summaryrefslogtreecommitdiff
path: root/SRC/dspgvd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/dspgvd.f')
-rw-r--r--SRC/dspgvd.f277
1 files changed, 277 insertions, 0 deletions
diff --git a/SRC/dspgvd.f b/SRC/dspgvd.f
new file mode 100644
index 00000000..23850cf7
--- /dev/null
+++ b/SRC/dspgvd.f
@@ -0,0 +1,277 @@
+ SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
+ $ LWORK, IWORK, LIWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
+ $ Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
+* of a real generalized symmetric-definite eigenproblem, of the form
+* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
+* B are assumed to be symmetric, stored in packed format, and B is also
+* positive definite.
+* If eigenvectors are desired, it uses a divide and conquer algorithm.
+*
+* The divide and conquer algorithm makes very mild assumptions about
+* floating point arithmetic. It will work on machines with a guard
+* digit in add/subtract, or on those binary machines without guard
+* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+* Cray-2. It could conceivably fail on hexadecimal or decimal machines
+* without guard digits, but we know of none.
+*
+* Arguments
+* =========
+*
+* ITYPE (input) INTEGER
+* Specifies the problem type to be solved:
+* = 1: A*x = (lambda)*B*x
+* = 2: A*B*x = (lambda)*x
+* = 3: B*A*x = (lambda)*x
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangles of A and B are stored;
+* = 'L': Lower triangles of A and B are stored.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
+* On entry, the upper or lower triangle of the symmetric matrix
+* A, packed columnwise in a linear array. The j-th column of A
+* is stored in the array AP as follows:
+* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
+*
+* On exit, the contents of AP are destroyed.
+*
+* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
+* On entry, the upper or lower triangle of the symmetric matrix
+* B, packed columnwise in a linear array. The j-th column of B
+* is stored in the array BP as follows:
+* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
+* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
+*
+* On exit, the triangular factor U or L from the Cholesky
+* factorization B = U**T*U or B = L*L**T, in the same storage
+* format as B.
+*
+* W (output) DOUBLE PRECISION array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
+* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
+* eigenvectors. The eigenvectors are normalized as follows:
+* if ITYPE = 1 or 2, Z**T*B*Z = I;
+* if ITYPE = 3, Z**T*inv(B)*Z = I.
+* If JOBZ = 'N', then Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= max(1,N).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the required LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* If N <= 1, LWORK >= 1.
+* If JOBZ = 'N' and N > 1, LWORK >= 2*N.
+* If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the required sizes of the WORK and IWORK
+* arrays, returns these values as the first entries of the WORK
+* and IWORK arrays, and no error message related to LWORK or
+* LIWORK is issued by XERBLA.
+*
+* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
+* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
+*
+* LIWORK (input) INTEGER
+* The dimension of the array IWORK.
+* If JOBZ = 'N' or N <= 1, LIWORK >= 1.
+* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
+*
+* If LIWORK = -1, then a workspace query is assumed; the
+* routine only calculates the required sizes of the WORK and
+* IWORK arrays, returns these values as the first entries of
+* the WORK and IWORK arrays, and no error message related to
+* LWORK or LIWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: DPPTRF or DSPEVD returned an error code:
+* <= N: if INFO = i, DSPEVD failed to converge;
+* i off-diagonal elements of an intermediate
+* tridiagonal form did not converge to zero;
+* > N: if INFO = N + i, for 1 <= i <= N, then the leading
+* minor of order i of B is not positive definite.
+* The factorization of B could not be completed and
+* no eigenvalues or eigenvectors were computed.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION TWO
+ PARAMETER ( TWO = 2.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, UPPER, WANTZ
+ CHARACTER TRANS
+ INTEGER J, LIWMIN, LWMIN, NEIG
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ UPPER = LSAME( UPLO, 'U' )
+ LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -9
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.LE.1 ) THEN
+ LIWMIN = 1
+ LWMIN = 1
+ ELSE
+ IF( WANTZ ) THEN
+ LIWMIN = 3 + 5*N
+ LWMIN = 1 + 6*N + 2*N**2
+ ELSE
+ LIWMIN = 1
+ LWMIN = 2*N
+ END IF
+ END IF
+ WORK( 1 ) = LWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DSPGVD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Form a Cholesky factorization of BP.
+*
+ CALL DPPTRF( UPLO, N, BP, INFO )
+ IF( INFO.NE.0 ) THEN
+ INFO = N + INFO
+ RETURN
+ END IF
+*
+* Transform problem to standard eigenvalue problem and solve.
+*
+ CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
+ CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
+ $ LIWORK, INFO )
+ LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
+ LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
+*
+ IF( WANTZ ) THEN
+*
+* Backtransform eigenvectors to the original problem.
+*
+ NEIG = N
+ IF( INFO.GT.0 )
+ $ NEIG = INFO - 1
+ IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
+*
+* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
+* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
+*
+ IF( UPPER ) THEN
+ TRANS = 'N'
+ ELSE
+ TRANS = 'T'
+ END IF
+*
+ DO 10 J = 1, NEIG
+ CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
+ $ 1 )
+ 10 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.3 ) THEN
+*
+* For B*A*x=(lambda)*x;
+* backtransform eigenvectors: x = L*y or U'*y
+*
+ IF( UPPER ) THEN
+ TRANS = 'T'
+ ELSE
+ TRANS = 'N'
+ END IF
+*
+ DO 20 J = 1, NEIG
+ CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
+ $ 1 )
+ 20 CONTINUE
+ END IF
+ END IF
+*
+ WORK( 1 ) = LWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ RETURN
+*
+* End of DSPGVD
+*
+ END