diff options
Diffstat (limited to 'SRC/dlangt.f')
-rw-r--r-- | SRC/dlangt.f | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/SRC/dlangt.f b/SRC/dlangt.f new file mode 100644 index 00000000..d02ed572 --- /dev/null +++ b/SRC/dlangt.f @@ -0,0 +1,141 @@ + DOUBLE PRECISION FUNCTION DLANGT( NORM, N, DL, D, DU ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER NORM + INTEGER N +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), DL( * ), DU( * ) +* .. +* +* Purpose +* ======= +* +* DLANGT returns the value of the one norm, or the Frobenius norm, or +* the infinity norm, or the element of largest absolute value of a +* real tridiagonal matrix A. +* +* Description +* =========== +* +* DLANGT returns the value +* +* DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' +* ( +* ( norm1(A), NORM = '1', 'O' or 'o' +* ( +* ( normI(A), NORM = 'I' or 'i' +* ( +* ( normF(A), NORM = 'F', 'f', 'E' or 'e' +* +* where norm1 denotes the one norm of a matrix (maximum column sum), +* normI denotes the infinity norm of a matrix (maximum row sum) and +* normF denotes the Frobenius norm of a matrix (square root of sum of +* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. +* +* Arguments +* ========= +* +* NORM (input) CHARACTER*1 +* Specifies the value to be returned in DLANGT as described +* above. +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. When N = 0, DLANGT is +* set to zero. +* +* DL (input) DOUBLE PRECISION array, dimension (N-1) +* The (n-1) sub-diagonal elements of A. +* +* D (input) DOUBLE PRECISION array, dimension (N) +* The diagonal elements of A. +* +* DU (input) DOUBLE PRECISION array, dimension (N-1) +* The (n-1) super-diagonal elements of A. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I + DOUBLE PRECISION ANORM, SCALE, SUM +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL DLASSQ +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SQRT +* .. +* .. Executable Statements .. +* + IF( N.LE.0 ) THEN + ANORM = ZERO + ELSE IF( LSAME( NORM, 'M' ) ) THEN +* +* Find max(abs(A(i,j))). +* + ANORM = ABS( D( N ) ) + DO 10 I = 1, N - 1 + ANORM = MAX( ANORM, ABS( DL( I ) ) ) + ANORM = MAX( ANORM, ABS( D( I ) ) ) + ANORM = MAX( ANORM, ABS( DU( I ) ) ) + 10 CONTINUE + ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN +* +* Find norm1(A). +* + IF( N.EQ.1 ) THEN + ANORM = ABS( D( 1 ) ) + ELSE + ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ), + $ ABS( D( N ) )+ABS( DU( N-1 ) ) ) + DO 20 I = 2, N - 1 + ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+ + $ ABS( DU( I-1 ) ) ) + 20 CONTINUE + END IF + ELSE IF( LSAME( NORM, 'I' ) ) THEN +* +* Find normI(A). +* + IF( N.EQ.1 ) THEN + ANORM = ABS( D( 1 ) ) + ELSE + ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ), + $ ABS( D( N ) )+ABS( DL( N-1 ) ) ) + DO 30 I = 2, N - 1 + ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+ + $ ABS( DL( I-1 ) ) ) + 30 CONTINUE + END IF + ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN +* +* Find normF(A). +* + SCALE = ZERO + SUM = ONE + CALL DLASSQ( N, D, 1, SCALE, SUM ) + IF( N.GT.1 ) THEN + CALL DLASSQ( N-1, DL, 1, SCALE, SUM ) + CALL DLASSQ( N-1, DU, 1, SCALE, SUM ) + END IF + ANORM = SCALE*SQRT( SUM ) + END IF +* + DLANGT = ANORM + RETURN +* +* End of DLANGT +* + END |