summaryrefslogtreecommitdiff
path: root/SRC/dgeevx.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/dgeevx.f')
-rw-r--r--SRC/dgeevx.f556
1 files changed, 556 insertions, 0 deletions
diff --git a/SRC/dgeevx.f b/SRC/dgeevx.f
new file mode 100644
index 00000000..7d927ae9
--- /dev/null
+++ b/SRC/dgeevx.f
@@ -0,0 +1,556 @@
+ SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
+ $ VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
+ $ RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER BALANC, JOBVL, JOBVR, SENSE
+ INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
+ DOUBLE PRECISION ABNRM
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION A( LDA, * ), RCONDE( * ), RCONDV( * ),
+ $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
+ $ WI( * ), WORK( * ), WR( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
+* eigenvalues and, optionally, the left and/or right eigenvectors.
+*
+* Optionally also, it computes a balancing transformation to improve
+* the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
+* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
+* (RCONDE), and reciprocal condition numbers for the right
+* eigenvectors (RCONDV).
+*
+* The right eigenvector v(j) of A satisfies
+* A * v(j) = lambda(j) * v(j)
+* where lambda(j) is its eigenvalue.
+* The left eigenvector u(j) of A satisfies
+* u(j)**H * A = lambda(j) * u(j)**H
+* where u(j)**H denotes the conjugate transpose of u(j).
+*
+* The computed eigenvectors are normalized to have Euclidean norm
+* equal to 1 and largest component real.
+*
+* Balancing a matrix means permuting the rows and columns to make it
+* more nearly upper triangular, and applying a diagonal similarity
+* transformation D * A * D**(-1), where D is a diagonal matrix, to
+* make its rows and columns closer in norm and the condition numbers
+* of its eigenvalues and eigenvectors smaller. The computed
+* reciprocal condition numbers correspond to the balanced matrix.
+* Permuting rows and columns will not change the condition numbers
+* (in exact arithmetic) but diagonal scaling will. For further
+* explanation of balancing, see section 4.10.2 of the LAPACK
+* Users' Guide.
+*
+* Arguments
+* =========
+*
+* BALANC (input) CHARACTER*1
+* Indicates how the input matrix should be diagonally scaled
+* and/or permuted to improve the conditioning of its
+* eigenvalues.
+* = 'N': Do not diagonally scale or permute;
+* = 'P': Perform permutations to make the matrix more nearly
+* upper triangular. Do not diagonally scale;
+* = 'S': Diagonally scale the matrix, i.e. replace A by
+* D*A*D**(-1), where D is a diagonal matrix chosen
+* to make the rows and columns of A more equal in
+* norm. Do not permute;
+* = 'B': Both diagonally scale and permute A.
+*
+* Computed reciprocal condition numbers will be for the matrix
+* after balancing and/or permuting. Permuting does not change
+* condition numbers (in exact arithmetic), but balancing does.
+*
+* JOBVL (input) CHARACTER*1
+* = 'N': left eigenvectors of A are not computed;
+* = 'V': left eigenvectors of A are computed.
+* If SENSE = 'E' or 'B', JOBVL must = 'V'.
+*
+* JOBVR (input) CHARACTER*1
+* = 'N': right eigenvectors of A are not computed;
+* = 'V': right eigenvectors of A are computed.
+* If SENSE = 'E' or 'B', JOBVR must = 'V'.
+*
+* SENSE (input) CHARACTER*1
+* Determines which reciprocal condition numbers are computed.
+* = 'N': None are computed;
+* = 'E': Computed for eigenvalues only;
+* = 'V': Computed for right eigenvectors only;
+* = 'B': Computed for eigenvalues and right eigenvectors.
+*
+* If SENSE = 'E' or 'B', both left and right eigenvectors
+* must also be computed (JOBVL = 'V' and JOBVR = 'V').
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the N-by-N matrix A.
+* On exit, A has been overwritten. If JOBVL = 'V' or
+* JOBVR = 'V', A contains the real Schur form of the balanced
+* version of the input matrix A.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* WR (output) DOUBLE PRECISION array, dimension (N)
+* WI (output) DOUBLE PRECISION array, dimension (N)
+* WR and WI contain the real and imaginary parts,
+* respectively, of the computed eigenvalues. Complex
+* conjugate pairs of eigenvalues will appear consecutively
+* with the eigenvalue having the positive imaginary part
+* first.
+*
+* VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
+* If JOBVL = 'V', the left eigenvectors u(j) are stored one
+* after another in the columns of VL, in the same order
+* as their eigenvalues.
+* If JOBVL = 'N', VL is not referenced.
+* If the j-th eigenvalue is real, then u(j) = VL(:,j),
+* the j-th column of VL.
+* If the j-th and (j+1)-st eigenvalues form a complex
+* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
+* u(j+1) = VL(:,j) - i*VL(:,j+1).
+*
+* LDVL (input) INTEGER
+* The leading dimension of the array VL. LDVL >= 1; if
+* JOBVL = 'V', LDVL >= N.
+*
+* VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
+* If JOBVR = 'V', the right eigenvectors v(j) are stored one
+* after another in the columns of VR, in the same order
+* as their eigenvalues.
+* If JOBVR = 'N', VR is not referenced.
+* If the j-th eigenvalue is real, then v(j) = VR(:,j),
+* the j-th column of VR.
+* If the j-th and (j+1)-st eigenvalues form a complex
+* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
+* v(j+1) = VR(:,j) - i*VR(:,j+1).
+*
+* LDVR (input) INTEGER
+* The leading dimension of the array VR. LDVR >= 1, and if
+* JOBVR = 'V', LDVR >= N.
+*
+* ILO (output) INTEGER
+* IHI (output) INTEGER
+* ILO and IHI are integer values determined when A was
+* balanced. The balanced A(i,j) = 0 if I > J and
+* J = 1,...,ILO-1 or I = IHI+1,...,N.
+*
+* SCALE (output) DOUBLE PRECISION array, dimension (N)
+* Details of the permutations and scaling factors applied
+* when balancing A. If P(j) is the index of the row and column
+* interchanged with row and column j, and D(j) is the scaling
+* factor applied to row and column j, then
+* SCALE(J) = P(J), for J = 1,...,ILO-1
+* = D(J), for J = ILO,...,IHI
+* = P(J) for J = IHI+1,...,N.
+* The order in which the interchanges are made is N to IHI+1,
+* then 1 to ILO-1.
+*
+* ABNRM (output) DOUBLE PRECISION
+* The one-norm of the balanced matrix (the maximum
+* of the sum of absolute values of elements of any column).
+*
+* RCONDE (output) DOUBLE PRECISION array, dimension (N)
+* RCONDE(j) is the reciprocal condition number of the j-th
+* eigenvalue.
+*
+* RCONDV (output) DOUBLE PRECISION array, dimension (N)
+* RCONDV(j) is the reciprocal condition number of the j-th
+* right eigenvector.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. If SENSE = 'N' or 'E',
+* LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
+* LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).
+* For good performance, LWORK must generally be larger.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* IWORK (workspace) INTEGER array, dimension (2*N-2)
+* If SENSE = 'N' or 'E', not referenced.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = i, the QR algorithm failed to compute all the
+* eigenvalues, and no eigenvectors or condition numbers
+* have been computed; elements 1:ILO-1 and i+1:N of WR
+* and WI contain eigenvalues which have converged.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
+ $ WNTSNN, WNTSNV
+ CHARACTER JOB, SIDE
+ INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
+ $ MINWRK, NOUT
+ DOUBLE PRECISION ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
+ $ SN
+* ..
+* .. Local Arrays ..
+ LOGICAL SELECT( 1 )
+ DOUBLE PRECISION DUM( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
+ $ DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
+ $ DTRSNA, XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IDAMAX, ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE, DLAPY2, DNRM2
+ EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
+ $ DNRM2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ WANTVL = LSAME( JOBVL, 'V' )
+ WANTVR = LSAME( JOBVR, 'V' )
+ WNTSNN = LSAME( SENSE, 'N' )
+ WNTSNE = LSAME( SENSE, 'E' )
+ WNTSNV = LSAME( SENSE, 'V' )
+ WNTSNB = LSAME( SENSE, 'B' )
+ IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
+ $ 'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
+ $ ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
+ $ WANTVR ) ) ) THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
+ INFO = -11
+ ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
+ INFO = -13
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* NB refers to the optimal block size for the immediately
+* following subroutine, as returned by ILAENV.
+* HSWORK refers to the workspace preferred by DHSEQR, as
+* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
+* the worst case.)
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ ELSE
+ MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
+*
+ IF( WANTVL ) THEN
+ CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
+ $ WORK, -1, INFO )
+ ELSE IF( WANTVR ) THEN
+ CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
+ $ WORK, -1, INFO )
+ ELSE
+ IF( WNTSNN ) THEN
+ CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
+ $ LDVR, WORK, -1, INFO )
+ ELSE
+ CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
+ $ LDVR, WORK, -1, INFO )
+ END IF
+ END IF
+ HSWORK = WORK( 1 )
+*
+ IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
+ MINWRK = 2*N
+ IF( .NOT.WNTSNN )
+ $ MINWRK = MAX( MINWRK, N*N+6*N )
+ MAXWRK = MAX( MAXWRK, HSWORK )
+ IF( .NOT.WNTSNN )
+ $ MAXWRK = MAX( MAXWRK, N*N + 6*N )
+ ELSE
+ MINWRK = 3*N
+ IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
+ $ MINWRK = MAX( MINWRK, N*N + 6*N )
+ MAXWRK = MAX( MAXWRK, HSWORK )
+ MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
+ $ ' ', N, 1, N, -1 ) )
+ IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
+ $ MAXWRK = MAX( MAXWRK, N*N + 6*N )
+ MAXWRK = MAX( MAXWRK, 3*N )
+ END IF
+ MAXWRK = MAX( MAXWRK, MINWRK )
+ END IF
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -21
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGEEVX', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SQRT( SMLNUM ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ICOND = 0
+ ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
+ SCALEA = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = SMLNUM
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = BIGNUM
+ END IF
+ IF( SCALEA )
+ $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
+*
+* Balance the matrix and compute ABNRM
+*
+ CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
+ ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
+ IF( SCALEA ) THEN
+ DUM( 1 ) = ABNRM
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
+ ABNRM = DUM( 1 )
+ END IF
+*
+* Reduce to upper Hessenberg form
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ ITAU = 1
+ IWRK = ITAU + N
+ CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+ IF( WANTVL ) THEN
+*
+* Want left eigenvectors
+* Copy Householder vectors to VL
+*
+ SIDE = 'L'
+ CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
+*
+* Generate orthogonal matrix in VL
+* (Workspace: need 2*N-1, prefer N+(N-1)*NB)
+*
+ CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+* Perform QR iteration, accumulating Schur vectors in VL
+* (Workspace: need 1, prefer HSWORK (see comments) )
+*
+ IWRK = ITAU
+ CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
+ $ WORK( IWRK ), LWORK-IWRK+1, INFO )
+*
+ IF( WANTVR ) THEN
+*
+* Want left and right eigenvectors
+* Copy Schur vectors to VR
+*
+ SIDE = 'B'
+ CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
+ END IF
+*
+ ELSE IF( WANTVR ) THEN
+*
+* Want right eigenvectors
+* Copy Householder vectors to VR
+*
+ SIDE = 'R'
+ CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
+*
+* Generate orthogonal matrix in VR
+* (Workspace: need 2*N-1, prefer N+(N-1)*NB)
+*
+ CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+* Perform QR iteration, accumulating Schur vectors in VR
+* (Workspace: need 1, prefer HSWORK (see comments) )
+*
+ IWRK = ITAU
+ CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
+ $ WORK( IWRK ), LWORK-IWRK+1, INFO )
+*
+ ELSE
+*
+* Compute eigenvalues only
+* If condition numbers desired, compute Schur form
+*
+ IF( WNTSNN ) THEN
+ JOB = 'E'
+ ELSE
+ JOB = 'S'
+ END IF
+*
+* (Workspace: need 1, prefer HSWORK (see comments) )
+*
+ IWRK = ITAU
+ CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
+ $ WORK( IWRK ), LWORK-IWRK+1, INFO )
+ END IF
+*
+* If INFO > 0 from DHSEQR, then quit
+*
+ IF( INFO.GT.0 )
+ $ GO TO 50
+*
+ IF( WANTVL .OR. WANTVR ) THEN
+*
+* Compute left and/or right eigenvectors
+* (Workspace: need 3*N)
+*
+ CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
+ $ N, NOUT, WORK( IWRK ), IERR )
+ END IF
+*
+* Compute condition numbers if desired
+* (Workspace: need N*N+6*N unless SENSE = 'E')
+*
+ IF( .NOT.WNTSNN ) THEN
+ CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
+ $ RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
+ $ ICOND )
+ END IF
+*
+ IF( WANTVL ) THEN
+*
+* Undo balancing of left eigenvectors
+*
+ CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
+ $ IERR )
+*
+* Normalize left eigenvectors and make largest component real
+*
+ DO 20 I = 1, N
+ IF( WI( I ).EQ.ZERO ) THEN
+ SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
+ CALL DSCAL( N, SCL, VL( 1, I ), 1 )
+ ELSE IF( WI( I ).GT.ZERO ) THEN
+ SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
+ $ DNRM2( N, VL( 1, I+1 ), 1 ) )
+ CALL DSCAL( N, SCL, VL( 1, I ), 1 )
+ CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
+ DO 10 K = 1, N
+ WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
+ 10 CONTINUE
+ K = IDAMAX( N, WORK, 1 )
+ CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
+ CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
+ VL( K, I+1 ) = ZERO
+ END IF
+ 20 CONTINUE
+ END IF
+*
+ IF( WANTVR ) THEN
+*
+* Undo balancing of right eigenvectors
+*
+ CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
+ $ IERR )
+*
+* Normalize right eigenvectors and make largest component real
+*
+ DO 40 I = 1, N
+ IF( WI( I ).EQ.ZERO ) THEN
+ SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
+ CALL DSCAL( N, SCL, VR( 1, I ), 1 )
+ ELSE IF( WI( I ).GT.ZERO ) THEN
+ SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
+ $ DNRM2( N, VR( 1, I+1 ), 1 ) )
+ CALL DSCAL( N, SCL, VR( 1, I ), 1 )
+ CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
+ DO 30 K = 1, N
+ WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
+ 30 CONTINUE
+ K = IDAMAX( N, WORK, 1 )
+ CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
+ CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
+ VR( K, I+1 ) = ZERO
+ END IF
+ 40 CONTINUE
+ END IF
+*
+* Undo scaling if necessary
+*
+ 50 CONTINUE
+ IF( SCALEA ) THEN
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
+ $ MAX( N-INFO, 1 ), IERR )
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
+ $ MAX( N-INFO, 1 ), IERR )
+ IF( INFO.EQ.0 ) THEN
+ IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
+ $ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
+ $ IERR )
+ ELSE
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
+ $ IERR )
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
+ $ IERR )
+ END IF
+ END IF
+*
+ WORK( 1 ) = MAXWRK
+ RETURN
+*
+* End of DGEEVX
+*
+ END