summaryrefslogtreecommitdiff
path: root/SRC/sptcon.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/sptcon.f')
-rw-r--r--SRC/sptcon.f149
1 files changed, 149 insertions, 0 deletions
diff --git a/SRC/sptcon.f b/SRC/sptcon.f
new file mode 100644
index 00000000..3144bde3
--- /dev/null
+++ b/SRC/sptcon.f
@@ -0,0 +1,149 @@
+ SUBROUTINE SPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, N
+ REAL ANORM, RCOND
+* ..
+* .. Array Arguments ..
+ REAL D( * ), E( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* SPTCON computes the reciprocal of the condition number (in the
+* 1-norm) of a real symmetric positive definite tridiagonal matrix
+* using the factorization A = L*D*L**T or A = U**T*D*U computed by
+* SPTTRF.
+*
+* Norm(inv(A)) is computed by a direct method, and the reciprocal of
+* the condition number is computed as
+* RCOND = 1 / (ANORM * norm(inv(A))).
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* D (input) REAL array, dimension (N)
+* The n diagonal elements of the diagonal matrix D from the
+* factorization of A, as computed by SPTTRF.
+*
+* E (input) REAL array, dimension (N-1)
+* The (n-1) off-diagonal elements of the unit bidiagonal factor
+* U or L from the factorization of A, as computed by SPTTRF.
+*
+* ANORM (input) REAL
+* The 1-norm of the original matrix A.
+*
+* RCOND (output) REAL
+* The reciprocal of the condition number of the matrix A,
+* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
+* 1-norm of inv(A) computed in this routine.
+*
+* WORK (workspace) REAL array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Further Details
+* ===============
+*
+* The method used is described in Nicholas J. Higham, "Efficient
+* Algorithms for Computing the Condition Number of a Tridiagonal
+* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, IX
+ REAL AINVNM
+* ..
+* .. External Functions ..
+ INTEGER ISAMAX
+ EXTERNAL ISAMAX
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ IF( N.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( ANORM.LT.ZERO ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SPTCON', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ RCOND = ZERO
+ IF( N.EQ.0 ) THEN
+ RCOND = ONE
+ RETURN
+ ELSE IF( ANORM.EQ.ZERO ) THEN
+ RETURN
+ END IF
+*
+* Check that D(1:N) is positive.
+*
+ DO 10 I = 1, N
+ IF( D( I ).LE.ZERO )
+ $ RETURN
+ 10 CONTINUE
+*
+* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
+*
+* m(i,j) = abs(A(i,j)), i = j,
+* m(i,j) = -abs(A(i,j)), i .ne. j,
+*
+* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'.
+*
+* Solve M(L) * x = e.
+*
+ WORK( 1 ) = ONE
+ DO 20 I = 2, N
+ WORK( I ) = ONE + WORK( I-1 )*ABS( E( I-1 ) )
+ 20 CONTINUE
+*
+* Solve D * M(L)' * x = b.
+*
+ WORK( N ) = WORK( N ) / D( N )
+ DO 30 I = N - 1, 1, -1
+ WORK( I ) = WORK( I ) / D( I ) + WORK( I+1 )*ABS( E( I ) )
+ 30 CONTINUE
+*
+* Compute AINVNM = max(x(i)), 1<=i<=n.
+*
+ IX = ISAMAX( N, WORK, 1 )
+ AINVNM = ABS( WORK( IX ) )
+*
+* Compute the reciprocal condition number.
+*
+ IF( AINVNM.NE.ZERO )
+ $ RCOND = ( ONE / AINVNM ) / ANORM
+*
+ RETURN
+*
+* End of SPTCON
+*
+ END