summaryrefslogtreecommitdiff
path: root/SRC/chegvx.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/chegvx.f')
-rw-r--r--SRC/chegvx.f31
1 files changed, 16 insertions, 15 deletions
diff --git a/SRC/chegvx.f b/SRC/chegvx.f
index 2171a5a3..34e0ea7c 100644
--- a/SRC/chegvx.f
+++ b/SRC/chegvx.f
@@ -73,13 +73,14 @@
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
*> will be found.
*> = 'I': the IL-th through IU-th eigenvalues will be found.
+*> \endverbatim
+*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangles of A and B are stored;
*> = 'L': Lower triangles of A and B are stored.
*> \endverbatim
-*> \endverbatim
*>
*> \param[in] N
*> \verbatim
@@ -95,8 +96,7 @@
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, the lower triangle (if UPLO='L') or the upper
*> triangle (if UPLO='U') of A, including the diagonal, is
*> destroyed.
@@ -116,8 +116,7 @@
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
-*> \endverbatim
-*> \verbatim
+*>
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
@@ -132,27 +131,33 @@
*> \param[in] VL
*> \verbatim
*> VL is REAL
+*> \endverbatim
+*>
*> \param[in] VU
*> \verbatim
*> VU is REAL
+*> \endverbatim
+*> \verbatim
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
-*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*> IL is INTEGER
+*> \endverbatim
+*>
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
+*> \endverbatim
+*> \verbatim
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*> Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
-*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
@@ -161,19 +166,16 @@
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
-*> \endverbatim
-*> \verbatim
+*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
-*> \endverbatim
-*> \verbatim
+*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing C to tridiagonal form, where C is the symmetric
*> matrix of the standard symmetric problem to which the
*> generalized problem is transformed.
-*> \endverbatim
-*> \verbatim
+*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
@@ -206,8 +208,7 @@
*> The eigenvectors are normalized as follows:
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
-*> \endverbatim
-*> \verbatim
+*>
*> If an eigenvector fails to converge, then that column of Z
*> contains the latest approximation to the eigenvector, and the
*> index of the eigenvector is returned in IFAIL.