summaryrefslogtreecommitdiff
path: root/SRC/cuncsd2by1.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/cuncsd2by1.f')
-rw-r--r--SRC/cuncsd2by1.f757
1 files changed, 757 insertions, 0 deletions
diff --git a/SRC/cuncsd2by1.f b/SRC/cuncsd2by1.f
new file mode 100644
index 00000000..172ff7ac
--- /dev/null
+++ b/SRC/cuncsd2by1.f
@@ -0,0 +1,757 @@
+*> \brief \b CUNCSD2BY1
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CUNCSD2BY1 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd2by1.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd2by1.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd2by1.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
+* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
+* LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBU1, JOBU2, JOBV1T
+* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
+* $ M, P, Q
+* INTEGER LRWORK, LRWORKMIN, LRWORKOPT
+* ..
+* .. Array Arguments ..
+* REAL RWORK(*)
+* REAL THETA(*)
+* COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
+* $ X11(LDX11,*), X21(LDX21,*)
+* INTEGER IWORK(*)
+* ..
+*
+*
+*> \par Purpose:
+*> =============
+*>
+*>\verbatim
+*>
+*> CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
+*> orthonormal columns that has been partitioned into a 2-by-1 block
+*> structure:
+*>
+*> [ I 0 0 ]
+*> [ 0 C 0 ]
+*> [ X11 ] [ U1 | ] [ 0 0 0 ]
+*> X = [-----] = [---------] [----------] V1**T .
+*> [ X21 ] [ | U2 ] [ 0 0 0 ]
+*> [ 0 S 0 ]
+*> [ 0 0 I ]
+*>
+*> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
+*> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
+*> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
+*> which R = MIN(P,M-P,Q,M-Q).
+*>
+*>\endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBU1
+*> \verbatim
+*> JOBU1 is CHARACTER
+*> = 'Y': U1 is computed;
+*> otherwise: U1 is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBU2
+*> \verbatim
+*> JOBU2 is CHARACTER
+*> = 'Y': U2 is computed;
+*> otherwise: U2 is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV1T
+*> \verbatim
+*> JOBV1T is CHARACTER
+*> = 'Y': V1T is computed;
+*> otherwise: V1T is not computed.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows and columns in X.
+*> \endverbatim
+*>
+*> \param[in] P
+*> \verbatim
+*> P is INTEGER
+*> The number of rows in X11 and X12. 0 <= P <= M.
+*> \endverbatim
+*>
+*> \param[in] Q
+*> \verbatim
+*> Q is INTEGER
+*> The number of columns in X11 and X21. 0 <= Q <= M.
+*> \endverbatim
+*>
+*> \param[in,out] X11
+*> \verbatim
+*> X11 is COMPLEX array, dimension (LDX11,Q)
+*> On entry, part of the unitary matrix whose CSD is
+*> desired.
+*> \endverbatim
+*>
+*> \param[in] LDX11
+*> \verbatim
+*> LDX11 is INTEGER
+*> The leading dimension of X11. LDX11 >= MAX(1,P).
+*> \endverbatim
+*>
+*> \param[in,out] X21
+*> \verbatim
+*> X21 is COMPLEX array, dimension (LDX21,Q)
+*> On entry, part of the unitary matrix whose CSD is
+*> desired.
+*> \endverbatim
+*>
+*> \param[in] LDX21
+*> \verbatim
+*> LDX21 is INTEGER
+*> The leading dimension of X21. LDX21 >= MAX(1,M-P).
+*> \endverbatim
+*>
+*> \param[out] THETA
+*> \verbatim
+*> THETA is COMPLEX array, dimension (R), in which R =
+*> MIN(P,M-P,Q,M-Q).
+*> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
+*> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
+*> \endverbatim
+*>
+*> \param[out] U1
+*> \verbatim
+*> U1 is COMPLEX array, dimension (P)
+*> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
+*> \endverbatim
+*>
+*> \param[in] LDU1
+*> \verbatim
+*> LDU1 is INTEGER
+*> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
+*> MAX(1,P).
+*> \endverbatim
+*>
+*> \param[out] U2
+*> \verbatim
+*> U2 is COMPLEX array, dimension (M-P)
+*> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
+*> matrix U2.
+*> \endverbatim
+*>
+*> \param[in] LDU2
+*> \verbatim
+*> LDU2 is INTEGER
+*> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
+*> MAX(1,M-P).
+*> \endverbatim
+*>
+*> \param[out] V1T
+*> \verbatim
+*> V1T is COMPLEX array, dimension (Q)
+*> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
+*> matrix V1**T.
+*> \endverbatim
+*>
+*> \param[in] LDV1T
+*> \verbatim
+*> LDV1T is INTEGER
+*> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
+*> MAX(1,Q).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
+*> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
+*> define the matrix in intermediate bidiagonal-block form
+*> remaining after nonconvergence. INFO specifies the number
+*> of nonzero PHI's.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> \endverbatim
+*> \verbatim
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the work array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (MAX(1,LRWORK))
+*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
+*> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
+*> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
+*> define the matrix in intermediate bidiagonal-block form
+*> remaining after nonconvergence. INFO specifies the number
+*> of nonzero PHI's.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The dimension of the array RWORK.
+*>
+*> If LRWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the RWORK array, returns
+*> this value as the first entry of the work array, and no error
+*> message related to LRWORK is issued by XERBLA.
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
+*> \endverbatim
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit.
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> > 0: CBBCSD did not converge. See the description of WORK
+*> above for details.
+*> \endverbatim
+*
+*> \par References:
+*> ================
+*>
+*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
+*> Algorithms, 50(1):33-65, 2009.
+*>
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date July 2012
+*
+*> \ingroup complexOTHERcomputational
+*
+* =====================================================================
+ SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
+ $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
+ $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
+ $ INFO )
+*
+* -- LAPACK computational routine (version 3.5.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* July 2012
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBU1, JOBU2, JOBV1T
+ INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
+ $ M, P, Q
+ INTEGER LRWORK, LRWORKMIN, LRWORKOPT
+* ..
+* .. Array Arguments ..
+ REAL RWORK(*)
+ REAL THETA(*)
+ COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
+ $ X11(LDX11,*), X21(LDX21,*)
+ INTEGER IWORK(*)
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX ONE, ZERO
+ PARAMETER ( ONE = (1.0E0,0.0E0), ZERO = (0.0E0,0.0E0) )
+* ..
+* .. Local Scalars ..
+ INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
+ $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
+ $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
+ $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
+ $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
+ $ LWORKMIN, LWORKOPT, R
+ LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
+* ..
+* .. External Subroutines ..
+ EXTERNAL CBBCSD, CCOPY, CLACPY, CLAPMR, CLAPMT, CUNBDB1,
+ $ CUNBDB2, CUNBDB3, CUNBDB4, CUNGLQ, CUNGQR,
+ $ XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Intrinsic Function ..
+ INTRINSIC INT, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test input arguments
+*
+ INFO = 0
+ WANTU1 = LSAME( JOBU1, 'Y' )
+ WANTU2 = LSAME( JOBU2, 'Y' )
+ WANTV1T = LSAME( JOBV1T, 'Y' )
+ LQUERY = LWORK .EQ. -1
+*
+ IF( M .LT. 0 ) THEN
+ INFO = -4
+ ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
+ INFO = -5
+ ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
+ INFO = -6
+ ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
+ INFO = -8
+ ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
+ INFO = -10
+ ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
+ INFO = -13
+ ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
+ INFO = -15
+ ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
+ INFO = -17
+ END IF
+*
+ R = MIN( P, M-P, Q, M-Q )
+*
+* Compute workspace
+*
+* WORK layout:
+* |-----------------------------------------|
+* | LWORKOPT (1) |
+* |-----------------------------------------|
+* | TAUP1 (MAX(1,P)) |
+* | TAUP2 (MAX(1,M-P)) |
+* | TAUQ1 (MAX(1,Q)) |
+* |-----------------------------------------|
+* | CUNBDB WORK | CUNGQR WORK | CUNGLQ WORK |
+* | | | |
+* | | | |
+* | | | |
+* | | | |
+* |-----------------------------------------|
+* RWORK layout:
+* |------------------|
+* | LRWORKOPT (1) |
+* |------------------|
+* | PHI (MAX(1,R-1)) |
+* |------------------|
+* | B11D (R) |
+* | B11E (R-1) |
+* | B12D (R) |
+* | B12E (R-1) |
+* | B21D (R) |
+* | B21E (R-1) |
+* | B22D (R) |
+* | B22E (R-1) |
+* | CBBCSD RWORK |
+* |------------------|
+*
+ IF( INFO .EQ. 0 ) THEN
+ IPHI = 2
+ IB11D = IPHI + MAX( 1, R-1 )
+ IB11E = IB11D + R
+ IB12D = IB11E + R - 1
+ IB12E = IB12D + R
+ IB21D = IB12E + R - 1
+ IB21E = IB21D + R
+ IB22D = IB21E + R - 1
+ IB22E = IB22D + R
+ IBBCSD = IB22E + R - 1
+ ITAUP1 = 2
+ ITAUP2 = ITAUP1 + MAX( 1, P )
+ ITAUQ1 = ITAUP2 + MAX( 1, M-P )
+ IORBDB = ITAUQ1 + MAX( 1, Q )
+ IORGQR = ITAUQ1 + MAX( 1, Q )
+ IORGLQ = ITAUQ1 + MAX( 1, Q )
+ IF( R .EQ. Q ) THEN
+ CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
+ $ 0, 0, WORK, -1, CHILDINFO )
+ LORBDB = INT( WORK(1) )
+ IF( P .GE. M-P ) THEN
+ CALL CUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGQRMIN = MAX( 1, P )
+ LORGQROPT = INT( WORK(1) )
+ ELSE
+ CALL CUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGQRMIN = MAX( 1, M-P )
+ LORGQROPT = INT( WORK(1) )
+ END IF
+ CALL CUNGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
+ $ 0, WORK(1), -1, CHILDINFO )
+ LORGLQMIN = MAX( 1, Q-1 )
+ LORGLQOPT = INT( WORK(1) )
+ CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
+ $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
+ $ 0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
+ LBBCSD = INT( RWORK(1) )
+ ELSE IF( R .EQ. P ) THEN
+ CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
+ $ 0, 0, WORK(1), -1, CHILDINFO )
+ LORBDB = INT( WORK(1) )
+ IF( P-1 .GE. M-P ) THEN
+ CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
+ $ -1, CHILDINFO )
+ LORGQRMIN = MAX( 1, P-1 )
+ LORGQROPT = INT( WORK(1) )
+ ELSE
+ CALL CUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGQRMIN = MAX( 1, M-P )
+ LORGQROPT = INT( WORK(1) )
+ END IF
+ CALL CUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGLQMIN = MAX( 1, Q )
+ LORGLQOPT = INT( WORK(1) )
+ CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
+ $ 0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
+ $ 0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
+ LBBCSD = INT( RWORK(1) )
+ ELSE IF( R .EQ. M-P ) THEN
+ CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
+ $ 0, 0, WORK(1), -1, CHILDINFO )
+ LORBDB = INT( WORK(1) )
+ IF( P .GE. M-P-1 ) THEN
+ CALL CUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGQRMIN = MAX( 1, P )
+ LORGQROPT = INT( WORK(1) )
+ ELSE
+ CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
+ $ WORK(1), -1, CHILDINFO )
+ LORGQRMIN = MAX( 1, M-P-1 )
+ LORGQROPT = INT( WORK(1) )
+ END IF
+ CALL CUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGLQMIN = MAX( 1, Q )
+ LORGLQOPT = INT( WORK(1) )
+ CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
+ $ THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
+ $ 0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
+ $ CHILDINFO )
+ LBBCSD = INT( RWORK(1) )
+ ELSE
+ CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
+ $ 0, 0, 0, WORK(1), -1, CHILDINFO )
+ LORBDB = M + INT( WORK(1) )
+ IF( P .GE. M-P ) THEN
+ CALL CUNGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGQRMIN = MAX( 1, P )
+ LORGQROPT = INT( WORK(1) )
+ ELSE
+ CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGQRMIN = MAX( 1, M-P )
+ LORGQROPT = INT( WORK(1) )
+ END IF
+ CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
+ $ CHILDINFO )
+ LORGLQMIN = MAX( 1, Q )
+ LORGLQOPT = INT( WORK(1) )
+ CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
+ $ THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
+ $ 0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
+ $ CHILDINFO )
+ LBBCSD = INT( RWORK(1) )
+ END IF
+ LRWORKMIN = IBBCSD+LBBCSD-1
+ LRWORKOPT = LRWORKMIN
+ RWORK(1) = LRWORKOPT
+ LWORKMIN = MAX( IORBDB+LORBDB-1,
+ $ IORGQR+LORGQRMIN-1,
+ $ IORGLQ+LORGLQMIN-1 )
+ LWORKOPT = MAX( IORBDB+LORBDB-1,
+ $ IORGQR+LORGQROPT-1,
+ $ IORGLQ+LORGLQOPT-1 )
+ WORK(1) = LWORKOPT
+ IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -19
+ END IF
+ END IF
+ IF( INFO .NE. 0 ) THEN
+ CALL XERBLA( 'CUNCSD2BY1', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+ LORGQR = LWORK-IORGQR+1
+ LORGLQ = LWORK-IORGLQ+1
+*
+* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
+* in which R = MIN(P,M-P,Q,M-Q)
+*
+ IF( R .EQ. Q ) THEN
+*
+* Case 1: R = Q
+*
+* Simultaneously bidiagonalize X11 and X21
+*
+ CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
+ $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
+ $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
+*
+* Accumulate Householder reflectors
+*
+ IF( WANTU1 .AND. P .GT. 0 ) THEN
+ CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
+ CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
+ $ LORGQR, CHILDINFO )
+ END IF
+ IF( WANTU2 .AND. M-P .GT. 0 ) THEN
+ CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
+ CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
+ $ WORK(IORGQR), LORGQR, CHILDINFO )
+ END IF
+ IF( WANTV1T .AND. Q .GT. 0 ) THEN
+ V1T(1,1) = ONE
+ DO J = 2, Q
+ V1T(1,J) = ZERO
+ V1T(J,1) = ZERO
+ END DO
+ CALL CLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
+ $ LDV1T )
+ CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
+ $ WORK(IORGLQ), LORGLQ, CHILDINFO )
+ END IF
+*
+* Simultaneously diagonalize X11 and X21.
+*
+ CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
+ $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
+ $ RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
+ $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
+ $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
+ $ CHILDINFO )
+*
+* Permute rows and columns to place zero submatrices in
+* preferred positions
+*
+ IF( Q .GT. 0 .AND. WANTU2 ) THEN
+ DO I = 1, Q
+ IWORK(I) = M - P - Q + I
+ END DO
+ DO I = Q + 1, M - P
+ IWORK(I) = I - Q
+ END DO
+ CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
+ END IF
+ ELSE IF( R .EQ. P ) THEN
+*
+* Case 2: R = P
+*
+* Simultaneously bidiagonalize X11 and X21
+*
+ CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
+ $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
+ $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
+*
+* Accumulate Householder reflectors
+*
+ IF( WANTU1 .AND. P .GT. 0 ) THEN
+ U1(1,1) = ONE
+ DO J = 2, P
+ U1(1,J) = ZERO
+ U1(J,1) = ZERO
+ END DO
+ CALL CLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
+ CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
+ $ WORK(IORGQR), LORGQR, CHILDINFO )
+ END IF
+ IF( WANTU2 .AND. M-P .GT. 0 ) THEN
+ CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
+ CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
+ $ WORK(IORGQR), LORGQR, CHILDINFO )
+ END IF
+ IF( WANTV1T .AND. Q .GT. 0 ) THEN
+ CALL CLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
+ CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
+ $ WORK(IORGLQ), LORGLQ, CHILDINFO )
+ END IF
+*
+* Simultaneously diagonalize X11 and X21.
+*
+ CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
+ $ RWORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
+ $ RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
+ $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
+ $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
+ $ CHILDINFO )
+*
+* Permute rows and columns to place identity submatrices in
+* preferred positions
+*
+ IF( Q .GT. 0 .AND. WANTU2 ) THEN
+ DO I = 1, Q
+ IWORK(I) = M - P - Q + I
+ END DO
+ DO I = Q + 1, M - P
+ IWORK(I) = I - Q
+ END DO
+ CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
+ END IF
+ ELSE IF( R .EQ. M-P ) THEN
+*
+* Case 3: R = M-P
+*
+* Simultaneously bidiagonalize X11 and X21
+*
+ CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
+ $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
+ $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
+*
+* Accumulate Householder reflectors
+*
+ IF( WANTU1 .AND. P .GT. 0 ) THEN
+ CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
+ CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
+ $ LORGQR, CHILDINFO )
+ END IF
+ IF( WANTU2 .AND. M-P .GT. 0 ) THEN
+ U2(1,1) = ONE
+ DO J = 2, M-P
+ U2(1,J) = ZERO
+ U2(J,1) = ZERO
+ END DO
+ CALL CLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
+ $ LDU2 )
+ CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
+ $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
+ END IF
+ IF( WANTV1T .AND. Q .GT. 0 ) THEN
+ CALL CLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
+ CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
+ $ WORK(IORGLQ), LORGLQ, CHILDINFO )
+ END IF
+*
+* Simultaneously diagonalize X11 and X21.
+*
+ CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
+ $ THETA, RWORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2,
+ $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
+ $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
+ $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
+ $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
+*
+* Permute rows and columns to place identity submatrices in
+* preferred positions
+*
+ IF( Q .GT. R ) THEN
+ DO I = 1, R
+ IWORK(I) = Q - R + I
+ END DO
+ DO I = R + 1, Q
+ IWORK(I) = I - R
+ END DO
+ IF( WANTU1 ) THEN
+ CALL CLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
+ END IF
+ IF( WANTV1T ) THEN
+ CALL CLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
+ END IF
+ END IF
+ ELSE
+*
+* Case 4: R = M-Q
+*
+* Simultaneously bidiagonalize X11 and X21
+*
+ CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
+ $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
+ $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
+ $ LORBDB-M, CHILDINFO )
+*
+* Accumulate Householder reflectors
+*
+ IF( WANTU1 .AND. P .GT. 0 ) THEN
+ CALL CCOPY( P, WORK(IORBDB), 1, U1, 1 )
+ DO J = 2, P
+ U1(1,J) = ZERO
+ END DO
+ CALL CLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
+ $ LDU1 )
+ CALL CUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
+ $ WORK(IORGQR), LORGQR, CHILDINFO )
+ END IF
+ IF( WANTU2 .AND. M-P .GT. 0 ) THEN
+ CALL CCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
+ DO J = 2, M-P
+ U2(1,J) = ZERO
+ END DO
+ CALL CLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
+ $ LDU2 )
+ CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
+ $ WORK(IORGQR), LORGQR, CHILDINFO )
+ END IF
+ IF( WANTV1T .AND. Q .GT. 0 ) THEN
+ CALL CLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
+ CALL CLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
+ $ V1T(M-Q+1,M-Q+1), LDV1T )
+ CALL CLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
+ $ V1T(P+1,P+1), LDV1T )
+ CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
+ $ WORK(IORGLQ), LORGLQ, CHILDINFO )
+ END IF
+*
+* Simultaneously diagonalize X11 and X21.
+*
+ CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
+ $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
+ $ LDV1T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
+ $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
+ $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
+ $ CHILDINFO )
+*
+* Permute rows and columns to place identity submatrices in
+* preferred positions
+*
+ IF( P .GT. R ) THEN
+ DO I = 1, R
+ IWORK(I) = P - R + I
+ END DO
+ DO I = R + 1, P
+ IWORK(I) = I - R
+ END DO
+ IF( WANTU1 ) THEN
+ CALL CLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
+ END IF
+ IF( WANTV1T ) THEN
+ CALL CLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
+ END IF
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of CUNCSD2BY1
+*
+ END
+