summaryrefslogtreecommitdiff
path: root/SRC/sgesvd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/sgesvd.f')
-rw-r--r--SRC/sgesvd.f3402
1 files changed, 3402 insertions, 0 deletions
diff --git a/SRC/sgesvd.f b/SRC/sgesvd.f
new file mode 100644
index 00000000..6217d039
--- /dev/null
+++ b/SRC/sgesvd.f
@@ -0,0 +1,3402 @@
+ SUBROUTINE SGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
+ $ WORK, LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBU, JOBVT
+ INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), S( * ), U( LDU, * ),
+ $ VT( LDVT, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* SGESVD computes the singular value decomposition (SVD) of a real
+* M-by-N matrix A, optionally computing the left and/or right singular
+* vectors. The SVD is written
+*
+* A = U * SIGMA * transpose(V)
+*
+* where SIGMA is an M-by-N matrix which is zero except for its
+* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
+* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
+* are the singular values of A; they are real and non-negative, and
+* are returned in descending order. The first min(m,n) columns of
+* U and V are the left and right singular vectors of A.
+*
+* Note that the routine returns V**T, not V.
+*
+* Arguments
+* =========
+*
+* JOBU (input) CHARACTER*1
+* Specifies options for computing all or part of the matrix U:
+* = 'A': all M columns of U are returned in array U:
+* = 'S': the first min(m,n) columns of U (the left singular
+* vectors) are returned in the array U;
+* = 'O': the first min(m,n) columns of U (the left singular
+* vectors) are overwritten on the array A;
+* = 'N': no columns of U (no left singular vectors) are
+* computed.
+*
+* JOBVT (input) CHARACTER*1
+* Specifies options for computing all or part of the matrix
+* V**T:
+* = 'A': all N rows of V**T are returned in the array VT;
+* = 'S': the first min(m,n) rows of V**T (the right singular
+* vectors) are returned in the array VT;
+* = 'O': the first min(m,n) rows of V**T (the right singular
+* vectors) are overwritten on the array A;
+* = 'N': no rows of V**T (no right singular vectors) are
+* computed.
+*
+* JOBVT and JOBU cannot both be 'O'.
+*
+* M (input) INTEGER
+* The number of rows of the input matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the input matrix A. N >= 0.
+*
+* A (input/output) REAL array, dimension (LDA,N)
+* On entry, the M-by-N matrix A.
+* On exit,
+* if JOBU = 'O', A is overwritten with the first min(m,n)
+* columns of U (the left singular vectors,
+* stored columnwise);
+* if JOBVT = 'O', A is overwritten with the first min(m,n)
+* rows of V**T (the right singular vectors,
+* stored rowwise);
+* if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
+* are destroyed.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* S (output) REAL array, dimension (min(M,N))
+* The singular values of A, sorted so that S(i) >= S(i+1).
+*
+* U (output) REAL array, dimension (LDU,UCOL)
+* (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
+* If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
+* if JOBU = 'S', U contains the first min(m,n) columns of U
+* (the left singular vectors, stored columnwise);
+* if JOBU = 'N' or 'O', U is not referenced.
+*
+* LDU (input) INTEGER
+* The leading dimension of the array U. LDU >= 1; if
+* JOBU = 'S' or 'A', LDU >= M.
+*
+* VT (output) REAL array, dimension (LDVT,N)
+* If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
+* V**T;
+* if JOBVT = 'S', VT contains the first min(m,n) rows of
+* V**T (the right singular vectors, stored rowwise);
+* if JOBVT = 'N' or 'O', VT is not referenced.
+*
+* LDVT (input) INTEGER
+* The leading dimension of the array VT. LDVT >= 1; if
+* JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
+*
+* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
+* if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
+* superdiagonal elements of an upper bidiagonal matrix B
+* whose diagonal is in S (not necessarily sorted). B
+* satisfies A = U * B * VT, so it has the same singular values
+* as A, and singular vectors related by U and VT.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
+* For good performance, LWORK should generally be larger.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if SBDSQR did not converge, INFO specifies how many
+* superdiagonals of an intermediate bidiagonal form B
+* did not converge to zero. See the description of WORK
+* above for details.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
+ $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
+ INTEGER BDSPAC, BLK, CHUNK, I, IE, IERR, IR, ISCL,
+ $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
+ $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
+ $ NRVT, WRKBL
+ REAL ANRM, BIGNUM, EPS, SMLNUM
+* ..
+* .. Local Arrays ..
+ REAL DUM( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL SBDSQR, SGEBRD, SGELQF, SGEMM, SGEQRF, SLACPY,
+ $ SLASCL, SLASET, SORGBR, SORGLQ, SORGQR, SORMBR,
+ $ XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ REAL SLAMCH, SLANGE
+ EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ MINMN = MIN( M, N )
+ WNTUA = LSAME( JOBU, 'A' )
+ WNTUS = LSAME( JOBU, 'S' )
+ WNTUAS = WNTUA .OR. WNTUS
+ WNTUO = LSAME( JOBU, 'O' )
+ WNTUN = LSAME( JOBU, 'N' )
+ WNTVA = LSAME( JOBVT, 'A' )
+ WNTVS = LSAME( JOBVT, 'S' )
+ WNTVAS = WNTVA .OR. WNTVS
+ WNTVO = LSAME( JOBVT, 'O' )
+ WNTVN = LSAME( JOBVT, 'N' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+ IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
+ $ ( WNTVO .AND. WNTUO ) ) THEN
+ INFO = -2
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
+ INFO = -9
+ ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
+ $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
+ INFO = -11
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* NB refers to the optimal block size for the immediately
+* following subroutine, as returned by ILAENV.)
+*
+ IF( INFO.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ IF( M.GE.N .AND. MINMN.GT.0 ) THEN
+*
+* Compute space needed for SBDSQR
+*
+ MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
+ BDSPAC = 5*N
+ IF( M.GE.MNTHR ) THEN
+ IF( WNTUN ) THEN
+*
+* Path 1 (M much larger than N, JOBU='N')
+*
+ MAXWRK = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1,
+ $ -1 )
+ MAXWRK = MAX( MAXWRK, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ IF( WNTVO .OR. WNTVAS )
+ $ MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ MAXWRK = MAX( MAXWRK, BDSPAC )
+ MINWRK = MAX( 4*N, BDSPAC )
+ ELSE IF( WNTUO .AND. WNTVN ) THEN
+*
+* Path 2 (M much larger than N, JOBU='O', JOBVT='N')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUO .AND. WNTVAS ) THEN
+*
+* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
+* 'A')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUS .AND. WNTVN ) THEN
+*
+* Path 4 (M much larger than N, JOBU='S', JOBVT='N')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = N*N + WRKBL
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUS .AND. WNTVO ) THEN
+*
+* Path 5 (M much larger than N, JOBU='S', JOBVT='O')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = 2*N*N + WRKBL
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUS .AND. WNTVAS ) THEN
+*
+* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
+* 'A')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = N*N + WRKBL
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUA .AND. WNTVN ) THEN
+*
+* Path 7 (M much larger than N, JOBU='A', JOBVT='N')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
+ $ M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = N*N + WRKBL
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUA .AND. WNTVO ) THEN
+*
+* Path 8 (M much larger than N, JOBU='A', JOBVT='O')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
+ $ M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = 2*N*N + WRKBL
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ ELSE IF( WNTUA .AND. WNTVAS ) THEN
+*
+* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
+* 'A')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
+ $ M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = N*N + WRKBL
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ END IF
+ ELSE
+*
+* Path 10 (M at least N, but not much larger)
+*
+ MAXWRK = 3*N + ( M+N )*ILAENV( 1, 'SGEBRD', ' ', M, N,
+ $ -1, -1 )
+ IF( WNTUS .OR. WNTUO )
+ $ MAXWRK = MAX( MAXWRK, 3*N+N*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, N, N, -1 ) )
+ IF( WNTUA )
+ $ MAXWRK = MAX( MAXWRK, 3*N+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, N, -1 ) )
+ IF( .NOT.WNTVN )
+ $ MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
+ MAXWRK = MAX( MAXWRK, BDSPAC )
+ MINWRK = MAX( 3*N+M, BDSPAC )
+ END IF
+ ELSE IF( MINMN.GT.0 ) THEN
+*
+* Compute space needed for SBDSQR
+*
+ MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
+ BDSPAC = 5*M
+ IF( N.GE.MNTHR ) THEN
+ IF( WNTVN ) THEN
+*
+* Path 1t(N much larger than M, JOBVT='N')
+*
+ MAXWRK = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1,
+ $ -1 )
+ MAXWRK = MAX( MAXWRK, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ IF( WNTUO .OR. WNTUAS )
+ $ MAXWRK = MAX( MAXWRK, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ MAXWRK = MAX( MAXWRK, BDSPAC )
+ MINWRK = MAX( 4*M, BDSPAC )
+ ELSE IF( WNTVO .AND. WNTUN ) THEN
+*
+* Path 2t(N much larger than M, JOBU='N', JOBVT='O')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ ELSE IF( WNTVO .AND. WNTUAS ) THEN
+*
+* Path 3t(N much larger than M, JOBU='S' or 'A',
+* JOBVT='O')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ ELSE IF( WNTVS .AND. WNTUN ) THEN
+*
+* Path 4t(N much larger than M, JOBU='N', JOBVT='S')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = M*M + WRKBL
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ ELSE IF( WNTVS .AND. WNTUO ) THEN
+*
+* Path 5t(N much larger than M, JOBU='O', JOBVT='S')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = 2*M*M + WRKBL
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ MAXWRK = MAX( MAXWRK, MINWRK )
+ ELSE IF( WNTVS .AND. WNTUAS ) THEN
+*
+* Path 6t(N much larger than M, JOBU='S' or 'A',
+* JOBVT='S')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = M*M + WRKBL
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ ELSE IF( WNTVA .AND. WNTUN ) THEN
+*
+* Path 7t(N much larger than M, JOBU='N', JOBVT='A')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = M*M + WRKBL
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ ELSE IF( WNTVA .AND. WNTUO ) THEN
+*
+* Path 8t(N much larger than M, JOBU='O', JOBVT='A')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = 2*M*M + WRKBL
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ ELSE IF( WNTVA .AND. WNTUAS ) THEN
+*
+* Path 9t(N much larger than M, JOBU='S' or 'A',
+* JOBVT='A')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC )
+ MAXWRK = M*M + WRKBL
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ END IF
+ ELSE
+*
+* Path 10t(N greater than M, but not much larger)
+*
+ MAXWRK = 3*M + ( M+N )*ILAENV( 1, 'SGEBRD', ' ', M, N,
+ $ -1, -1 )
+ IF( WNTVS .OR. WNTVO )
+ $ MAXWRK = MAX( MAXWRK, 3*M+M*
+ $ ILAENV( 1, 'SORGBR', 'P', M, N, M, -1 ) )
+ IF( WNTVA )
+ $ MAXWRK = MAX( MAXWRK, 3*M+N*
+ $ ILAENV( 1, 'SORGBR', 'P', N, N, M, -1 ) )
+ IF( .NOT.WNTUN )
+ $ MAXWRK = MAX( MAXWRK, 3*M+( M-1 )*
+ $ ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
+ MAXWRK = MAX( MAXWRK, BDSPAC )
+ MINWRK = MAX( 3*M+N, BDSPAC )
+ END IF
+ END IF
+ MAXWRK = MAX( MAXWRK, MINWRK )
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGESVD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 ) THEN
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = SLAMCH( 'P' )
+ SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = SLANGE( 'M', M, N, A, LDA, DUM )
+ ISCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ ISCL = 1
+ CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ ISCL = 1
+ CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* A has at least as many rows as columns. If A has sufficiently
+* more rows than columns, first reduce using the QR
+* decomposition (if sufficient workspace available)
+*
+ IF( M.GE.MNTHR ) THEN
+*
+ IF( WNTUN ) THEN
+*
+* Path 1 (M much larger than N, JOBU='N')
+* No left singular vectors to be computed
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Zero out below R
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
+ IE = 1
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in A
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
+ $ IERR )
+ NCVT = 0
+ IF( WNTVO .OR. WNTVAS ) THEN
+*
+* If right singular vectors desired, generate P'.
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ NCVT = N
+ END IF
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of A in A if desired
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, NCVT, 0, 0, S, WORK( IE ), A, LDA,
+ $ DUM, 1, DUM, 1, WORK( IWORK ), INFO )
+*
+* If right singular vectors desired in VT, copy them there
+*
+ IF( WNTVAS )
+ $ CALL SLACPY( 'F', N, N, A, LDA, VT, LDVT )
+*
+ ELSE IF( WNTUO .AND. WNTVN ) THEN
+*
+* Path 2 (M much larger than N, JOBU='O', JOBVT='N')
+* N left singular vectors to be overwritten on A and
+* no right singular vectors to be computed
+*
+ IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
+*
+* WORK(IU) is LDA by N, WORK(IR) is LDA by N
+*
+ LDWRKU = LDA
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
+*
+* WORK(IU) is LDA by N, WORK(IR) is N by N
+*
+ LDWRKU = LDA
+ LDWRKR = N
+ ELSE
+*
+* WORK(IU) is LDWRKU by N, WORK(IR) is N by N
+*
+ LDWRKU = ( LWORK-N*N-N ) / N
+ LDWRKR = N
+ END IF
+ ITAU = IR + LDWRKR*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to WORK(IR) and zero out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
+ $ LDWRKR )
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate left vectors bidiagonalizing R
+* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IR)
+* (Workspace: need N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, 1,
+ $ WORK( IR ), LDWRKR, DUM, 1,
+ $ WORK( IWORK ), INFO )
+ IU = IE + N
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IR), storing result in WORK(IU) and copying to A
+* (Workspace: need N*N+2*N, prefer N*N+M*N+N)
+*
+ DO 10 I = 1, M, LDWRKU
+ CHUNK = MIN( M-I+1, LDWRKU )
+ CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
+ $ LDA, WORK( IR ), LDWRKR, ZERO,
+ $ WORK( IU ), LDWRKU )
+ CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
+ $ A( I, 1 ), LDA )
+ 10 CONTINUE
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ IE = 1
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize A
+* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
+*
+ CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate left vectors bidiagonalizing A
+* (Workspace: need 4*N, prefer 3*N+N*NB)
+*
+ CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, 1,
+ $ A, LDA, DUM, 1, WORK( IWORK ), INFO )
+*
+ END IF
+*
+ ELSE IF( WNTUO .AND. WNTVAS ) THEN
+*
+* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
+* N left singular vectors to be overwritten on A and
+* N right singular vectors to be computed in VT
+*
+ IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is LDA by N
+*
+ LDWRKU = LDA
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is N by N
+*
+ LDWRKU = LDA
+ LDWRKR = N
+ ELSE
+*
+* WORK(IU) is LDWRKU by N and WORK(IR) is N by N
+*
+ LDWRKU = ( LWORK-N*N-N ) / N
+ LDWRKR = N
+ END IF
+ ITAU = IR + LDWRKR*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to VT, zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
+ IF( N.GT.1 )
+ $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ VT( 2, 1 ), LDVT )
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in VT, copying result to WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
+*
+* Generate left vectors bidiagonalizing R in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right vectors bidiagonalizing R in VT
+* (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IR) and computing right
+* singular vectors of R in VT
+* (Workspace: need N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, LDVT,
+ $ WORK( IR ), LDWRKR, DUM, 1,
+ $ WORK( IWORK ), INFO )
+ IU = IE + N
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IR), storing result in WORK(IU) and copying to A
+* (Workspace: need N*N+2*N, prefer N*N+M*N+N)
+*
+ DO 20 I = 1, M, LDWRKU
+ CHUNK = MIN( M-I+1, LDWRKU )
+ CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
+ $ LDA, WORK( IR ), LDWRKR, ZERO,
+ $ WORK( IU ), LDWRKU )
+ CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
+ $ A( I, 1 ), LDA )
+ 20 CONTINUE
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to VT, zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
+ IF( N.GT.1 )
+ $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ VT( 2, 1 ), LDVT )
+*
+* Generate Q in A
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in VT
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in A by left vectors bidiagonalizing R
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
+ $ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right vectors bidiagonalizing R in VT
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in A and computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, LDVT,
+ $ A, LDA, DUM, 1, WORK( IWORK ), INFO )
+*
+ END IF
+*
+ ELSE IF( WNTUS ) THEN
+*
+ IF( WNTVN ) THEN
+*
+* Path 4 (M much larger than N, JOBU='S', JOBVT='N')
+* N left singular vectors to be computed in U and
+* no right singular vectors to be computed
+*
+ IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.WRKBL+LDA*N ) THEN
+*
+* WORK(IR) is LDA by N
+*
+ LDWRKR = LDA
+ ELSE
+*
+* WORK(IR) is N by N
+*
+ LDWRKR = N
+ END IF
+ ITAU = IR + LDWRKR*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to WORK(IR), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
+ $ LDWRKR )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ WORK( IR+1 ), LDWRKR )
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left vectors bidiagonalizing R in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IR)
+* (Workspace: need N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
+ $ 1, WORK( IR ), LDWRKR, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IR), storing result in U
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
+ $ WORK( IR ), LDWRKR, ZERO, U, LDU )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Zero out below R in A
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
+ $ LDA )
+*
+* Bidiagonalize R in A
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in U by left vectors bidiagonalizing R
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
+ $ 1, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTVO ) THEN
+*
+* Path 5 (M much larger than N, JOBU='S', JOBVT='O')
+* N left singular vectors to be computed in U and
+* N right singular vectors to be overwritten on A
+*
+ IF( LWORK.GE.2*N*N+MAX( 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is LDA by N
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*N
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is N by N
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*N
+ LDWRKR = N
+ ELSE
+*
+* WORK(IU) is N by N and WORK(IR) is N by N
+*
+ LDWRKU = N
+ IR = IU + LDWRKU*N
+ LDWRKR = N
+ END IF
+ ITAU = IR + LDWRKR*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to WORK(IU), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ WORK( IU+1 ), LDWRKU )
+*
+* Generate Q in A
+* (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IU), copying result to
+* WORK(IR)
+* (Workspace: need 2*N*N+4*N,
+* prefer 2*N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU,
+ $ WORK( IR ), LDWRKR )
+*
+* Generate left bidiagonalizing vectors in WORK(IU)
+* (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in WORK(IR)
+* (Workspace: need 2*N*N+4*N-1,
+* prefer 2*N*N+3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IU) and computing
+* right singular vectors of R in WORK(IR)
+* (Workspace: need 2*N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
+ $ WORK( IR ), LDWRKR, WORK( IU ),
+ $ LDWRKU, DUM, 1, WORK( IWORK ), INFO )
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IU), storing result in U
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
+ $ WORK( IU ), LDWRKU, ZERO, U, LDU )
+*
+* Copy right singular vectors of R to A
+* (Workspace: need N*N)
+*
+ CALL SLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
+ $ LDA )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Zero out below R in A
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
+ $ LDA )
+*
+* Bidiagonalize R in A
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in U by left vectors bidiagonalizing R
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right vectors bidiagonalizing R in A
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
+ $ LDA, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTVAS ) THEN
+*
+* Path 6 (M much larger than N, JOBU='S', JOBVT='S'
+* or 'A')
+* N left singular vectors to be computed in U and
+* N right singular vectors to be computed in VT
+*
+ IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+LDA*N ) THEN
+*
+* WORK(IU) is LDA by N
+*
+ LDWRKU = LDA
+ ELSE
+*
+* WORK(IU) is N by N
+*
+ LDWRKU = N
+ END IF
+ ITAU = IU + LDWRKU*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to WORK(IU), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ WORK( IU+1 ), LDWRKU )
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IU), copying result to VT
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
+ $ LDVT )
+*
+* Generate left bidiagonalizing vectors in WORK(IU)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in VT
+* (Workspace: need N*N+4*N-1,
+* prefer N*N+3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IU) and computing
+* right singular vectors of R in VT
+* (Workspace: need N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
+ $ LDVT, WORK( IU ), LDWRKU, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IU), storing result in U
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
+ $ WORK( IU ), LDWRKU, ZERO, U, LDU )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to VT, zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
+ IF( N.GT.1 )
+ $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ VT( 2, 1 ), LDVT )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in VT
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in U by left bidiagonalizing vectors
+* in VT
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
+ $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in VT
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
+ $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ END IF
+*
+ ELSE IF( WNTUA ) THEN
+*
+ IF( WNTVN ) THEN
+*
+* Path 7 (M much larger than N, JOBU='A', JOBVT='N')
+* M left singular vectors to be computed in U and
+* no right singular vectors to be computed
+*
+ IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.WRKBL+LDA*N ) THEN
+*
+* WORK(IR) is LDA by N
+*
+ LDWRKR = LDA
+ ELSE
+*
+* WORK(IR) is N by N
+*
+ LDWRKR = N
+ END IF
+ ITAU = IR + LDWRKR*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Copy R to WORK(IR), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
+ $ LDWRKR )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ WORK( IR+1 ), LDWRKR )
+*
+* Generate Q in U
+* (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
+*
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IR)
+* (Workspace: need N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
+ $ 1, WORK( IR ), LDWRKR, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply Q in U by left singular vectors of R in
+* WORK(IR), storing result in A
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
+ $ WORK( IR ), LDWRKR, ZERO, A, LDA )
+*
+* Copy left singular vectors of A from A to U
+*
+ CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need N+M, prefer N+M*NB)
+*
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Zero out below R in A
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
+ $ LDA )
+*
+* Bidiagonalize R in A
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in U by left bidiagonalizing vectors
+* in A
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
+ $ 1, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTVO ) THEN
+*
+* Path 8 (M much larger than N, JOBU='A', JOBVT='O')
+* M left singular vectors to be computed in U and
+* N right singular vectors to be overwritten on A
+*
+ IF( LWORK.GE.2*N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is LDA by N
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*N
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is N by N
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*N
+ LDWRKR = N
+ ELSE
+*
+* WORK(IU) is N by N and WORK(IR) is N by N
+*
+ LDWRKU = N
+ IR = IU + LDWRKU*N
+ LDWRKR = N
+ END IF
+ ITAU = IR + LDWRKR*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
+*
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to WORK(IU), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ WORK( IU+1 ), LDWRKU )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IU), copying result to
+* WORK(IR)
+* (Workspace: need 2*N*N+4*N,
+* prefer 2*N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU,
+ $ WORK( IR ), LDWRKR )
+*
+* Generate left bidiagonalizing vectors in WORK(IU)
+* (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in WORK(IR)
+* (Workspace: need 2*N*N+4*N-1,
+* prefer 2*N*N+3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IU) and computing
+* right singular vectors of R in WORK(IR)
+* (Workspace: need 2*N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
+ $ WORK( IR ), LDWRKR, WORK( IU ),
+ $ LDWRKU, DUM, 1, WORK( IWORK ), INFO )
+*
+* Multiply Q in U by left singular vectors of R in
+* WORK(IU), storing result in A
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
+ $ WORK( IU ), LDWRKU, ZERO, A, LDA )
+*
+* Copy left singular vectors of A from A to U
+*
+ CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
+*
+* Copy right singular vectors of R from WORK(IR) to A
+*
+ CALL SLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
+ $ LDA )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need N+M, prefer N+M*NB)
+*
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Zero out below R in A
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
+ $ LDA )
+*
+* Bidiagonalize R in A
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in U by left bidiagonalizing vectors
+* in A
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in A
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
+ $ LDA, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTVAS ) THEN
+*
+* Path 9 (M much larger than N, JOBU='A', JOBVT='S'
+* or 'A')
+* M left singular vectors to be computed in U and
+* N right singular vectors to be computed in VT
+*
+ IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+LDA*N ) THEN
+*
+* WORK(IU) is LDA by N
+*
+ LDWRKU = LDA
+ ELSE
+*
+* WORK(IU) is N by N
+*
+ LDWRKU = N
+ END IF
+ ITAU = IU + LDWRKU*N
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
+*
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R to WORK(IU), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ WORK( IU+1 ), LDWRKU )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IU), copying result to VT
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
+ $ LDVT )
+*
+* Generate left bidiagonalizing vectors in WORK(IU)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
+*
+ CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in VT
+* (Workspace: need N*N+4*N-1,
+* prefer N*N+3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of R in WORK(IU) and computing
+* right singular vectors of R in VT
+* (Workspace: need N*N+BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
+ $ LDVT, WORK( IU ), LDWRKU, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply Q in U by left singular vectors of R in
+* WORK(IU), storing result in A
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
+ $ WORK( IU ), LDWRKU, ZERO, A, LDA )
+*
+* Copy left singular vectors of A from A to U
+*
+ CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need N+M, prefer N+M*NB)
+*
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy R from A to VT, zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
+ IF( N.GT.1 )
+ $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
+ $ VT( 2, 1 ), LDVT )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize R in VT
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply Q in U by left bidiagonalizing vectors
+* in VT
+* (Workspace: need 3*N+M, prefer 3*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
+ $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in VT
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + N
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
+ $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ END IF
+*
+ END IF
+*
+ ELSE
+*
+* M .LT. MNTHR
+*
+* Path 10 (M at least N, but not much larger)
+* Reduce to bidiagonal form without QR decomposition
+*
+ IE = 1
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ IWORK = ITAUP + N
+*
+* Bidiagonalize A
+* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
+*
+ CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
+ $ IERR )
+ IF( WNTUAS ) THEN
+*
+* If left singular vectors desired in U, copy result to U
+* and generate left bidiagonalizing vectors in U
+* (Workspace: need 3*N+NCU, prefer 3*N+NCU*NB)
+*
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+ IF( WNTUS )
+ $ NCU = N
+ IF( WNTUA )
+ $ NCU = M
+ CALL SORGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IF( WNTVAS ) THEN
+*
+* If right singular vectors desired in VT, copy result to
+* VT and generate right bidiagonalizing vectors in VT
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
+ CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IF( WNTUO ) THEN
+*
+* If left singular vectors desired in A, generate left
+* bidiagonalizing vectors in A
+* (Workspace: need 4*N, prefer 3*N+N*NB)
+*
+ CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IF( WNTVO ) THEN
+*
+* If right singular vectors desired in A, generate right
+* bidiagonalizing vectors in A
+* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
+*
+ CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IWORK = IE + N
+ IF( WNTUAS .OR. WNTUO )
+ $ NRU = M
+ IF( WNTUN )
+ $ NRU = 0
+ IF( WNTVAS .OR. WNTVO )
+ $ NCVT = N
+ IF( WNTVN )
+ $ NCVT = 0
+ IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
+*
+* Perform bidiagonal QR iteration, if desired, computing
+* left singular vectors in U and computing right singular
+* vectors in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
+ $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
+ ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
+*
+* Perform bidiagonal QR iteration, if desired, computing
+* left singular vectors in U and computing right singular
+* vectors in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
+ $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
+ ELSE
+*
+* Perform bidiagonal QR iteration, if desired, computing
+* left singular vectors in A and computing right singular
+* vectors in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
+ $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
+ END IF
+*
+ END IF
+*
+ ELSE
+*
+* A has more columns than rows. If A has sufficiently more
+* columns than rows, first reduce using the LQ decomposition (if
+* sufficient workspace available)
+*
+ IF( N.GE.MNTHR ) THEN
+*
+ IF( WNTVN ) THEN
+*
+* Path 1t(N much larger than M, JOBVT='N')
+* No right singular vectors to be computed
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Zero out above L
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
+ IE = 1
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in A
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
+ $ IERR )
+ IF( WNTUO .OR. WNTUAS ) THEN
+*
+* If left singular vectors desired, generate Q
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IWORK = IE + M
+ NRU = 0
+ IF( WNTUO .OR. WNTUAS )
+ $ NRU = M
+*
+* Perform bidiagonal QR iteration, computing left singular
+* vectors of A in A if desired
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, 0, NRU, 0, S, WORK( IE ), DUM, 1, A,
+ $ LDA, DUM, 1, WORK( IWORK ), INFO )
+*
+* If left singular vectors desired in U, copy them there
+*
+ IF( WNTUAS )
+ $ CALL SLACPY( 'F', M, M, A, LDA, U, LDU )
+*
+ ELSE IF( WNTVO .AND. WNTUN ) THEN
+*
+* Path 2t(N much larger than M, JOBU='N', JOBVT='O')
+* M right singular vectors to be overwritten on A and
+* no left singular vectors to be computed
+*
+ IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is LDA by M
+*
+ LDWRKU = LDA
+ CHUNK = N
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is M by M
+*
+ LDWRKU = LDA
+ CHUNK = N
+ LDWRKR = M
+ ELSE
+*
+* WORK(IU) is M by CHUNK and WORK(IR) is M by M
+*
+ LDWRKU = M
+ CHUNK = ( LWORK-M*M-M ) / M
+ LDWRKR = M
+ END IF
+ ITAU = IR + LDWRKR*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to WORK(IR) and zero out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IR+LDWRKR ), LDWRKR )
+*
+* Generate Q in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IR)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate right vectors bidiagonalizing L
+* (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of L in WORK(IR)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
+ $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
+ $ WORK( IWORK ), INFO )
+ IU = IE + M
+*
+* Multiply right singular vectors of L in WORK(IR) by Q
+* in A, storing result in WORK(IU) and copying to A
+* (Workspace: need M*M+2*M, prefer M*M+M*N+M)
+*
+ DO 30 I = 1, N, CHUNK
+ BLK = MIN( N-I+1, CHUNK )
+ CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
+ $ LDWRKR, A( 1, I ), LDA, ZERO,
+ $ WORK( IU ), LDWRKU )
+ CALL SLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
+ $ A( 1, I ), LDA )
+ 30 CONTINUE
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ IE = 1
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize A
+* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
+*
+ CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate right vectors bidiagonalizing A
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of A in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'L', M, N, 0, 0, S, WORK( IE ), A, LDA,
+ $ DUM, 1, DUM, 1, WORK( IWORK ), INFO )
+*
+ END IF
+*
+ ELSE IF( WNTVO .AND. WNTUAS ) THEN
+*
+* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
+* M right singular vectors to be overwritten on A and
+* M left singular vectors to be computed in U
+*
+ IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is LDA by M
+*
+ LDWRKU = LDA
+ CHUNK = N
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
+*
+* WORK(IU) is LDA by N and WORK(IR) is M by M
+*
+ LDWRKU = LDA
+ CHUNK = N
+ LDWRKR = M
+ ELSE
+*
+* WORK(IU) is M by CHUNK and WORK(IR) is M by M
+*
+ LDWRKU = M
+ CHUNK = ( LWORK-M*M-M ) / M
+ LDWRKR = M
+ END IF
+ ITAU = IR + LDWRKR*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to U, zeroing about above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
+ $ LDU )
+*
+* Generate Q in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in U, copying result to WORK(IR)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
+*
+* Generate right vectors bidiagonalizing L in WORK(IR)
+* (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left vectors bidiagonalizing L in U
+* (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of L in U, and computing right
+* singular vectors of L in WORK(IR)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
+ $ WORK( IR ), LDWRKR, U, LDU, DUM, 1,
+ $ WORK( IWORK ), INFO )
+ IU = IE + M
+*
+* Multiply right singular vectors of L in WORK(IR) by Q
+* in A, storing result in WORK(IU) and copying to A
+* (Workspace: need M*M+2*M, prefer M*M+M*N+M))
+*
+ DO 40 I = 1, N, CHUNK
+ BLK = MIN( N-I+1, CHUNK )
+ CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
+ $ LDWRKR, A( 1, I ), LDA, ZERO,
+ $ WORK( IU ), LDWRKU )
+ CALL SLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
+ $ A( 1, I ), LDA )
+ 40 CONTINUE
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to U, zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
+ $ LDU )
+*
+* Generate Q in A
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in U
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right vectors bidiagonalizing L by Q in A
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
+ $ WORK( ITAUP ), A, LDA, WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left vectors bidiagonalizing L in U
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), A, LDA,
+ $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
+*
+ END IF
+*
+ ELSE IF( WNTVS ) THEN
+*
+ IF( WNTUN ) THEN
+*
+* Path 4t(N much larger than M, JOBU='N', JOBVT='S')
+* M right singular vectors to be computed in VT and
+* no left singular vectors to be computed
+*
+ IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.WRKBL+LDA*M ) THEN
+*
+* WORK(IR) is LDA by M
+*
+ LDWRKR = LDA
+ ELSE
+*
+* WORK(IR) is M by M
+*
+ LDWRKR = M
+ END IF
+ ITAU = IR + LDWRKR*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to WORK(IR), zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ),
+ $ LDWRKR )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IR+LDWRKR ), LDWRKR )
+*
+* Generate Q in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IR)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right vectors bidiagonalizing L in
+* WORK(IR)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of L in WORK(IR)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
+ $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply right singular vectors of L in WORK(IR) by
+* Q in A, storing result in VT
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
+ $ LDWRKR, A, LDA, ZERO, VT, LDVT )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy result to VT
+*
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Zero out above L in A
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
+ $ LDA )
+*
+* Bidiagonalize L in A
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right vectors bidiagonalizing L by Q in VT
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT,
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
+ $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTUO ) THEN
+*
+* Path 5t(N much larger than M, JOBU='O', JOBVT='S')
+* M right singular vectors to be computed in VT and
+* M left singular vectors to be overwritten on A
+*
+ IF( LWORK.GE.2*M*M+MAX( 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
+*
+* WORK(IU) is LDA by M and WORK(IR) is LDA by M
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*M
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
+*
+* WORK(IU) is LDA by M and WORK(IR) is M by M
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*M
+ LDWRKR = M
+ ELSE
+*
+* WORK(IU) is M by M and WORK(IR) is M by M
+*
+ LDWRKU = M
+ IR = IU + LDWRKU*M
+ LDWRKR = M
+ END IF
+ ITAU = IR + LDWRKR*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to WORK(IU), zeroing out below it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IU+LDWRKU ), LDWRKU )
+*
+* Generate Q in A
+* (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IU), copying result to
+* WORK(IR)
+* (Workspace: need 2*M*M+4*M,
+* prefer 2*M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU,
+ $ WORK( IR ), LDWRKR )
+*
+* Generate right bidiagonalizing vectors in WORK(IU)
+* (Workspace: need 2*M*M+4*M-1,
+* prefer 2*M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in WORK(IR)
+* (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of L in WORK(IR) and computing
+* right singular vectors of L in WORK(IU)
+* (Workspace: need 2*M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
+ $ WORK( IU ), LDWRKU, WORK( IR ),
+ $ LDWRKR, DUM, 1, WORK( IWORK ), INFO )
+*
+* Multiply right singular vectors of L in WORK(IU) by
+* Q in A, storing result in VT
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
+ $ LDWRKU, A, LDA, ZERO, VT, LDVT )
+*
+* Copy left singular vectors of L to A
+* (Workspace: need M*M)
+*
+ CALL SLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
+ $ LDA )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Zero out above L in A
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
+ $ LDA )
+*
+* Bidiagonalize L in A
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right vectors bidiagonalizing L by Q in VT
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT,
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors of L in A
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, compute left
+* singular vectors of A in A and compute right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
+ $ LDVT, A, LDA, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTUAS ) THEN
+*
+* Path 6t(N much larger than M, JOBU='S' or 'A',
+* JOBVT='S')
+* M right singular vectors to be computed in VT and
+* M left singular vectors to be computed in U
+*
+ IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+LDA*M ) THEN
+*
+* WORK(IU) is LDA by N
+*
+ LDWRKU = LDA
+ ELSE
+*
+* WORK(IU) is LDA by M
+*
+ LDWRKU = M
+ END IF
+ ITAU = IU + LDWRKU*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to WORK(IU), zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IU+LDWRKU ), LDWRKU )
+*
+* Generate Q in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IU), copying result to U
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
+ $ LDU )
+*
+* Generate right bidiagonalizing vectors in WORK(IU)
+* (Workspace: need M*M+4*M-1,
+* prefer M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in U
+* (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of L in U and computing right
+* singular vectors of L in WORK(IU)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
+ $ WORK( IU ), LDWRKU, U, LDU, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply right singular vectors of L in WORK(IU) by
+* Q in A, storing result in VT
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
+ $ LDWRKU, A, LDA, ZERO, VT, LDVT )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to U, zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
+ $ LDU )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in U
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right bidiagonalizing vectors in U by Q
+* in VT
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
+ $ WORK( ITAUP ), VT, LDVT,
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in U
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
+ $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ END IF
+*
+ ELSE IF( WNTVA ) THEN
+*
+ IF( WNTUN ) THEN
+*
+* Path 7t(N much larger than M, JOBU='N', JOBVT='A')
+* N right singular vectors to be computed in VT and
+* no left singular vectors to be computed
+*
+ IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IR = 1
+ IF( LWORK.GE.WRKBL+LDA*M ) THEN
+*
+* WORK(IR) is LDA by M
+*
+ LDWRKR = LDA
+ ELSE
+*
+* WORK(IR) is M by M
+*
+ LDWRKR = M
+ END IF
+ ITAU = IR + LDWRKR*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Copy L to WORK(IR), zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ),
+ $ LDWRKR )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IR+LDWRKR ), LDWRKR )
+*
+* Generate Q in VT
+* (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IR)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate right bidiagonalizing vectors in WORK(IR)
+* (Workspace: need M*M+4*M-1,
+* prefer M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of L in WORK(IR)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
+ $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply right singular vectors of L in WORK(IR) by
+* Q in VT, storing result in A
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
+ $ LDWRKR, VT, LDVT, ZERO, A, LDA )
+*
+* Copy right singular vectors of A from A to VT
+*
+ CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need M+N, prefer M+N*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Zero out above L in A
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
+ $ LDA )
+*
+* Bidiagonalize L in A
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right bidiagonalizing vectors in A by Q
+* in VT
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT,
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
+ $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTUO ) THEN
+*
+* Path 8t(N much larger than M, JOBU='O', JOBVT='A')
+* N right singular vectors to be computed in VT and
+* M left singular vectors to be overwritten on A
+*
+ IF( LWORK.GE.2*M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
+*
+* WORK(IU) is LDA by M and WORK(IR) is LDA by M
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*M
+ LDWRKR = LDA
+ ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
+*
+* WORK(IU) is LDA by M and WORK(IR) is M by M
+*
+ LDWRKU = LDA
+ IR = IU + LDWRKU*M
+ LDWRKR = M
+ ELSE
+*
+* WORK(IU) is M by M and WORK(IR) is M by M
+*
+ LDWRKU = M
+ IR = IU + LDWRKU*M
+ LDWRKR = M
+ END IF
+ ITAU = IR + LDWRKR*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to WORK(IU), zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IU+LDWRKU ), LDWRKU )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IU), copying result to
+* WORK(IR)
+* (Workspace: need 2*M*M+4*M,
+* prefer 2*M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU,
+ $ WORK( IR ), LDWRKR )
+*
+* Generate right bidiagonalizing vectors in WORK(IU)
+* (Workspace: need 2*M*M+4*M-1,
+* prefer 2*M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in WORK(IR)
+* (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of L in WORK(IR) and computing
+* right singular vectors of L in WORK(IU)
+* (Workspace: need 2*M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
+ $ WORK( IU ), LDWRKU, WORK( IR ),
+ $ LDWRKR, DUM, 1, WORK( IWORK ), INFO )
+*
+* Multiply right singular vectors of L in WORK(IU) by
+* Q in VT, storing result in A
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
+ $ LDWRKU, VT, LDVT, ZERO, A, LDA )
+*
+* Copy right singular vectors of A from A to VT
+*
+ CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
+*
+* Copy left singular vectors of A from WORK(IR) to A
+*
+ CALL SLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
+ $ LDA )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need M+N, prefer M+N*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Zero out above L in A
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
+ $ LDA )
+*
+* Bidiagonalize L in A
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right bidiagonalizing vectors in A by Q
+* in VT
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT,
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in A
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in A and computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
+ $ LDVT, A, LDA, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ ELSE IF( WNTUAS ) THEN
+*
+* Path 9t(N much larger than M, JOBU='S' or 'A',
+* JOBVT='A')
+* N right singular vectors to be computed in VT and
+* M left singular vectors to be computed in U
+*
+ IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
+*
+* Sufficient workspace for a fast algorithm
+*
+ IU = 1
+ IF( LWORK.GE.WRKBL+LDA*M ) THEN
+*
+* WORK(IU) is LDA by M
+*
+ LDWRKU = LDA
+ ELSE
+*
+* WORK(IU) is M by M
+*
+ LDWRKU = M
+ END IF
+ ITAU = IU + LDWRKU*M
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to WORK(IU), zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
+ $ LDWRKU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IU+LDWRKU ), LDWRKU )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IU), copying result to U
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
+ $ WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
+ $ LDU )
+*
+* Generate right bidiagonalizing vectors in WORK(IU)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
+ $ WORK( ITAUP ), WORK( IWORK ),
+ $ LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in U
+* (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of L in U and computing right
+* singular vectors of L in WORK(IU)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
+ $ WORK( IU ), LDWRKU, U, LDU, DUM, 1,
+ $ WORK( IWORK ), INFO )
+*
+* Multiply right singular vectors of L in WORK(IU) by
+* Q in VT, storing result in A
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
+ $ LDWRKU, VT, LDVT, ZERO, A, LDA )
+*
+* Copy right singular vectors of A from A to VT
+*
+ CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
+*
+ ELSE
+*
+* Insufficient workspace for a fast algorithm
+*
+ ITAU = 1
+ IWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need M+N, prefer M+N*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Copy L to U, zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
+ $ LDU )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize L in U
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Multiply right bidiagonalizing vectors in U by Q
+* in VT
+* (Workspace: need 3*M+N, prefer 3*M+N*NB)
+*
+ CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
+ $ WORK( ITAUP ), VT, LDVT,
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+*
+* Generate left bidiagonalizing vectors in U
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ IWORK = IE + M
+*
+* Perform bidiagonal QR iteration, computing left
+* singular vectors of A in U and computing right
+* singular vectors of A in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
+ $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
+ $ INFO )
+*
+ END IF
+*
+ END IF
+*
+ END IF
+*
+ ELSE
+*
+* N .LT. MNTHR
+*
+* Path 10t(N greater than M, but not much larger)
+* Reduce to bidiagonal form without LQ decomposition
+*
+ IE = 1
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ IWORK = ITAUP + M
+*
+* Bidiagonalize A
+* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
+*
+ CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
+ $ IERR )
+ IF( WNTUAS ) THEN
+*
+* If left singular vectors desired in U, copy result to U
+* and generate left bidiagonalizing vectors in U
+* (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
+*
+ CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
+ CALL SORGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IF( WNTVAS ) THEN
+*
+* If right singular vectors desired in VT, copy result to
+* VT and generate right bidiagonalizing vectors in VT
+* (Workspace: need 3*M+NRVT, prefer 3*M+NRVT*NB)
+*
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+ IF( WNTVA )
+ $ NRVT = N
+ IF( WNTVS )
+ $ NRVT = M
+ CALL SORGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IF( WNTUO ) THEN
+*
+* If left singular vectors desired in A, generate left
+* bidiagonalizing vectors in A
+* (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
+*
+ CALL SORGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IF( WNTVO ) THEN
+*
+* If right singular vectors desired in A, generate right
+* bidiagonalizing vectors in A
+* (Workspace: need 4*M, prefer 3*M+M*NB)
+*
+ CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
+ $ WORK( IWORK ), LWORK-IWORK+1, IERR )
+ END IF
+ IWORK = IE + M
+ IF( WNTUAS .OR. WNTUO )
+ $ NRU = M
+ IF( WNTUN )
+ $ NRU = 0
+ IF( WNTVAS .OR. WNTVO )
+ $ NCVT = N
+ IF( WNTVN )
+ $ NCVT = 0
+ IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
+*
+* Perform bidiagonal QR iteration, if desired, computing
+* left singular vectors in U and computing right singular
+* vectors in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
+ $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
+ ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
+*
+* Perform bidiagonal QR iteration, if desired, computing
+* left singular vectors in U and computing right singular
+* vectors in A
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
+ $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
+ ELSE
+*
+* Perform bidiagonal QR iteration, if desired, computing
+* left singular vectors in A and computing right singular
+* vectors in VT
+* (Workspace: need BDSPAC)
+*
+ CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
+ $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
+ END IF
+*
+ END IF
+*
+ END IF
+*
+* If SBDSQR failed to converge, copy unconverged superdiagonals
+* to WORK( 2:MINMN )
+*
+ IF( INFO.NE.0 ) THEN
+ IF( IE.GT.2 ) THEN
+ DO 50 I = 1, MINMN - 1
+ WORK( I+1 ) = WORK( I+IE-1 )
+ 50 CONTINUE
+ END IF
+ IF( IE.LT.2 ) THEN
+ DO 60 I = MINMN - 1, 1, -1
+ WORK( I+1 ) = WORK( I+IE-1 )
+ 60 CONTINUE
+ END IF
+ END IF
+*
+* Undo scaling if necessary
+*
+ IF( ISCL.EQ.1 ) THEN
+ IF( ANRM.GT.BIGNUM )
+ $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
+ $ IERR )
+ IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
+ $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1, WORK( 2 ),
+ $ MINMN, IERR )
+ IF( ANRM.LT.SMLNUM )
+ $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
+ $ IERR )
+ IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
+ $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1, WORK( 2 ),
+ $ MINMN, IERR )
+ END IF
+*
+* Return optimal workspace in WORK(1)
+*
+ WORK( 1 ) = MAXWRK
+*
+ RETURN
+*
+* End of SGESVD
+*
+ END