summaryrefslogtreecommitdiff
path: root/SRC/chpevd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/chpevd.f')
-rw-r--r--SRC/chpevd.f285
1 files changed, 285 insertions, 0 deletions
diff --git a/SRC/chpevd.f b/SRC/chpevd.f
new file mode 100644
index 00000000..bbb53503
--- /dev/null
+++ b/SRC/chpevd.f
@@ -0,0 +1,285 @@
+ SUBROUTINE CHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK, LIWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ REAL RWORK( * ), W( * )
+ COMPLEX AP( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* CHPEVD computes all the eigenvalues and, optionally, eigenvectors of
+* a complex Hermitian matrix A in packed storage. If eigenvectors are
+* desired, it uses a divide and conquer algorithm.
+*
+* The divide and conquer algorithm makes very mild assumptions about
+* floating point arithmetic. It will work on machines with a guard
+* digit in add/subtract, or on those binary machines without guard
+* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+* Cray-2. It could conceivably fail on hexadecimal or decimal machines
+* without guard digits, but we know of none.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)
+* On entry, the upper or lower triangle of the Hermitian matrix
+* A, packed columnwise in a linear array. The j-th column of A
+* is stored in the array AP as follows:
+* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
+*
+* On exit, AP is overwritten by values generated during the
+* reduction to tridiagonal form. If UPLO = 'U', the diagonal
+* and first superdiagonal of the tridiagonal matrix T overwrite
+* the corresponding elements of A, and if UPLO = 'L', the
+* diagonal and first subdiagonal of T overwrite the
+* corresponding elements of A.
+*
+* W (output) REAL array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* Z (output) COMPLEX array, dimension (LDZ, N)
+* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
+* eigenvectors of the matrix A, with the i-th column of Z
+* holding the eigenvector associated with W(i).
+* If JOBZ = 'N', then Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= max(1,N).
+*
+* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the required LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of array WORK.
+* If N <= 1, LWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LWORK must be at least N.
+* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the required sizes of the WORK, RWORK and
+* IWORK arrays, returns these values as the first entries of
+* the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK))
+* On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
+*
+* LRWORK (input) INTEGER
+* The dimension of array RWORK.
+* If N <= 1, LRWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LRWORK must be at least N.
+* If JOBZ = 'V' and N > 1, LRWORK must be at least
+* 1 + 5*N + 2*N**2.
+*
+* If LRWORK = -1, then a workspace query is assumed; the
+* routine only calculates the required sizes of the WORK, RWORK
+* and IWORK arrays, returns these values as the first entries
+* of the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
+* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
+*
+* LIWORK (input) INTEGER
+* The dimension of array IWORK.
+* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
+* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
+*
+* If LIWORK = -1, then a workspace query is assumed; the
+* routine only calculates the required sizes of the WORK, RWORK
+* and IWORK arrays, returns these values as the first entries
+* of the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = i, the algorithm failed to converge; i
+* off-diagonal elements of an intermediate tridiagonal
+* form did not converge to zero.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+ COMPLEX CONE
+ PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
+ $ ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
+ REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL CLANHP, SLAMCH
+ EXTERNAL LSAME, CLANHP, SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL CHPTRD, CSSCAL, CSTEDC, CUPMTR, SSCAL, SSTERF,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
+ $ THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -7
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.LE.1 ) THEN
+ LWMIN = 1
+ LIWMIN = 1
+ LRWMIN = 1
+ ELSE
+ IF( WANTZ ) THEN
+ LWMIN = 2*N
+ LRWMIN = 1 + 5*N + 2*N**2
+ LIWMIN = 3 + 5*N
+ ELSE
+ LWMIN = N
+ LRWMIN = N
+ LIWMIN = 1
+ END IF
+ END IF
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -9
+ ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CHPEVD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ W( 1 ) = AP( 1 )
+ IF( WANTZ )
+ $ Z( 1, 1 ) = CONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = SLAMCH( 'Safe minimum' )
+ EPS = SLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = CLANHP( 'M', UPLO, N, AP, RWORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 ) THEN
+ CALL CSSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
+ END IF
+*
+* Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form.
+*
+ INDE = 1
+ INDTAU = 1
+ INDRWK = INDE + N
+ INDWRK = INDTAU + N
+ LLWRK = LWORK - INDWRK + 1
+ LLRWK = LRWORK - INDRWK + 1
+ CALL CHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
+ $ IINFO )
+*
+* For eigenvalues only, call SSTERF. For eigenvectors, first call
+* CUPGTR to generate the orthogonal matrix, then call CSTEDC.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL SSTERF( N, W, RWORK( INDE ), INFO )
+ ELSE
+ CALL CSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
+ $ LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
+ $ INFO )
+ CALL CUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
+ $ WORK( INDWRK ), IINFO )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+ RETURN
+*
+* End of CHPEVD
+*
+ END