summaryrefslogtreecommitdiff
path: root/SRC/stgsen.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/stgsen.f')
-rw-r--r--SRC/stgsen.f14
1 files changed, 7 insertions, 7 deletions
diff --git a/SRC/stgsen.f b/SRC/stgsen.f
index fd9702da..356e986f 100644
--- a/SRC/stgsen.f
+++ b/SRC/stgsen.f
@@ -28,7 +28,7 @@
*
* STGSEN reorders the generalized real Schur decomposition of a real
* matrix pair (A, B) (in terms of an orthonormal equivalence trans-
-* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
+* formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
* appears in the leading diagonal blocks of the upper quasi-triangular
* matrix A and the upper triangular B. The leading columns of Q and
* Z form orthonormal bases of the corresponding left and right eigen-
@@ -207,7 +207,7 @@
* In other words, the selected eigenvalues are the eigenvalues of
* (A11, B11) in:
*
-* U'*(A, B)*W = (A11 A12) (B11 B12) n1
+* U**T*(A, B)*W = (A11 A12) (B11 B12) n1
* ( 0 A22),( 0 B22) n2
* n1 n2 n1 n2
*
@@ -216,10 +216,10 @@
* (deflating subspaces) of (A, B).
*
* If (A, B) has been obtained from the generalized real Schur
-* decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
+* decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
* reordered generalized real Schur form of (C, D) is given by
*
-* (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
+* (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
*
* and the first n1 columns of Q*U and Z*W span the corresponding
* deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
@@ -241,10 +241,10 @@
* where sigma-min(Zu) is the smallest singular value of the
* (2*n1*n2)-by-(2*n1*n2) matrix
*
-* Zu = [ kron(In2, A11) -kron(A22', In1) ]
-* [ kron(In2, B11) -kron(B22', In1) ].
+* Zu = [ kron(In2, A11) -kron(A22**T, In1) ]
+* [ kron(In2, B11) -kron(B22**T, In1) ].
*
-* Here, Inx is the identity matrix of size nx and A22' is the
+* Here, Inx is the identity matrix of size nx and A22**T is the
* transpose of A22. kron(X, Y) is the Kronecker product between
* the matrices X and Y.
*