diff options
Diffstat (limited to 'SRC/sgges.f')
-rw-r--r-- | SRC/sgges.f | 558 |
1 files changed, 558 insertions, 0 deletions
diff --git a/SRC/sgges.f b/SRC/sgges.f new file mode 100644 index 00000000..00f16a5e --- /dev/null +++ b/SRC/sgges.f @@ -0,0 +1,558 @@ + SUBROUTINE SGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, + $ SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, + $ LDVSR, WORK, LWORK, BWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER JOBVSL, JOBVSR, SORT + INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM +* .. +* .. Array Arguments .. + LOGICAL BWORK( * ) + REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), + $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), + $ VSR( LDVSR, * ), WORK( * ) +* .. +* .. Function Arguments .. + LOGICAL SELCTG + EXTERNAL SELCTG +* .. +* +* Purpose +* ======= +* +* SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), +* the generalized eigenvalues, the generalized real Schur form (S,T), +* optionally, the left and/or right matrices of Schur vectors (VSL and +* VSR). This gives the generalized Schur factorization +* +* (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) +* +* Optionally, it also orders the eigenvalues so that a selected cluster +* of eigenvalues appears in the leading diagonal blocks of the upper +* quasi-triangular matrix S and the upper triangular matrix T.The +* leading columns of VSL and VSR then form an orthonormal basis for the +* corresponding left and right eigenspaces (deflating subspaces). +* +* (If only the generalized eigenvalues are needed, use the driver +* SGGEV instead, which is faster.) +* +* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w +* or a ratio alpha/beta = w, such that A - w*B is singular. It is +* usually represented as the pair (alpha,beta), as there is a +* reasonable interpretation for beta=0 or both being zero. +* +* A pair of matrices (S,T) is in generalized real Schur form if T is +* upper triangular with non-negative diagonal and S is block upper +* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond +* to real generalized eigenvalues, while 2-by-2 blocks of S will be +* "standardized" by making the corresponding elements of T have the +* form: +* [ a 0 ] +* [ 0 b ] +* +* and the pair of corresponding 2-by-2 blocks in S and T will have a +* complex conjugate pair of generalized eigenvalues. +* +* +* Arguments +* ========= +* +* JOBVSL (input) CHARACTER*1 +* = 'N': do not compute the left Schur vectors; +* = 'V': compute the left Schur vectors. +* +* JOBVSR (input) CHARACTER*1 +* = 'N': do not compute the right Schur vectors; +* = 'V': compute the right Schur vectors. +* +* SORT (input) CHARACTER*1 +* Specifies whether or not to order the eigenvalues on the +* diagonal of the generalized Schur form. +* = 'N': Eigenvalues are not ordered; +* = 'S': Eigenvalues are ordered (see SELCTG); +* +* SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments +* SELCTG must be declared EXTERNAL in the calling subroutine. +* If SORT = 'N', SELCTG is not referenced. +* If SORT = 'S', SELCTG is used to select eigenvalues to sort +* to the top left of the Schur form. +* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if +* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either +* one of a complex conjugate pair of eigenvalues is selected, +* then both complex eigenvalues are selected. +* +* Note that in the ill-conditioned case, a selected complex +* eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), +* BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 +* in this case. +* +* N (input) INTEGER +* The order of the matrices A, B, VSL, and VSR. N >= 0. +* +* A (input/output) REAL array, dimension (LDA, N) +* On entry, the first of the pair of matrices. +* On exit, A has been overwritten by its generalized Schur +* form S. +* +* LDA (input) INTEGER +* The leading dimension of A. LDA >= max(1,N). +* +* B (input/output) REAL array, dimension (LDB, N) +* On entry, the second of the pair of matrices. +* On exit, B has been overwritten by its generalized Schur +* form T. +* +* LDB (input) INTEGER +* The leading dimension of B. LDB >= max(1,N). +* +* SDIM (output) INTEGER +* If SORT = 'N', SDIM = 0. +* If SORT = 'S', SDIM = number of eigenvalues (after sorting) +* for which SELCTG is true. (Complex conjugate pairs for which +* SELCTG is true for either eigenvalue count as 2.) +* +* ALPHAR (output) REAL array, dimension (N) +* ALPHAI (output) REAL array, dimension (N) +* BETA (output) REAL array, dimension (N) +* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will +* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, +* and BETA(j),j=1,...,N are the diagonals of the complex Schur +* form (S,T) that would result if the 2-by-2 diagonal blocks of +* the real Schur form of (A,B) were further reduced to +* triangular form using 2-by-2 complex unitary transformations. +* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if +* positive, then the j-th and (j+1)-st eigenvalues are a +* complex conjugate pair, with ALPHAI(j+1) negative. +* +* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) +* may easily over- or underflow, and BETA(j) may even be zero. +* Thus, the user should avoid naively computing the ratio. +* However, ALPHAR and ALPHAI will be always less than and +* usually comparable with norm(A) in magnitude, and BETA always +* less than and usually comparable with norm(B). +* +* VSL (output) REAL array, dimension (LDVSL,N) +* If JOBVSL = 'V', VSL will contain the left Schur vectors. +* Not referenced if JOBVSL = 'N'. +* +* LDVSL (input) INTEGER +* The leading dimension of the matrix VSL. LDVSL >=1, and +* if JOBVSL = 'V', LDVSL >= N. +* +* VSR (output) REAL array, dimension (LDVSR,N) +* If JOBVSR = 'V', VSR will contain the right Schur vectors. +* Not referenced if JOBVSR = 'N'. +* +* LDVSR (input) INTEGER +* The leading dimension of the matrix VSR. LDVSR >= 1, and +* if JOBVSR = 'V', LDVSR >= N. +* +* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. +* If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16). +* For good performance , LWORK must generally be larger. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* BWORK (workspace) LOGICAL array, dimension (N) +* Not referenced if SORT = 'N'. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value. +* = 1,...,N: +* The QZ iteration failed. (A,B) are not in Schur +* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should +* be correct for j=INFO+1,...,N. +* > N: =N+1: other than QZ iteration failed in SHGEQZ. +* =N+2: after reordering, roundoff changed values of +* some complex eigenvalues so that leading +* eigenvalues in the Generalized Schur form no +* longer satisfy SELCTG=.TRUE. This could also +* be caused due to scaling. +* =N+3: reordering failed in STGSEN. +* +* ===================================================================== +* +* .. Parameters .. + REAL ZERO, ONE + PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) +* .. +* .. Local Scalars .. + LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL, + $ LQUERY, LST2SL, WANTST + INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, + $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK, + $ MINWRK + REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL, + $ PVSR, SAFMAX, SAFMIN, SMLNUM +* .. +* .. Local Arrays .. + INTEGER IDUM( 1 ) + REAL DIF( 2 ) +* .. +* .. External Subroutines .. + EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD, + $ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGSEN, + $ XERBLA +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + REAL SLAMCH, SLANGE + EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SQRT +* .. +* .. Executable Statements .. +* +* Decode the input arguments +* + IF( LSAME( JOBVSL, 'N' ) ) THEN + IJOBVL = 1 + ILVSL = .FALSE. + ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN + IJOBVL = 2 + ILVSL = .TRUE. + ELSE + IJOBVL = -1 + ILVSL = .FALSE. + END IF +* + IF( LSAME( JOBVSR, 'N' ) ) THEN + IJOBVR = 1 + ILVSR = .FALSE. + ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN + IJOBVR = 2 + ILVSR = .TRUE. + ELSE + IJOBVR = -1 + ILVSR = .FALSE. + END IF +* + WANTST = LSAME( SORT, 'S' ) +* +* Test the input arguments +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) + IF( IJOBVL.LE.0 ) THEN + INFO = -1 + ELSE IF( IJOBVR.LE.0 ) THEN + INFO = -2 + ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN + INFO = -3 + ELSE IF( N.LT.0 ) THEN + INFO = -5 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -9 + ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN + INFO = -15 + ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN + INFO = -17 + END IF +* +* Compute workspace +* (Note: Comments in the code beginning "Workspace:" describe the +* minimal amount of workspace needed at that point in the code, +* as well as the preferred amount for good performance. +* NB refers to the optimal block size for the immediately +* following subroutine, as returned by ILAENV.) +* + IF( INFO.EQ.0 ) THEN + IF( N.GT.0 )THEN + MINWRK = MAX( 8*N, 6*N + 16 ) + MAXWRK = MINWRK - N + + $ N*ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) + MAXWRK = MAX( MAXWRK, MINWRK - N + + $ N*ILAENV( 1, 'SORMQR', ' ', N, 1, N, -1 ) ) + IF( ILVSL ) THEN + MAXWRK = MAX( MAXWRK, MINWRK - N + + $ N*ILAENV( 1, 'SORGQR', ' ', N, 1, N, -1 ) ) + END IF + ELSE + MINWRK = 1 + MAXWRK = 1 + END IF + WORK( 1 ) = MAXWRK +* + IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) + $ INFO = -19 + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'SGGES ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) THEN + SDIM = 0 + RETURN + END IF +* +* Get machine constants +* + EPS = SLAMCH( 'P' ) + SAFMIN = SLAMCH( 'S' ) + SAFMAX = ONE / SAFMIN + CALL SLABAD( SAFMIN, SAFMAX ) + SMLNUM = SQRT( SAFMIN ) / EPS + BIGNUM = ONE / SMLNUM +* +* Scale A if max element outside range [SMLNUM,BIGNUM] +* + ANRM = SLANGE( 'M', N, N, A, LDA, WORK ) + ILASCL = .FALSE. + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN + ANRMTO = SMLNUM + ILASCL = .TRUE. + ELSE IF( ANRM.GT.BIGNUM ) THEN + ANRMTO = BIGNUM + ILASCL = .TRUE. + END IF + IF( ILASCL ) + $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) +* +* Scale B if max element outside range [SMLNUM,BIGNUM] +* + BNRM = SLANGE( 'M', N, N, B, LDB, WORK ) + ILBSCL = .FALSE. + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN + BNRMTO = SMLNUM + ILBSCL = .TRUE. + ELSE IF( BNRM.GT.BIGNUM ) THEN + BNRMTO = BIGNUM + ILBSCL = .TRUE. + END IF + IF( ILBSCL ) + $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) +* +* Permute the matrix to make it more nearly triangular +* (Workspace: need 6*N + 2*N space for storing balancing factors) +* + ILEFT = 1 + IRIGHT = N + 1 + IWRK = IRIGHT + N + CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), WORK( IWRK ), IERR ) +* +* Reduce B to triangular form (QR decomposition of B) +* (Workspace: need N, prefer N*NB) +* + IROWS = IHI + 1 - ILO + ICOLS = N + 1 - ILO + ITAU = IWRK + IWRK = ITAU + IROWS + CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), + $ WORK( IWRK ), LWORK+1-IWRK, IERR ) +* +* Apply the orthogonal transformation to matrix A +* (Workspace: need N, prefer N*NB) +* + CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, + $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), + $ LWORK+1-IWRK, IERR ) +* +* Initialize VSL +* (Workspace: need N, prefer N*NB) +* + IF( ILVSL ) THEN + CALL SLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL ) + IF( IROWS.GT.1 ) THEN + CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, + $ VSL( ILO+1, ILO ), LDVSL ) + END IF + CALL SORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL, + $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) + END IF +* +* Initialize VSR +* + IF( ILVSR ) + $ CALL SLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR ) +* +* Reduce to generalized Hessenberg form +* (Workspace: none needed) +* + CALL SGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL, + $ LDVSL, VSR, LDVSR, IERR ) +* +* Perform QZ algorithm, computing Schur vectors if desired +* (Workspace: need N) +* + IWRK = ITAU + CALL SHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, + $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, + $ WORK( IWRK ), LWORK+1-IWRK, IERR ) + IF( IERR.NE.0 ) THEN + IF( IERR.GT.0 .AND. IERR.LE.N ) THEN + INFO = IERR + ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN + INFO = IERR - N + ELSE + INFO = N + 1 + END IF + GO TO 40 + END IF +* +* Sort eigenvalues ALPHA/BETA if desired +* (Workspace: need 4*N+16 ) +* + SDIM = 0 + IF( WANTST ) THEN +* +* Undo scaling on eigenvalues before SELCTGing +* + IF( ILASCL ) THEN + CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, + $ IERR ) + CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, + $ IERR ) + END IF + IF( ILBSCL ) + $ CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) +* +* Select eigenvalues +* + DO 10 I = 1, N + BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) ) + 10 CONTINUE +* + CALL STGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR, + $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, + $ PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, + $ IERR ) + IF( IERR.EQ.1 ) + $ INFO = N + 3 +* + END IF +* +* Apply back-permutation to VSL and VSR +* (Workspace: none needed) +* + IF( ILVSL ) + $ CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), N, VSL, LDVSL, IERR ) +* + IF( ILVSR ) + $ CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), N, VSR, LDVSR, IERR ) +* +* Check if unscaling would cause over/underflow, if so, rescale +* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of +* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) +* + IF( ILASCL )THEN + DO 50 I = 1, N + IF( ALPHAI( I ).NE.ZERO ) THEN + IF( ( ALPHAR( I )/SAFMAX ).GT.( ANRMTO/ANRM ) .OR. + $ ( SAFMIN/ALPHAR( I ) ).GT.( ANRM/ANRMTO ) ) THEN + WORK( 1 ) = ABS( A( I, I )/ALPHAR( I ) ) + BETA( I ) = BETA( I )*WORK( 1 ) + ALPHAR( I ) = ALPHAR( I )*WORK( 1 ) + ALPHAI( I ) = ALPHAI( I )*WORK( 1 ) + ELSE IF( ( ALPHAI( I )/SAFMAX ).GT.( ANRMTO/ANRM ) .OR. + $ ( SAFMIN/ALPHAI( I ) ).GT.( ANRM/ANRMTO ) ) THEN + WORK( 1 ) = ABS( A( I, I+1 )/ALPHAI( I ) ) + BETA( I ) = BETA( I )*WORK( 1 ) + ALPHAR( I ) = ALPHAR( I )*WORK( 1 ) + ALPHAI( I ) = ALPHAI( I )*WORK( 1 ) + END IF + END IF + 50 CONTINUE + END IF +* + IF( ILBSCL )THEN + DO 60 I = 1, N + IF( ALPHAI( I ).NE.ZERO ) THEN + IF( ( BETA( I )/SAFMAX ).GT.( BNRMTO/BNRM ) .OR. + $ ( SAFMIN/BETA( I ) ).GT.( BNRM/BNRMTO ) ) THEN + WORK( 1 ) = ABS(B( I, I )/BETA( I )) + BETA( I ) = BETA( I )*WORK( 1 ) + ALPHAR( I ) = ALPHAR( I )*WORK( 1 ) + ALPHAI( I ) = ALPHAI( I )*WORK( 1 ) + END IF + END IF + 60 CONTINUE + END IF +* +* Undo scaling +* + IF( ILASCL ) THEN + CALL SLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR ) + CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR ) + CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR ) + END IF +* + IF( ILBSCL ) THEN + CALL SLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR ) + CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) + END IF +* + IF( WANTST ) THEN +* +* Check if reordering is correct +* + LASTSL = .TRUE. + LST2SL = .TRUE. + SDIM = 0 + IP = 0 + DO 30 I = 1, N + CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) ) + IF( ALPHAI( I ).EQ.ZERO ) THEN + IF( CURSL ) + $ SDIM = SDIM + 1 + IP = 0 + IF( CURSL .AND. .NOT.LASTSL ) + $ INFO = N + 2 + ELSE + IF( IP.EQ.1 ) THEN +* +* Last eigenvalue of conjugate pair +* + CURSL = CURSL .OR. LASTSL + LASTSL = CURSL + IF( CURSL ) + $ SDIM = SDIM + 2 + IP = -1 + IF( CURSL .AND. .NOT.LST2SL ) + $ INFO = N + 2 + ELSE +* +* First eigenvalue of conjugate pair +* + IP = 1 + END IF + END IF + LST2SL = LASTSL + LASTSL = CURSL + 30 CONTINUE +* + END IF +* + 40 CONTINUE +* + WORK( 1 ) = MAXWRK +* + RETURN +* +* End of SGGES +* + END |