summaryrefslogtreecommitdiff
path: root/SRC/zunbdb1.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zunbdb1.f')
-rw-r--r--SRC/zunbdb1.f328
1 files changed, 328 insertions, 0 deletions
diff --git a/SRC/zunbdb1.f b/SRC/zunbdb1.f
new file mode 100644
index 00000000..4125450c
--- /dev/null
+++ b/SRC/zunbdb1.f
@@ -0,0 +1,328 @@
+*> \brief \b ZUNBDB1
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZUNBDB1 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb1.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb1.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb1.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
+* TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION PHI(*), THETA(*)
+* COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
+* $ X11(LDX11,*), X21(LDX21,*)
+* ..
+*
+*
+*> \par Purpose:
+*> =============
+*>
+*>\verbatim
+*>
+*> ZUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
+*> matrix X with orthonomal columns:
+*>
+*> [ B11 ]
+*> [ X11 ] [ P1 | ] [ 0 ]
+*> [-----] = [---------] [-----] Q1**T .
+*> [ X21 ] [ | P2 ] [ B21 ]
+*> [ 0 ]
+*>
+*> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
+*> M-P, or M-Q. Routines ZUNBDB2, ZUNBDB3, and ZUNBDB4 handle cases in
+*> which Q is not the minimum dimension.
+*>
+*> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
+*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
+*> Householder vectors.
+*>
+*> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
+*> angles THETA, PHI.
+*>
+*>\endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows X11 plus the number of rows in X21.
+*> \endverbatim
+*>
+*> \param[in] P
+*> \verbatim
+*> P is INTEGER
+*> The number of rows in X11. 0 <= P <= M.
+*> \endverbatim
+*>
+*> \param[in] Q
+*> \verbatim
+*> Q is INTEGER
+*> The number of columns in X11 and X21. 0 <= Q <=
+*> MIN(P,M-P,M-Q).
+*> \endverbatim
+*>
+*> \param[in,out] X11
+*> \verbatim
+*> X11 is COMPLEX*16 array, dimension (LDX11,Q)
+*> On entry, the top block of the matrix X to be reduced. On
+*> exit, the columns of tril(X11) specify reflectors for P1 and
+*> the rows of triu(X11,1) specify reflectors for Q1.
+*> \endverbatim
+*>
+*> \param[in] LDX11
+*> \verbatim
+*> LDX11 is INTEGER
+*> The leading dimension of X11. LDX11 >= P.
+*> \endverbatim
+*>
+*> \param[in,out] X21
+*> \verbatim
+*> X21 is COMPLEX*16 array, dimension (LDX21,Q)
+*> On entry, the bottom block of the matrix X to be reduced. On
+*> exit, the columns of tril(X21) specify reflectors for P2.
+*> \endverbatim
+*>
+*> \param[in] LDX21
+*> \verbatim
+*> LDX21 is INTEGER
+*> The leading dimension of X21. LDX21 >= M-P.
+*> \endverbatim
+*>
+*> \param[out] THETA
+*> \verbatim
+*> THETA is DOUBLE PRECISION array, dimension (Q)
+*> The entries of the bidiagonal blocks B11, B21 are defined by
+*> THETA and PHI. See Further Details.
+*> \endverbatim
+*>
+*> \param[out] PHI
+*> \verbatim
+*> PHI is DOUBLE PRECISION array, dimension (Q-1)
+*> The entries of the bidiagonal blocks B11, B21 are defined by
+*> THETA and PHI. See Further Details.
+*> \endverbatim
+*>
+*> \param[out] TAUP1
+*> \verbatim
+*> TAUP1 is COMPLEX*16 array, dimension (P)
+*> The scalar factors of the elementary reflectors that define
+*> P1.
+*> \endverbatim
+*>
+*> \param[out] TAUP2
+*> \verbatim
+*> TAUP2 is COMPLEX*16 array, dimension (M-P)
+*> The scalar factors of the elementary reflectors that define
+*> P2.
+*> \endverbatim
+*>
+*> \param[out] TAUQ1
+*> \verbatim
+*> TAUQ1 is COMPLEX*16 array, dimension (Q)
+*> The scalar factors of the elementary reflectors that define
+*> Q1.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= M-Q.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit.
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> \endverbatim
+*>
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date July 2012
+*
+*> \ingroup complex16OTHERcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
+*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
+*> in each bidiagonal band is a product of a sine or cosine of a THETA
+*> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
+*>
+*> P1, P2, and Q1 are represented as products of elementary reflectors.
+*> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
+*> and ZUNGLQ.
+*> \endverbatim
+*
+*> \par References:
+* ================
+*>
+*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
+*> Algorithms, 50(1):33-65, 2009.
+*>
+* =====================================================================
+ SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
+ $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.5.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* July 2012
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION PHI(*), THETA(*)
+ COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
+ $ X11(LDX11,*), X21(LDX21,*)
+* ..
+*
+* ====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ONE
+ PARAMETER ( ONE = (1.0D0,0.0D0) )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION C, S
+ INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
+ $ LWORKMIN, LWORKOPT
+ LOGICAL LQUERY
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZLARF, ZLARFGP, ZUNBDB5, ZDROT, XERBLA
+ EXTERNAL ZLACGV
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DZNRM2
+ EXTERNAL DZNRM2
+* ..
+* .. Intrinsic Function ..
+ INTRINSIC ATAN2, COS, MAX, SIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test input arguments
+*
+ INFO = 0
+ LQUERY = LWORK .EQ. -1
+*
+ IF( M .LT. 0 ) THEN
+ INFO = -1
+ ELSE IF( P .LT. Q .OR. M-P .LT. Q ) THEN
+ INFO = -2
+ ELSE IF( Q .LT. 0 .OR. M-Q .LT. Q ) THEN
+ INFO = -3
+ ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
+ INFO = -5
+ ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
+ INFO = -7
+ END IF
+*
+* Compute workspace
+*
+ IF( INFO .EQ. 0 ) THEN
+ ILARF = 2
+ LLARF = MAX( P-1, M-P-1, Q-1 )
+ IORBDB5 = 2
+ LORBDB5 = Q-2
+ LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
+ LWORKMIN = LWORKOPT
+ WORK(1) = LWORKOPT
+ IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -14
+ END IF
+ END IF
+ IF( INFO .NE. 0 ) THEN
+ CALL XERBLA( 'ZUNBDB1', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Reduce columns 1, ..., Q of X11 and X21
+*
+ DO I = 1, Q
+*
+ CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
+ CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
+ THETA(I) = ATAN2( DBLE( X21(I,I) ), DBLE( X11(I,I) ) )
+ C = COS( THETA(I) )
+ S = SIN( THETA(I) )
+ X11(I,I) = ONE
+ X21(I,I) = ONE
+ CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
+ $ X11(I,I+1), LDX11, WORK(ILARF) )
+ CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
+ $ X21(I,I+1), LDX21, WORK(ILARF) )
+*
+ IF( I .LT. Q ) THEN
+ CALL ZDROT( Q-I, X11(I,I+1), LDX11, X21(I,I+1), LDX21, C,
+ $ S )
+ CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
+ CALL ZLARFGP( Q-I, X21(I,I+1), X21(I,I+2), LDX21, TAUQ1(I) )
+ S = DBLE( X21(I,I+1) )
+ X21(I,I+1) = ONE
+ CALL ZLARF( 'R', P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
+ $ X11(I+1,I+1), LDX11, WORK(ILARF) )
+ CALL ZLARF( 'R', M-P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
+ $ X21(I+1,I+1), LDX21, WORK(ILARF) )
+ CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
+ C = SQRT( DZNRM2( P-I, X11(I+1,I+1), 1, X11(I+1,I+1),
+ $ 1 )**2 + DZNRM2( M-P-I, X21(I+1,I+1), 1, X21(I+1,I+1),
+ $ 1 )**2 )
+ PHI(I) = ATAN2( S, C )
+ CALL ZUNBDB5( P-I, M-P-I, Q-I-1, X11(I+1,I+1), 1,
+ $ X21(I+1,I+1), 1, X11(I+1,I+2), LDX11,
+ $ X21(I+1,I+2), LDX21, WORK(IORBDB5), LORBDB5,
+ $ CHILDINFO )
+ END IF
+*
+ END DO
+*
+ RETURN
+*
+* End of ZUNBDB1
+*
+ END
+