanges and the block structure of D.
*> If UPLO = 'U', only the last KB elements of IPIV are set;
*> if UPLO = 'L', only the first KB elements are set.
-*> \endverbatim
-*> \verbatim
+*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
diff --git a/SRC/zlatbs.f b/SRC/zlatbs.f
index 1d1521c4..464d47f2 100644
--- a/SRC/zlatbs.f
+++ b/SRC/zlatbs.f
@@ -137,15 +137,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/zlatps.f b/SRC/zlatps.f
index ee56c5fc..92607131 100644
--- a/SRC/zlatps.f
+++ b/SRC/zlatps.f
@@ -125,15 +125,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/zlatrs.f b/SRC/zlatrs.f
index 35c6158a..ad603df7 100644
--- a/SRC/zlatrs.f
+++ b/SRC/zlatrs.f
@@ -133,15 +133,13 @@
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is or output) DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
-*> \endverbatim
-*> \verbatim
+*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
diff --git a/SRC/zlatzm.f b/SRC/zlatzm.f
index cc6e1e39..231b5e53 100644
--- a/SRC/zlatzm.f
+++ b/SRC/zlatzm.f
@@ -107,8 +107,7 @@
*> (M,1) if SIDE = 'R'
*> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*> if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the first row of P*C if SIDE = 'L', or the first
*> column of C*P if SIDE = 'R'.
*> \endverbatim
@@ -120,8 +119,7 @@
*> (LDC, N-1) if SIDE = 'R'
*> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*> m x (n - 1) matrix C2 if SIDE = 'R'.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*> if SIDE = 'R'.
*> \endverbatim
diff --git a/SRC/zpbrfs.f b/SRC/zpbrfs.f
index ea70883c..5d975af0 100644
--- a/SRC/zpbrfs.f
+++ b/SRC/zpbrfs.f
@@ -165,12 +165,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zpbstf.f b/SRC/zpbstf.f
index 97a0596d..0e48bfb1 100644
--- a/SRC/zpbstf.f
+++ b/SRC/zpbstf.f
@@ -82,8 +82,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor S from the split Cholesky
*> factorization A = S**H*S. See Further Details.
*> \endverbatim
diff --git a/SRC/zpbsv.f b/SRC/zpbsv.f
index 466dca6c..38a3822e 100644
--- a/SRC/zpbsv.f
+++ b/SRC/zpbsv.f
@@ -90,8 +90,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/zpbsvx.f b/SRC/zpbsvx.f
index af34cf18..a7739ee7 100644
--- a/SRC/zpbsvx.f
+++ b/SRC/zpbsvx.f
@@ -145,8 +145,7 @@
*> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -165,13 +164,11 @@
*> factorization A = U**H *U or A = L*L**H of the band matrix
*> A, in the same storage format as A (see AB). If EQUED = 'Y',
*> then AFB is the factored form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFB is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H of the equilibrated
diff --git a/SRC/zpbtf2.f b/SRC/zpbtf2.f
index 24c83d35..3b291174 100644
--- a/SRC/zpbtf2.f
+++ b/SRC/zpbtf2.f
@@ -81,8 +81,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H *U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/zpbtrf.f b/SRC/zpbtrf.f
index 5290f030..202dd4c0 100644
--- a/SRC/zpbtrf.f
+++ b/SRC/zpbtrf.f
@@ -76,8 +76,7 @@
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H*U or A = L*L**H of the band
*> matrix A, in the same storage format as A.
diff --git a/SRC/zpftrf.f b/SRC/zpftrf.f
index 218f615b..e4e116e6 100644
--- a/SRC/zpftrf.f
+++ b/SRC/zpftrf.f
@@ -82,8 +82,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization RFP A = U**H*U or RFP A = L*L**H.
*> \endverbatim
@@ -96,27 +95,22 @@
*> > 0: if INFO = i, the leading minor of order i is not
*> positive definite, and the factorization could not be
*> completed.
-*> \endverbatim
-*> \verbatim
+*>
*> Further Notes on RFP Format:
*> ============================
-*> \endverbatim
-*> \verbatim
+*>
*> We first consider Standard Packed Format when N is even.
*> We give an example where N = 6.
-*> \endverbatim
-*> \verbatim
+*>
*> AP is Upper AP is Lower
-*> \endverbatim
-*> \verbatim
+*>
*> 00 01 02 03 04 05 00
*> 11 12 13 14 15 10 11
*> 22 23 24 25 20 21 22
*> 33 34 35 30 31 32 33
*> 44 45 40 41 42 43 44
*> 55 50 51 52 53 54 55
-*> \endverbatim
-*> \verbatim
+*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
@@ -126,19 +120,16 @@
*> conjugate-transpose of the last three columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N even and TRANSR = 'N'.
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- -- --
*> 03 04 05 33 43 53
*> -- --
*> 13 14 15 00 44 54
*> --
*> 23 24 25 10 11 55
-*> \endverbatim
-*> \verbatim
+*>
*> 33 34 35 20 21 22
*> --
*> 00 44 45 30 31 32
@@ -146,37 +137,30 @@
*> 01 11 55 40 41 42
*> -- -- --
*> 02 12 22 50 51 52
-*> \endverbatim
-*> \verbatim
+*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- -- -- -- -- -- -- -- -- --
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- -- --
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
*> -- -- -- -- -- -- -- -- -- --
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
-*> \endverbatim
-*> \verbatim
+*>
*> We next consider Standard Packed Format when N is odd.
*> We give an example where N = 5.
-*> \endverbatim
-*> \verbatim
+*>
*> AP is Upper AP is Lower
-*> \endverbatim
-*> \verbatim
+*>
*> 00 01 02 03 04 00
*> 11 12 13 14 10 11
*> 22 23 24 20 21 22
*> 33 34 30 31 32 33
*> 44 40 41 42 43 44
-*> \endverbatim
-*> \verbatim
+*>
*> Let TRANSR = 'N'. RFP holds AP as follows:
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
@@ -186,31 +170,25 @@
*> conjugate-transpose of the last two columns of AP lower.
*> To denote conjugate we place -- above the element. This covers the
*> case N odd and TRANSR = 'N'.
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- --
*> 02 03 04 00 33 43
*> --
*> 12 13 14 10 11 44
-*> \endverbatim
-*> \verbatim
+*>
*> 22 23 24 20 21 22
*> --
*> 00 33 34 30 31 32
*> -- --
*> 01 11 44 40 41 42
-*> \endverbatim
-*> \verbatim
+*>
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*> transpose of RFP A above. One therefore gets:
-*> \endverbatim
-*> \verbatim
+*>
*> RFP A RFP A
-*> \endverbatim
-*> \verbatim
+*>
*> -- -- -- -- -- -- -- -- --
*> 02 12 22 00 01 00 10 20 30 40 50
*> -- -- -- -- -- -- -- -- --
diff --git a/SRC/zpftri.f b/SRC/zpftri.f
index 88b860f5..35a6fe62 100644
--- a/SRC/zpftri.f
+++ b/SRC/zpftri.f
@@ -76,8 +76,7 @@
*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*> is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the Hermitian inverse of the original matrix, in the
*> same storage format.
*> \endverbatim
diff --git a/SRC/zporfs.f b/SRC/zporfs.f
index c7f8102e..8d56c397 100644
--- a/SRC/zporfs.f
+++ b/SRC/zporfs.f
@@ -159,12 +159,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zporfsx.f b/SRC/zporfsx.f
index 0ecc4bf3..a1fb9b00 100644
--- a/SRC/zporfsx.f
+++ b/SRC/zporfsx.f
@@ -210,37 +210,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -249,8 +243,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -261,14 +254,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -276,26 +267,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -306,8 +293,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -326,8 +312,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -338,8 +323,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -349,8 +333,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zposv.f b/SRC/zposv.f
index d79906ac..683f2870 100644
--- a/SRC/zposv.f
+++ b/SRC/zposv.f
@@ -82,8 +82,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H.
*> \endverbatim
diff --git a/SRC/zposvx.f b/SRC/zposvx.f
index 5d732daf..cf60118d 100644
--- a/SRC/zposvx.f
+++ b/SRC/zposvx.f
@@ -140,8 +140,7 @@
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -160,14 +159,12 @@
*> factorization A = U**H *U or A = L*L**H, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored form
*> of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H of the equilibrated
diff --git a/SRC/zposvxx.f b/SRC/zposvxx.f
index c4a5700c..20a334a0 100644
--- a/SRC/zposvxx.f
+++ b/SRC/zposvxx.f
@@ -167,8 +167,7 @@
*> the strictly upper triangular part of A is not referenced. A is
*> not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
*> 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -187,14 +186,12 @@
*> factorization A = U**T*U or A = L*L**T, in the same storage
*> format as A. If EQUED .ne. 'N', then AF is the factored
*> form of the equilibrated matrix diag(S)*A*diag(S).
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AF is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T of the equilibrated
@@ -313,37 +310,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -352,8 +343,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -364,14 +354,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -379,26 +367,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -409,8 +393,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -429,8 +412,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -438,8 +420,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -449,8 +430,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zpotf2.f b/SRC/zpotf2.f
index 27ba410f..2abd1b32 100644
--- a/SRC/zpotf2.f
+++ b/SRC/zpotf2.f
@@ -74,8 +74,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H.
*> \endverbatim
diff --git a/SRC/zpotrf.f b/SRC/zpotrf.f
index 7c7eb7d5..23106172 100644
--- a/SRC/zpotrf.f
+++ b/SRC/zpotrf.f
@@ -72,8 +72,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H *U or A = L*L**H.
*> \endverbatim
diff --git a/SRC/zpprfs.f b/SRC/zpprfs.f
index e417a136..01977a93 100644
--- a/SRC/zpprfs.f
+++ b/SRC/zpprfs.f
@@ -147,12 +147,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zppsv.f b/SRC/zppsv.f
index 9f42c1f9..030bd5ec 100644
--- a/SRC/zppsv.f
+++ b/SRC/zppsv.f
@@ -81,8 +81,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H, in the same storage
*> format as A.
diff --git a/SRC/zppsvx.f b/SRC/zppsvx.f
index 52803cb4..f7fec165 100644
--- a/SRC/zppsvx.f
+++ b/SRC/zppsvx.f
@@ -138,8 +138,7 @@
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details. A is not modified if
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -152,14 +151,12 @@
*> factorization A = U**H*U or A = L*L**H, in the same storage
*> format as A. If EQUED .ne. 'N', then AFP is the factored
*> form of the equilibrated matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H * U or A = L * L**H of the original
*> matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'E', then AFP is an output argument and on exit
*> returns the triangular factor U or L from the Cholesky
*> factorization A = U**H * U or A = L * L**H of the equilibrated
diff --git a/SRC/zpptrf.f b/SRC/zpptrf.f
index 886418ad..eab3d046 100644
--- a/SRC/zpptrf.f
+++ b/SRC/zpptrf.f
@@ -69,8 +69,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the triangular factor U or L from the
*> Cholesky factorization A = U**H*U or A = L*L**H, in the same
*> storage format as A.
diff --git a/SRC/zpptri.f b/SRC/zpptri.f
index 1d7f6181..53350477 100644
--- a/SRC/zpptri.f
+++ b/SRC/zpptri.f
@@ -65,8 +65,7 @@
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the upper or lower triangle of the (Hermitian)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
diff --git a/SRC/zpstf2.f b/SRC/zpstf2.f
index f1080e25..472c706f 100644
--- a/SRC/zpstf2.f
+++ b/SRC/zpstf2.f
@@ -79,8 +79,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/zpstrf.f b/SRC/zpstrf.f
index cc3887f1..4be6d127 100644
--- a/SRC/zpstrf.f
+++ b/SRC/zpstrf.f
@@ -79,8 +79,7 @@
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
diff --git a/SRC/zptrfs.f b/SRC/zptrfs.f
index 300bc2af..16e71ca5 100644
--- a/SRC/zptrfs.f
+++ b/SRC/zptrfs.f
@@ -159,12 +159,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zspmv.f b/SRC/zspmv.f
index c7b096ae..4daf3024 100644
--- a/SRC/zspmv.f
+++ b/SRC/zspmv.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zspr.f b/SRC/zspr.f
index 9ba27bf7..977d3265 100644
--- a/SRC/zspr.f
+++ b/SRC/zspr.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zsprfs.f b/SRC/zsprfs.f
index cf055fba..8985b8c0 100644
--- a/SRC/zsprfs.f
+++ b/SRC/zsprfs.f
@@ -156,12 +156,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zspsv.f b/SRC/zspsv.f
index 1f928db8..fa16bfd3 100644
--- a/SRC/zspsv.f
+++ b/SRC/zspsv.f
@@ -83,8 +83,7 @@
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
diff --git a/SRC/zspsvx.f b/SRC/zspsvx.f
index ee83aa87..b28194dc 100644
--- a/SRC/zspsvx.f
+++ b/SRC/zspsvx.f
@@ -128,8 +128,7 @@
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
*> a packed triangular matrix in the same storage format as A.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AFP is an output argument and on exit
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -150,8 +149,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by ZSPTRF.
diff --git a/SRC/zsptrf.f b/SRC/zsptrf.f
index ec9722c8..2cbb295b 100644
--- a/SRC/zsptrf.f
+++ b/SRC/zsptrf.f
@@ -71,8 +71,7 @@
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L, stored as a packed triangular
*> matrix overwriting A (see below for further details).
diff --git a/SRC/zsptri.f b/SRC/zsptri.f
index f5904398..4400a3f3 100644
--- a/SRC/zsptri.f
+++ b/SRC/zsptri.f
@@ -65,8 +65,7 @@
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZSPTRF,
*> stored as a packed triangular matrix.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix, stored as a packed triangular matrix. The j-th column
*> of inv(A) is stored in the array AP as follows:
diff --git a/SRC/zstedc.f b/SRC/zstedc.f
index d1872a87..88c6d32f 100644
--- a/SRC/zstedc.f
+++ b/SRC/zstedc.f
@@ -119,8 +119,7 @@
*> Note that for COMPZ = 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LWORK need
*> only be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
@@ -149,8 +148,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LRWORK
*> need only be max(1,2*(N-1)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
@@ -176,8 +174,7 @@
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LIWORK
*> need only be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
diff --git a/SRC/zstegr.f b/SRC/zstegr.f
index 5067e9d1..c8e61aef 100644
--- a/SRC/zstegr.f
+++ b/SRC/zstegr.f
@@ -111,8 +111,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -126,8 +125,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/zstein.f b/SRC/zstein.f
index acf1be25..894b56c0 100644
--- a/SRC/zstein.f
+++ b/SRC/zstein.f
@@ -153,16 +153,13 @@
*> > 0: if INFO = i, then i eigenvectors failed to converge
*> in MAXITS iterations. Their indices are stored in
*> array IFAIL.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> MAXITS INTEGER, default = 5
*> The maximum number of iterations performed.
-*> \endverbatim
-*> \verbatim
+*>
*> EXTRA INTEGER, default = 2
*> The number of iterations performed after norm growth
*> criterion is satisfied, should be at least 1.
diff --git a/SRC/zstemr.f b/SRC/zstemr.f
index e57b45bb..233aa44d 100644
--- a/SRC/zstemr.f
+++ b/SRC/zstemr.f
@@ -159,8 +159,7 @@
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
@@ -174,8 +173,7 @@
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0.
diff --git a/SRC/zsymv.f b/SRC/zsymv.f
index cc6cbb46..03d9567f 100644
--- a/SRC/zsymv.f
+++ b/SRC/zsymv.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zsyr.f b/SRC/zsyr.f
index 170d12d5..adb4be39 100644
--- a/SRC/zsyr.f
+++ b/SRC/zsyr.f
@@ -53,16 +53,13 @@
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/zsyrfs.f b/SRC/zsyrfs.f
index 1329bb12..2ed039d9 100644
--- a/SRC/zsyrfs.f
+++ b/SRC/zsyrfs.f
@@ -168,12 +168,10 @@
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
-*> \endverbatim
-*> \verbatim
+*>
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*>
diff --git a/SRC/zsyrfsx.f b/SRC/zsyrfsx.f
index 9ff79ab4..ae66d58c 100644
--- a/SRC/zsyrfsx.f
+++ b/SRC/zsyrfsx.f
@@ -219,37 +219,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -258,8 +252,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -270,14 +263,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -285,26 +276,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -315,8 +302,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -335,8 +321,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -347,8 +332,7 @@
*> compilation environment does not support DOUBLE
*> PRECISION.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -358,8 +342,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zsysv.f b/SRC/zsysv.f
index 245130ed..5e9270fa 100644
--- a/SRC/zsysv.f
+++ b/SRC/zsysv.f
@@ -85,8 +85,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the block diagonal matrix D and the
*> multipliers used to obtain the factor U or L from the
*> factorization A = U*D*U**T or A = L*D*L**T as computed by
@@ -140,8 +139,7 @@
*> ZSYTRF.
*> for LWORK < N, TRS will be done with Level BLAS 2
*> for LWORK >= N, TRS will be done with Level BLAS 3
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zsysvx.f b/SRC/zsysvx.f
index ad906aa5..addd8fe6 100644
--- a/SRC/zsysvx.f
+++ b/SRC/zsysvx.f
@@ -136,8 +136,7 @@
*> contains the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
*> A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L from the factorization
@@ -163,8 +162,7 @@
*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block structure
*> of D, as determined by ZSYTRF.
@@ -237,8 +235,7 @@
*> The length of WORK. LWORK >= max(1,2*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
*> NB is the optimal blocksize for ZSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zsysvxx.f b/SRC/zsysvxx.f
index d9ceef41..0394fee7 100644
--- a/SRC/zsysvxx.f
+++ b/SRC/zsysvxx.f
@@ -168,8 +168,7 @@
*> N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*> diag(S)*A*diag(S).
*> \endverbatim
@@ -187,8 +186,7 @@
*> contains the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
*> U*D*U**T or A = L*D*L**T as computed by DSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then AF is an output argument and on exit
*> returns the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L from the factorization A =
@@ -214,8 +212,7 @@
*> diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
*> then rows and columns k+1 and -IPIV(k) were interchanged
*> and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*> \endverbatim
-*> \verbatim
+*>
*> If FACT = 'N', then IPIV is an output argument and on exit
*> contains details of the interchanges and the block
*> structure of D, as determined by DSYTRF.
@@ -326,37 +323,31 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> normwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Normwise relative error in the ith solution vector:
*> max_j (abs(XTRUE(j,i) - X(j,i)))
*> ------------------------------
*> max_j abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the type of error information as described
*> below. There currently are up to three pieces of information
*> returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_NORM(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated normwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -365,8 +356,7 @@
*> appropriately scaled matrix Z.
*> Let Z = S*A, where S scales each row by a power of the
*> radix so all absolute row sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -377,14 +367,12 @@
*> For each right-hand side, this array contains information about
*> various error bounds and condition numbers corresponding to the
*> componentwise relative error, which is defined as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> Componentwise relative error in the ith solution vector:
*> abs(XTRUE(j,i) - X(j,i))
*> max_j ----------------------
*> abs(X(j,i))
-*> \endverbatim
-*> \verbatim
+*>
*> The array is indexed by the right-hand side i (on which the
*> componentwise relative error depends), and the type of error
*> information as described below. There currently are up to three
@@ -392,26 +380,22 @@
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
-*> \endverbatim
-*> \verbatim
+*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*> right-hand side.
-*> \endverbatim
-*> \verbatim
+*>
*> The second index in ERR_BNDS_COMP(:,err) contains the following
*> three fields:
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
*> reciprocal condition number is less than the threshold
*> sqrt(n) * dlamch('Epsilon').
-*> \endverbatim
-*> \verbatim
+*>
*> err = 2 "Guaranteed" error bound: The estimated forward error,
*> almost certainly within a factor of 10 of the true error
*> so long as the next entry is greater than the threshold
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
*> be trusted if the previous boolean is true.
-*> \endverbatim
-*> \verbatim
+*>
*> err = 3 Reciprocal condition number: Estimated componentwise
*> reciprocal condition number. Compared with the threshold
*> sqrt(n) * dlamch('Epsilon') to determine if the error
@@ -422,8 +406,7 @@
*> current right-hand side and S scales each row of
*> A*diag(x) by a power of the radix so all absolute row
*> sums of Z are approximately 1.
-*> \endverbatim
-*> \verbatim
+*>
*> See Lapack Working Note 165 for further details and extra
*> cautions.
*> \endverbatim
@@ -442,8 +425,7 @@
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
@@ -451,8 +433,7 @@
*> computed.
*> = 1.0 : Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*> computations allowed for refinement.
*> Default: 10
@@ -462,8 +443,7 @@
*> Gaussian elimination, the guarantees in
*> err_bnds_norm and err_bnds_comp may no longer be
*> trustworthy.
-*> \endverbatim
-*> \verbatim
+*>
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*> will attempt to find a solution with small componentwise
*> relative error in the double-precision algorithm. Positive
diff --git a/SRC/zsyswapr.f b/SRC/zsyswapr.f
index c8b8b499..dc243023 100644
--- a/SRC/zsyswapr.f
+++ b/SRC/zsyswapr.f
@@ -61,8 +61,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zsytf2.f b/SRC/zsytf2.f
index 267499b3..225b676a 100644
--- a/SRC/zsytf2.f
+++ b/SRC/zsytf2.f
@@ -76,8 +76,7 @@
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
diff --git a/SRC/zsytrf.f b/SRC/zsytrf.f
index 4a0de5b1..dd206451 100644
--- a/SRC/zsytrf.f
+++ b/SRC/zsytrf.f
@@ -75,8 +75,7 @@
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
@@ -111,8 +110,7 @@
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zsytri.f b/SRC/zsytri.f
index 0f83351f..09cbb2cc 100644
--- a/SRC/zsytri.f
+++ b/SRC/zsytri.f
@@ -64,8 +64,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zsytri2.f b/SRC/zsytri2.f
index 18a49da2..dc8decb4 100644
--- a/SRC/zsytri2.f
+++ b/SRC/zsytri2.f
@@ -65,8 +65,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the NB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/zsytri2x.f b/SRC/zsytri2x.f
index d289f1fc..83456834 100644
--- a/SRC/zsytri2x.f
+++ b/SRC/zsytri2x.f
@@ -64,8 +64,7 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the NNB diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by ZSYTRF.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
*> matrix. If UPLO = 'U', the upper triangular part of the
*> inverse is formed and the part of A below the diagonal is not
diff --git a/SRC/ztfsm.f b/SRC/ztfsm.f
index af2fc7d2..1e1f00e2 100644
--- a/SRC/ztfsm.f
+++ b/SRC/ztfsm.f
@@ -68,14 +68,11 @@
*> SIDE is CHARACTER*1
*> On entry, SIDE specifies whether op( A ) appears on the left
*> or right of X as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -86,8 +83,7 @@
*> an upper or lower triangular matrix as follows:
*> UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
*> UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -96,14 +92,11 @@
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the form of op( A ) to be used
*> in the matrix multiplication as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'N' or 'n' op( A ) = A.
-*> \endverbatim
-*> \verbatim
+*>
*> TRANS = 'C' or 'c' op( A ) = conjg( A' ).
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
@@ -112,15 +105,12 @@
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not RFP A is unit
*> triangular as follows:
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
-*> \endverbatim
-*> \verbatim
+*>
*> Unchanged on exit.
*> \endverbatim
*>
diff --git a/SRC/ztftri.f b/SRC/ztftri.f
index 78512abc..f94c530d 100644
--- a/SRC/ztftri.f
+++ b/SRC/ztftri.f
@@ -85,8 +85,7 @@
*> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
*> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
*> even and N is odd. See the Note below for more details.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/ztgsen.f b/SRC/ztgsen.f
index 2fe42930..66455442 100644
--- a/SRC/ztgsen.f
+++ b/SRC/ztgsen.f
@@ -154,8 +154,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX*16 array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> The diagonal elements of A and B, respectively,
*> when the pair (A,B) has been reduced to generalized Schur
*> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
@@ -213,8 +212,7 @@
*> \param[out] PR
*> \verbatim
*> PR is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
*> reciprocal of the norm of "projections" onto left and right
*> eigenspace with respect to the selected cluster.
@@ -247,8 +245,7 @@
*> The dimension of the array WORK. LWORK >= 1
*> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
*> If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@@ -267,8 +264,7 @@
*> The dimension of the array IWORK. LIWORK >= 1.
*> If IJOB = 1, 2 or 4, LIWORK >= N+2;
*> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
-*> \endverbatim
-*> \verbatim
+*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
diff --git a/SRC/ztgsja.f b/SRC/ztgsja.f
index 6beaf63d..7567e9df 100644
--- a/SRC/ztgsja.f
+++ b/SRC/ztgsja.f
@@ -186,8 +186,7 @@
*> \param[in] L
*> \verbatim
*> L is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> K and L specify the subblocks in the input matrices A and B:
*> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
*> of A and B, whose GSVD is going to be computed by ZTGSJA.
@@ -230,8 +229,7 @@
*> \param[in] TOLB
*> \verbatim
*> TOLB is DOUBLE PRECISION
-*> \endverbatim
-*> \verbatim
+*>
*> TOLA and TOLB are the convergence criteria for the Jacobi-
*> Kogbetliantz iteration procedure. Generally, they are the
*> same as used in the preprocessing step, say
@@ -247,8 +245,7 @@
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, ALPHA and BETA contain the generalized singular
*> value pairs of A and B;
*> ALPHA(1:K) = 1,
@@ -335,8 +332,7 @@
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> = 1: the procedure does not converge after MAXIT cycles.
-*> \endverbatim
-*> \verbatim
+*>
*> Internal Parameters
*> ===================
*>
diff --git a/SRC/ztgsyl.f b/SRC/ztgsyl.f
index 9eefb571..da509d69 100644
--- a/SRC/ztgsyl.f
+++ b/SRC/ztgsyl.f
@@ -232,8 +232,7 @@
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK > = 1.
*> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ztrexc.f b/SRC/ztrexc.f
index 8f00002e..aa5e8e79 100644
--- a/SRC/ztrexc.f
+++ b/SRC/ztrexc.f
@@ -96,8 +96,7 @@
*> \param[in] ILST
*> \verbatim
*> ILST is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> Specify the reordering of the diagonal elements of T:
*> The element with row index IFST is moved to row ILST by a
*> sequence of transpositions between adjacent elements.
diff --git a/SRC/ztrsen.f b/SRC/ztrsen.f
index b40776a4..be3e73de 100644
--- a/SRC/ztrsen.f
+++ b/SRC/ztrsen.f
@@ -161,8 +161,7 @@
*> If JOB = 'N', LWORK >= 1;
*> if JOB = 'E', LWORK = max(1,M*(N-M));
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/ztrti2.f b/SRC/ztrti2.f
index 40f8e464..79710a6e 100644
--- a/SRC/ztrti2.f
+++ b/SRC/ztrti2.f
@@ -78,8 +78,7 @@
*> triangular part of A is not referenced. If DIAG = 'U', the
*> diagonal elements of A are also not referenced and are
*> assumed to be 1.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the (triangular) inverse of the original matrix, in
*> the same storage format.
*> \endverbatim
diff --git a/SRC/ztzrzf.f b/SRC/ztzrzf.f
index 20fca661..f6ec0316 100644
--- a/SRC/ztzrzf.f
+++ b/SRC/ztzrzf.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunbdb.f b/SRC/zunbdb.f
index 36a5c13b..0db8e984 100644
--- a/SRC/zunbdb.f
+++ b/SRC/zunbdb.f
@@ -234,8 +234,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= M-Q.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zuncsd.f b/SRC/zuncsd.f
index 208d2030..e5c1371c 100644
--- a/SRC/zuncsd.f
+++ b/SRC/zuncsd.f
@@ -252,8 +252,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
@@ -275,8 +274,7 @@
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK.
-*> \endverbatim
-*> \verbatim
+*>
*> If LRWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the RWORK array, returns
*> this value as the first entry of the work array, and no error
@@ -295,12 +293,10 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: ZBBCSD did not converge. See the description of RWORK
*> above for details.
-*> \endverbatim
-*> \verbatim
+*>
*> Reference
*> =========
-*> \endverbatim
-*> \verbatim
+*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*> \endverbatim
diff --git a/SRC/zungbr.f b/SRC/zungbr.f
index f2343e81..7cfa7c6d 100644
--- a/SRC/zungbr.f
+++ b/SRC/zungbr.f
@@ -129,8 +129,7 @@
*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*> For optimum performance LWORK >= min(M,N)*NB, where NB
*> is the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunghr.f b/SRC/zunghr.f
index a09b7233..7a558501 100644
--- a/SRC/zunghr.f
+++ b/SRC/zunghr.f
@@ -58,8 +58,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of ZGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -99,8 +98,7 @@
*> The dimension of the array WORK. LWORK >= IHI-ILO.
*> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunglq.f b/SRC/zunglq.f
index 44e1f032..8b744975 100644
--- a/SRC/zunglq.f
+++ b/SRC/zunglq.f
@@ -99,8 +99,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zungql.f b/SRC/zungql.f
index 2d2529b7..6e854bb4 100644
--- a/SRC/zungql.f
+++ b/SRC/zungql.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zungqr.f b/SRC/zungqr.f
index 76e40e72..a268fedf 100644
--- a/SRC/zungqr.f
+++ b/SRC/zungqr.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zungrq.f b/SRC/zungrq.f
index 8ad3a783..5e163bd4 100644
--- a/SRC/zungrq.f
+++ b/SRC/zungrq.f
@@ -100,8 +100,7 @@
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zungtr.f b/SRC/zungtr.f
index 29aedd16..049ec0b6 100644
--- a/SRC/zungtr.f
+++ b/SRC/zungtr.f
@@ -95,8 +95,7 @@
*> The dimension of the array WORK. LWORK >= N-1.
*> For optimum performance LWORK >= (N-1)*NB, where NB is
*> the optimal blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmbr.f b/SRC/zunmbr.f
index d4dd6cce..35e62246 100644
--- a/SRC/zunmbr.f
+++ b/SRC/zunmbr.f
@@ -167,8 +167,7 @@
*> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
*> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
*> optimal blocksize. (NB = 0 if M = 0 or N = 0.)
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmhr.f b/SRC/zunmhr.f
index af931394..77f77cf3 100644
--- a/SRC/zunmhr.f
+++ b/SRC/zunmhr.f
@@ -86,8 +86,7 @@
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
-*> \endverbatim
-*> \verbatim
+*>
*> ILO and IHI must have the same values as in the previous call
*> of ZGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
@@ -150,8 +149,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmlq.f b/SRC/zunmlq.f
index 01480168..c87e6bd3 100644
--- a/SRC/zunmlq.f
+++ b/SRC/zunmlq.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmql.f b/SRC/zunmql.f
index e5ae1cdb..67365d78 100644
--- a/SRC/zunmql.f
+++ b/SRC/zunmql.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmqr.f b/SRC/zunmqr.f
index d9c88a32..0dd18abc 100644
--- a/SRC/zunmqr.f
+++ b/SRC/zunmqr.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmrq.f b/SRC/zunmrq.f
index 1ff05157..e0ac87b7 100644
--- a/SRC/zunmrq.f
+++ b/SRC/zunmrq.f
@@ -141,8 +141,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmrz.f b/SRC/zunmrz.f
index 4c62208f..c1366aae 100644
--- a/SRC/zunmrz.f
+++ b/SRC/zunmrz.f
@@ -149,8 +149,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/SRC/zunmtr.f b/SRC/zunmtr.f
index cd806a5d..a8566fe7 100644
--- a/SRC/zunmtr.f
+++ b/SRC/zunmtr.f
@@ -142,8 +142,7 @@
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >=M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
-*> \endverbatim
-*> \verbatim
+*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error