summaryrefslogtreecommitdiff
path: root/SRC/sgghrd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/sgghrd.f')
-rw-r--r--SRC/sgghrd.f32
1 files changed, 14 insertions, 18 deletions
diff --git a/SRC/sgghrd.f b/SRC/sgghrd.f
index fa54857d..33142064 100644
--- a/SRC/sgghrd.f
+++ b/SRC/sgghrd.f
@@ -15,8 +15,8 @@
*> [TXT]</a>
*> \endhtmlonly
*
-* Definition
-* ==========
+* Definition:
+* ===========
*
* SUBROUTINE SGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
* LDQ, Z, LDZ, INFO )
@@ -30,11 +30,11 @@
* $ Z( LDZ, * )
* ..
*
-* Purpose
-* =======
*
-*>\details \b Purpose:
-*>\verbatim
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
*>
*> SGGHRD reduces a pair of real matrices (A,B) to generalized upper
*> Hessenberg form using orthogonal transformations, where A is a
@@ -64,11 +64,10 @@
*> If Q1 is the orthogonal matrix from the QR factorization of B in the
*> original equation A*x = lambda*B*x, then SGGHRD reduces the original
*> problem to generalized Hessenberg form.
-*>
-*>\endverbatim
+*> \endverbatim
*
-* Arguments
-* =========
+* Arguments:
+* ==========
*
*> \param[in] COMPQ
*> \verbatim
@@ -181,10 +180,9 @@
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
-*>
*
-* Authors
-* =======
+* Authors:
+* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
@@ -195,16 +193,14 @@
*
*> \ingroup realOTHERcomputational
*
-*
-* Further Details
-* ===============
-*>\details \b Further \b Details
+*> \par Further Details:
+* =====================
+*>
*> \verbatim
*>
*> This routine reduces A to Hessenberg and B to triangular form by
*> an unblocked reduction, as described in _Matrix_Computations_,
*> by Golub and Van Loan (Johns Hopkins Press.)
-*>
*> \endverbatim
*>
* =====================================================================