summaryrefslogtreecommitdiff
path: root/SRC/dlangt.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/dlangt.f')
-rw-r--r--SRC/dlangt.f141
1 files changed, 141 insertions, 0 deletions
diff --git a/SRC/dlangt.f b/SRC/dlangt.f
new file mode 100644
index 00000000..d02ed572
--- /dev/null
+++ b/SRC/dlangt.f
@@ -0,0 +1,141 @@
+ DOUBLE PRECISION FUNCTION DLANGT( NORM, N, DL, D, DU )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER NORM
+ INTEGER N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION D( * ), DL( * ), DU( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLANGT returns the value of the one norm, or the Frobenius norm, or
+* the infinity norm, or the element of largest absolute value of a
+* real tridiagonal matrix A.
+*
+* Description
+* ===========
+*
+* DLANGT returns the value
+*
+* DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+* (
+* ( norm1(A), NORM = '1', 'O' or 'o'
+* (
+* ( normI(A), NORM = 'I' or 'i'
+* (
+* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+*
+* where norm1 denotes the one norm of a matrix (maximum column sum),
+* normI denotes the infinity norm of a matrix (maximum row sum) and
+* normF denotes the Frobenius norm of a matrix (square root of sum of
+* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
+*
+* Arguments
+* =========
+*
+* NORM (input) CHARACTER*1
+* Specifies the value to be returned in DLANGT as described
+* above.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0. When N = 0, DLANGT is
+* set to zero.
+*
+* DL (input) DOUBLE PRECISION array, dimension (N-1)
+* The (n-1) sub-diagonal elements of A.
+*
+* D (input) DOUBLE PRECISION array, dimension (N)
+* The diagonal elements of A.
+*
+* DU (input) DOUBLE PRECISION array, dimension (N-1)
+* The (n-1) super-diagonal elements of A.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I
+ DOUBLE PRECISION ANORM, SCALE, SUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+ IF( N.LE.0 ) THEN
+ ANORM = ZERO
+ ELSE IF( LSAME( NORM, 'M' ) ) THEN
+*
+* Find max(abs(A(i,j))).
+*
+ ANORM = ABS( D( N ) )
+ DO 10 I = 1, N - 1
+ ANORM = MAX( ANORM, ABS( DL( I ) ) )
+ ANORM = MAX( ANORM, ABS( D( I ) ) )
+ ANORM = MAX( ANORM, ABS( DU( I ) ) )
+ 10 CONTINUE
+ ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
+*
+* Find norm1(A).
+*
+ IF( N.EQ.1 ) THEN
+ ANORM = ABS( D( 1 ) )
+ ELSE
+ ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ),
+ $ ABS( D( N ) )+ABS( DU( N-1 ) ) )
+ DO 20 I = 2, N - 1
+ ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+
+ $ ABS( DU( I-1 ) ) )
+ 20 CONTINUE
+ END IF
+ ELSE IF( LSAME( NORM, 'I' ) ) THEN
+*
+* Find normI(A).
+*
+ IF( N.EQ.1 ) THEN
+ ANORM = ABS( D( 1 ) )
+ ELSE
+ ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ),
+ $ ABS( D( N ) )+ABS( DL( N-1 ) ) )
+ DO 30 I = 2, N - 1
+ ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+
+ $ ABS( DL( I-1 ) ) )
+ 30 CONTINUE
+ END IF
+ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
+*
+* Find normF(A).
+*
+ SCALE = ZERO
+ SUM = ONE
+ CALL DLASSQ( N, D, 1, SCALE, SUM )
+ IF( N.GT.1 ) THEN
+ CALL DLASSQ( N-1, DL, 1, SCALE, SUM )
+ CALL DLASSQ( N-1, DU, 1, SCALE, SUM )
+ END IF
+ ANORM = SCALE*SQRT( SUM )
+ END IF
+*
+ DLANGT = ANORM
+ RETURN
+*
+* End of DLANGT
+*
+ END