summaryrefslogtreecommitdiff
path: root/SRC/ctprfs.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/ctprfs.f')
-rw-r--r--SRC/ctprfs.f391
1 files changed, 391 insertions, 0 deletions
diff --git a/SRC/ctprfs.f b/SRC/ctprfs.f
new file mode 100644
index 00000000..d9cb2283
--- /dev/null
+++ b/SRC/ctprfs.f
@@ -0,0 +1,391 @@
+ SUBROUTINE CTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
+ $ FERR, BERR, WORK, RWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH.
+*
+* .. Scalar Arguments ..
+ CHARACTER DIAG, TRANS, UPLO
+ INTEGER INFO, LDB, LDX, N, NRHS
+* ..
+* .. Array Arguments ..
+ REAL BERR( * ), FERR( * ), RWORK( * )
+ COMPLEX AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* CTPRFS provides error bounds and backward error estimates for the
+* solution to a system of linear equations with a triangular packed
+* coefficient matrix.
+*
+* The solution matrix X must be computed by CTPTRS or some other
+* means before entering this routine. CTPRFS does not do iterative
+* refinement because doing so cannot improve the backward error.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': A is upper triangular;
+* = 'L': A is lower triangular.
+*
+* TRANS (input) CHARACTER*1
+* Specifies the form of the system of equations:
+* = 'N': A * X = B (No transpose)
+* = 'T': A**T * X = B (Transpose)
+* = 'C': A**H * X = B (Conjugate transpose)
+*
+* DIAG (input) CHARACTER*1
+* = 'N': A is non-unit triangular;
+* = 'U': A is unit triangular.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrices B and X. NRHS >= 0.
+*
+* AP (input) COMPLEX array, dimension (N*(N+1)/2)
+* The upper or lower triangular matrix A, packed columnwise in
+* a linear array. The j-th column of A is stored in the array
+* AP as follows:
+* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
+* If DIAG = 'U', the diagonal elements of A are not referenced
+* and are assumed to be 1.
+*
+* B (input) COMPLEX array, dimension (LDB,NRHS)
+* The right hand side matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* X (input) COMPLEX array, dimension (LDX,NRHS)
+* The solution matrix X.
+*
+* LDX (input) INTEGER
+* The leading dimension of the array X. LDX >= max(1,N).
+*
+* FERR (output) REAL array, dimension (NRHS)
+* The estimated forward error bound for each solution vector
+* X(j) (the j-th column of the solution matrix X).
+* If XTRUE is the true solution corresponding to X(j), FERR(j)
+* is an estimated upper bound for the magnitude of the largest
+* element in (X(j) - XTRUE) divided by the magnitude of the
+* largest element in X(j). The estimate is as reliable as
+* the estimate for RCOND, and is almost always a slight
+* overestimate of the true error.
+*
+* BERR (output) REAL array, dimension (NRHS)
+* The componentwise relative backward error of each solution
+* vector X(j) (i.e., the smallest relative change in
+* any element of A or B that makes X(j) an exact solution).
+*
+* WORK (workspace) COMPLEX array, dimension (2*N)
+*
+* RWORK (workspace) REAL array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO
+ PARAMETER ( ZERO = 0.0E+0 )
+ COMPLEX ONE
+ PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOTRAN, NOUNIT, UPPER
+ CHARACTER TRANSN, TRANST
+ INTEGER I, J, K, KASE, KC, NZ
+ REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
+ COMPLEX ZDUM
+* ..
+* .. Local Arrays ..
+ INTEGER ISAVE( 3 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL CAXPY, CCOPY, CLACN2, CTPMV, CTPSV, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AIMAG, MAX, REAL
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH
+ EXTERNAL LSAME, SLAMCH
+* ..
+* .. Statement Functions ..
+ REAL CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ NOUNIT = LSAME( DIAG, 'N' )
+*
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -10
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CTPRFS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
+ DO 10 J = 1, NRHS
+ FERR( J ) = ZERO
+ BERR( J ) = ZERO
+ 10 CONTINUE
+ RETURN
+ END IF
+*
+ IF( NOTRAN ) THEN
+ TRANSN = 'N'
+ TRANST = 'C'
+ ELSE
+ TRANSN = 'C'
+ TRANST = 'N'
+ END IF
+*
+* NZ = maximum number of nonzero elements in each row of A, plus 1
+*
+ NZ = N + 1
+ EPS = SLAMCH( 'Epsilon' )
+ SAFMIN = SLAMCH( 'Safe minimum' )
+ SAFE1 = NZ*SAFMIN
+ SAFE2 = SAFE1 / EPS
+*
+* Do for each right hand side
+*
+ DO 250 J = 1, NRHS
+*
+* Compute residual R = B - op(A) * X,
+* where op(A) = A, A**T, or A**H, depending on TRANS.
+*
+ CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
+ CALL CTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
+ CALL CAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
+*
+* Compute componentwise relative backward error from formula
+*
+* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
+*
+* where abs(Z) is the componentwise absolute value of the matrix
+* or vector Z. If the i-th component of the denominator is less
+* than SAFE2, then SAFE1 is added to the i-th components of the
+* numerator and denominator before dividing.
+*
+ DO 20 I = 1, N
+ RWORK( I ) = CABS1( B( I, J ) )
+ 20 CONTINUE
+*
+ IF( NOTRAN ) THEN
+*
+* Compute abs(A)*abs(X) + abs(B).
+*
+ IF( UPPER ) THEN
+ KC = 1
+ IF( NOUNIT ) THEN
+ DO 40 K = 1, N
+ XK = CABS1( X( K, J ) )
+ DO 30 I = 1, K
+ RWORK( I ) = RWORK( I ) +
+ $ CABS1( AP( KC+I-1 ) )*XK
+ 30 CONTINUE
+ KC = KC + K
+ 40 CONTINUE
+ ELSE
+ DO 60 K = 1, N
+ XK = CABS1( X( K, J ) )
+ DO 50 I = 1, K - 1
+ RWORK( I ) = RWORK( I ) +
+ $ CABS1( AP( KC+I-1 ) )*XK
+ 50 CONTINUE
+ RWORK( K ) = RWORK( K ) + XK
+ KC = KC + K
+ 60 CONTINUE
+ END IF
+ ELSE
+ KC = 1
+ IF( NOUNIT ) THEN
+ DO 80 K = 1, N
+ XK = CABS1( X( K, J ) )
+ DO 70 I = K, N
+ RWORK( I ) = RWORK( I ) +
+ $ CABS1( AP( KC+I-K ) )*XK
+ 70 CONTINUE
+ KC = KC + N - K + 1
+ 80 CONTINUE
+ ELSE
+ DO 100 K = 1, N
+ XK = CABS1( X( K, J ) )
+ DO 90 I = K + 1, N
+ RWORK( I ) = RWORK( I ) +
+ $ CABS1( AP( KC+I-K ) )*XK
+ 90 CONTINUE
+ RWORK( K ) = RWORK( K ) + XK
+ KC = KC + N - K + 1
+ 100 CONTINUE
+ END IF
+ END IF
+ ELSE
+*
+* Compute abs(A**H)*abs(X) + abs(B).
+*
+ IF( UPPER ) THEN
+ KC = 1
+ IF( NOUNIT ) THEN
+ DO 120 K = 1, N
+ S = ZERO
+ DO 110 I = 1, K
+ S = S + CABS1( AP( KC+I-1 ) )*CABS1( X( I, J ) )
+ 110 CONTINUE
+ RWORK( K ) = RWORK( K ) + S
+ KC = KC + K
+ 120 CONTINUE
+ ELSE
+ DO 140 K = 1, N
+ S = CABS1( X( K, J ) )
+ DO 130 I = 1, K - 1
+ S = S + CABS1( AP( KC+I-1 ) )*CABS1( X( I, J ) )
+ 130 CONTINUE
+ RWORK( K ) = RWORK( K ) + S
+ KC = KC + K
+ 140 CONTINUE
+ END IF
+ ELSE
+ KC = 1
+ IF( NOUNIT ) THEN
+ DO 160 K = 1, N
+ S = ZERO
+ DO 150 I = K, N
+ S = S + CABS1( AP( KC+I-K ) )*CABS1( X( I, J ) )
+ 150 CONTINUE
+ RWORK( K ) = RWORK( K ) + S
+ KC = KC + N - K + 1
+ 160 CONTINUE
+ ELSE
+ DO 180 K = 1, N
+ S = CABS1( X( K, J ) )
+ DO 170 I = K + 1, N
+ S = S + CABS1( AP( KC+I-K ) )*CABS1( X( I, J ) )
+ 170 CONTINUE
+ RWORK( K ) = RWORK( K ) + S
+ KC = KC + N - K + 1
+ 180 CONTINUE
+ END IF
+ END IF
+ END IF
+ S = ZERO
+ DO 190 I = 1, N
+ IF( RWORK( I ).GT.SAFE2 ) THEN
+ S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
+ ELSE
+ S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
+ $ ( RWORK( I )+SAFE1 ) )
+ END IF
+ 190 CONTINUE
+ BERR( J ) = S
+*
+* Bound error from formula
+*
+* norm(X - XTRUE) / norm(X) .le. FERR =
+* norm( abs(inv(op(A)))*
+* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
+*
+* where
+* norm(Z) is the magnitude of the largest component of Z
+* inv(op(A)) is the inverse of op(A)
+* abs(Z) is the componentwise absolute value of the matrix or
+* vector Z
+* NZ is the maximum number of nonzeros in any row of A, plus 1
+* EPS is machine epsilon
+*
+* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
+* is incremented by SAFE1 if the i-th component of
+* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
+*
+* Use CLACN2 to estimate the infinity-norm of the matrix
+* inv(op(A)) * diag(W),
+* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
+*
+ DO 200 I = 1, N
+ IF( RWORK( I ).GT.SAFE2 ) THEN
+ RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
+ ELSE
+ RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
+ $ SAFE1
+ END IF
+ 200 CONTINUE
+*
+ KASE = 0
+ 210 CONTINUE
+ CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
+ IF( KASE.NE.0 ) THEN
+ IF( KASE.EQ.1 ) THEN
+*
+* Multiply by diag(W)*inv(op(A)**H).
+*
+ CALL CTPSV( UPLO, TRANST, DIAG, N, AP, WORK, 1 )
+ DO 220 I = 1, N
+ WORK( I ) = RWORK( I )*WORK( I )
+ 220 CONTINUE
+ ELSE
+*
+* Multiply by inv(op(A))*diag(W).
+*
+ DO 230 I = 1, N
+ WORK( I ) = RWORK( I )*WORK( I )
+ 230 CONTINUE
+ CALL CTPSV( UPLO, TRANSN, DIAG, N, AP, WORK, 1 )
+ END IF
+ GO TO 210
+ END IF
+*
+* Normalize error.
+*
+ LSTRES = ZERO
+ DO 240 I = 1, N
+ LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
+ 240 CONTINUE
+ IF( LSTRES.NE.ZERO )
+ $ FERR( J ) = FERR( J ) / LSTRES
+*
+ 250 CONTINUE
+*
+ RETURN
+*
+* End of CTPRFS
+*
+ END