diff options
Diffstat (limited to 'SRC/dstedc.f')
-rw-r--r-- | SRC/dstedc.f | 407 |
1 files changed, 407 insertions, 0 deletions
diff --git a/SRC/dstedc.f b/SRC/dstedc.f new file mode 100644 index 00000000..ad60e029 --- /dev/null +++ b/SRC/dstedc.f @@ -0,0 +1,407 @@ + SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, + $ LIWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER COMPZ + INTEGER INFO, LDZ, LIWORK, LWORK, N +* .. +* .. Array Arguments .. + INTEGER IWORK( * ) + DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) +* .. +* +* Purpose +* ======= +* +* DSTEDC computes all eigenvalues and, optionally, eigenvectors of a +* symmetric tridiagonal matrix using the divide and conquer method. +* The eigenvectors of a full or band real symmetric matrix can also be +* found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this +* matrix to tridiagonal form. +* +* This code makes very mild assumptions about floating point +* arithmetic. It will work on machines with a guard digit in +* add/subtract, or on those binary machines without guard digits +* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. +* It could conceivably fail on hexadecimal or decimal machines +* without guard digits, but we know of none. See DLAED3 for details. +* +* Arguments +* ========= +* +* COMPZ (input) CHARACTER*1 +* = 'N': Compute eigenvalues only. +* = 'I': Compute eigenvectors of tridiagonal matrix also. +* = 'V': Compute eigenvectors of original dense symmetric +* matrix also. On entry, Z contains the orthogonal +* matrix used to reduce the original matrix to +* tridiagonal form. +* +* N (input) INTEGER +* The dimension of the symmetric tridiagonal matrix. N >= 0. +* +* D (input/output) DOUBLE PRECISION array, dimension (N) +* On entry, the diagonal elements of the tridiagonal matrix. +* On exit, if INFO = 0, the eigenvalues in ascending order. +* +* E (input/output) DOUBLE PRECISION array, dimension (N-1) +* On entry, the subdiagonal elements of the tridiagonal matrix. +* On exit, E has been destroyed. +* +* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) +* On entry, if COMPZ = 'V', then Z contains the orthogonal +* matrix used in the reduction to tridiagonal form. +* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the +* orthonormal eigenvectors of the original symmetric matrix, +* and if COMPZ = 'I', Z contains the orthonormal eigenvectors +* of the symmetric tridiagonal matrix. +* If COMPZ = 'N', then Z is not referenced. +* +* LDZ (input) INTEGER +* The leading dimension of the array Z. LDZ >= 1. +* If eigenvectors are desired, then LDZ >= max(1,N). +* +* WORK (workspace/output) DOUBLE PRECISION array, +* dimension (LWORK) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. +* If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. +* If COMPZ = 'V' and N > 1 then LWORK must be at least +* ( 1 + 3*N + 2*N*lg N + 3*N**2 ), +* where lg( N ) = smallest integer k such +* that 2**k >= N. +* If COMPZ = 'I' and N > 1 then LWORK must be at least +* ( 1 + 4*N + N**2 ). +* Note that for COMPZ = 'I' or 'V', then if N is less than or +* equal to the minimum divide size, usually 25, then LWORK need +* only be max(1,2*(N-1)). +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) +* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. +* +* LIWORK (input) INTEGER +* The dimension of the array IWORK. +* If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. +* If COMPZ = 'V' and N > 1 then LIWORK must be at least +* ( 6 + 6*N + 5*N*lg N ). +* If COMPZ = 'I' and N > 1 then LIWORK must be at least +* ( 3 + 5*N ). +* Note that for COMPZ = 'I' or 'V', then if N is less than or +* equal to the minimum divide size, usually 25, then LIWORK +* need only be 1. +* +* If LIWORK = -1, then a workspace query is assumed; the +* routine only calculates the optimal size of the IWORK array, +* returns this value as the first entry of the IWORK array, and +* no error message related to LIWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* > 0: The algorithm failed to compute an eigenvalue while +* working on the submatrix lying in rows and columns +* INFO/(N+1) through mod(INFO,N+1). +* +* Further Details +* =============== +* +* Based on contributions by +* Jeff Rutter, Computer Science Division, University of California +* at Berkeley, USA +* Modified by Francoise Tisseur, University of Tennessee. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, + $ LWMIN, M, SMLSIZ, START, STOREZ, STRTRW + DOUBLE PRECISION EPS, ORGNRM, P, TINY +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANST + EXTERNAL LSAME, ILAENV, DLAMCH, DLANST +* .. +* .. External Subroutines .. + EXTERNAL DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT, + $ DSTEQR, DSTERF, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, INT, LOG, MAX, MOD, SQRT +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) +* + IF( LSAME( COMPZ, 'N' ) ) THEN + ICOMPZ = 0 + ELSE IF( LSAME( COMPZ, 'V' ) ) THEN + ICOMPZ = 1 + ELSE IF( LSAME( COMPZ, 'I' ) ) THEN + ICOMPZ = 2 + ELSE + ICOMPZ = -1 + END IF + IF( ICOMPZ.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( ( LDZ.LT.1 ) .OR. + $ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN + INFO = -6 + END IF +* + IF( INFO.EQ.0 ) THEN +* +* Compute the workspace requirements +* + SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 ) + IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN + LIWMIN = 1 + LWMIN = 1 + ELSE IF( N.LE.SMLSIZ ) THEN + LIWMIN = 1 + LWMIN = 2*( N - 1 ) + ELSE + LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) ) + IF( 2**LGN.LT.N ) + $ LGN = LGN + 1 + IF( 2**LGN.LT.N ) + $ LGN = LGN + 1 + IF( ICOMPZ.EQ.1 ) THEN + LWMIN = 1 + 3*N + 2*N*LGN + 3*N**2 + LIWMIN = 6 + 6*N + 5*N*LGN + ELSE IF( ICOMPZ.EQ.2 ) THEN + LWMIN = 1 + 4*N + N**2 + LIWMIN = 3 + 5*N + END IF + END IF + WORK( 1 ) = LWMIN + IWORK( 1 ) = LIWMIN +* + IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN + INFO = -8 + ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN + INFO = -10 + END IF + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DSTEDC', -INFO ) + RETURN + ELSE IF (LQUERY) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN + IF( N.EQ.1 ) THEN + IF( ICOMPZ.NE.0 ) + $ Z( 1, 1 ) = ONE + RETURN + END IF +* +* If the following conditional clause is removed, then the routine +* will use the Divide and Conquer routine to compute only the +* eigenvalues, which requires (3N + 3N**2) real workspace and +* (2 + 5N + 2N lg(N)) integer workspace. +* Since on many architectures DSTERF is much faster than any other +* algorithm for finding eigenvalues only, it is used here +* as the default. If the conditional clause is removed, then +* information on the size of workspace needs to be changed. +* +* If COMPZ = 'N', use DSTERF to compute the eigenvalues. +* + IF( ICOMPZ.EQ.0 ) THEN + CALL DSTERF( N, D, E, INFO ) + GO TO 50 + END IF +* +* If N is smaller than the minimum divide size (SMLSIZ+1), then +* solve the problem with another solver. +* + IF( N.LE.SMLSIZ ) THEN +* + CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) +* + ELSE +* +* If COMPZ = 'V', the Z matrix must be stored elsewhere for later +* use. +* + IF( ICOMPZ.EQ.1 ) THEN + STOREZ = 1 + N*N + ELSE + STOREZ = 1 + END IF +* + IF( ICOMPZ.EQ.2 ) THEN + CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) + END IF +* +* Scale. +* + ORGNRM = DLANST( 'M', N, D, E ) + IF( ORGNRM.EQ.ZERO ) + $ GO TO 50 +* + EPS = DLAMCH( 'Epsilon' ) +* + START = 1 +* +* while ( START <= N ) +* + 10 CONTINUE + IF( START.LE.N ) THEN +* +* Let FINISH be the position of the next subdiagonal entry +* such that E( FINISH ) <= TINY or FINISH = N if no such +* subdiagonal exists. The matrix identified by the elements +* between START and FINISH constitutes an independent +* sub-problem. +* + FINISH = START + 20 CONTINUE + IF( FINISH.LT.N ) THEN + TINY = EPS*SQRT( ABS( D( FINISH ) ) )* + $ SQRT( ABS( D( FINISH+1 ) ) ) + IF( ABS( E( FINISH ) ).GT.TINY ) THEN + FINISH = FINISH + 1 + GO TO 20 + END IF + END IF +* +* (Sub) Problem determined. Compute its size and solve it. +* + M = FINISH - START + 1 + IF( M.EQ.1 ) THEN + START = FINISH + 1 + GO TO 10 + END IF + IF( M.GT.SMLSIZ ) THEN +* +* Scale. +* + ORGNRM = DLANST( 'M', M, D( START ), E( START ) ) + CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M, + $ INFO ) + CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ), + $ M-1, INFO ) +* + IF( ICOMPZ.EQ.1 ) THEN + STRTRW = 1 + ELSE + STRTRW = START + END IF + CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ), + $ Z( STRTRW, START ), LDZ, WORK( 1 ), N, + $ WORK( STOREZ ), IWORK, INFO ) + IF( INFO.NE.0 ) THEN + INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) + + $ MOD( INFO, ( M+1 ) ) + START - 1 + GO TO 50 + END IF +* +* Scale back. +* + CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M, + $ INFO ) +* + ELSE + IF( ICOMPZ.EQ.1 ) THEN +* +* Since QR won't update a Z matrix which is larger than +* the length of D, we must solve the sub-problem in a +* workspace and then multiply back into Z. +* + CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M, + $ WORK( M*M+1 ), INFO ) + CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ, + $ WORK( STOREZ ), N ) + CALL DGEMM( 'N', 'N', N, M, M, ONE, + $ WORK( STOREZ ), N, WORK, M, ZERO, + $ Z( 1, START ), LDZ ) + ELSE IF( ICOMPZ.EQ.2 ) THEN + CALL DSTEQR( 'I', M, D( START ), E( START ), + $ Z( START, START ), LDZ, WORK, INFO ) + ELSE + CALL DSTERF( M, D( START ), E( START ), INFO ) + END IF + IF( INFO.NE.0 ) THEN + INFO = START*( N+1 ) + FINISH + GO TO 50 + END IF + END IF +* + START = FINISH + 1 + GO TO 10 + END IF +* +* endwhile +* +* If the problem split any number of times, then the eigenvalues +* will not be properly ordered. Here we permute the eigenvalues +* (and the associated eigenvectors) into ascending order. +* + IF( M.NE.N ) THEN + IF( ICOMPZ.EQ.0 ) THEN +* +* Use Quick Sort +* + CALL DLASRT( 'I', N, D, INFO ) +* + ELSE +* +* Use Selection Sort to minimize swaps of eigenvectors +* + DO 40 II = 2, N + I = II - 1 + K = I + P = D( I ) + DO 30 J = II, N + IF( D( J ).LT.P ) THEN + K = J + P = D( J ) + END IF + 30 CONTINUE + IF( K.NE.I ) THEN + D( K ) = D( I ) + D( I ) = P + CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 ) + END IF + 40 CONTINUE + END IF + END IF + END IF +* + 50 CONTINUE + WORK( 1 ) = LWMIN + IWORK( 1 ) = LIWMIN +* + RETURN +* +* End of DSTEDC +* + END |