summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zhet01_rook.f
diff options
context:
space:
mode:
authorigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2013-04-12 20:06:18 +0000
committerigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2013-04-12 20:06:18 +0000
commitccc590feb796758192b9183b425b3ff7d623acff (patch)
treed6ea18b89167ccb0638c39bdb2b75b09ec6aba04 /TESTING/LIN/zhet01_rook.f
parenta2d0bb04ede4a058806bc611ee015b67dab6e5be (diff)
downloadlapack-ccc590feb796758192b9183b425b3ff7d623acff.tar.gz
lapack-ccc590feb796758192b9183b425b3ff7d623acff.tar.bz2
lapack-ccc590feb796758192b9183b425b3ff7d623acff.zip
added test routines (c,z)chkhe_rook.f and (c,z)drvhe_rook.f for Hermitian factorization routines with rook pivoting algorithm
Diffstat (limited to 'TESTING/LIN/zhet01_rook.f')
-rw-r--r--TESTING/LIN/zhet01_rook.f239
1 files changed, 239 insertions, 0 deletions
diff --git a/TESTING/LIN/zhet01_rook.f b/TESTING/LIN/zhet01_rook.f
new file mode 100644
index 00000000..36041ab0
--- /dev/null
+++ b/TESTING/LIN/zhet01_rook.f
@@ -0,0 +1,239 @@
+*> \brief \b ZHET01_ROOK
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
+* RWORK, RESID )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER LDA, LDAFAC, LDC, N
+* DOUBLE PRECISION RESID
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* DOUBLE PRECISION RWORK( * )
+* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHET01_ROOK reconstructs a complex Hermitian indefinite matrix A from its
+*> block L*D*L' or U*D*U' factorization and computes the residual
+*> norm( C - A ) / ( N * norm(A) * EPS ),
+*> where C is the reconstructed matrix, EPS is the machine epsilon,
+*> L' is the transpose of L, and U' is the transpose of U.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> complex Hermitian matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of rows and columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> The original complex Hermitian matrix A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N)
+*> \endverbatim
+*>
+*> \param[in] AFAC
+*> \verbatim
+*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
+*> The factored form of the matrix A. AFAC contains the block
+*> diagonal matrix D and the multipliers used to obtain the
+*> factor L or U from the block L*D*L' or U*D*U' factorization
+*> as computed by CSYTRF_ROOK.
+*> \endverbatim
+*>
+*> \param[in] LDAFAC
+*> \verbatim
+*> LDAFAC is INTEGER
+*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> The pivot indices from CSYTRF_ROOK.
+*> \endverbatim
+*>
+*> \param[out] C
+*> \verbatim
+*> C is COMPLEX*16 array, dimension (LDC,N)
+*> \endverbatim
+*>
+*> \param[in] LDC
+*> \verbatim
+*> LDC is INTEGER
+*> The leading dimension of the array C. LDC >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] RESID
+*> \verbatim
+*> RESID is DOUBLE PRECISION
+*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
+*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date April 2013
+*
+*> \ingroup complex16_lin
+*
+* =====================================================================
+ SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
+ $ LDC, RWORK, RESID )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER LDA, LDAFAC, LDC, N
+ DOUBLE PRECISION RESID
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION RWORK( * )
+ COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, INFO, J
+ DOUBLE PRECISION ANORM, EPS
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION ZLANHE, DLAMCH
+ EXTERNAL LSAME, ZLANHE, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZLASET, ZLAVHE_ROOK
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DIMAG, DBLE
+* ..
+* .. Executable Statements ..
+*
+* Quick exit if N = 0.
+*
+ IF( N.LE.0 ) THEN
+ RESID = ZERO
+ RETURN
+ END IF
+*
+* Determine EPS and the norm of A.
+*
+ EPS = DLAMCH( 'Epsilon' )
+ ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
+*
+* Check the imaginary parts of the diagonal elements and return with
+* an error code if any are nonzero.
+*
+ DO 10 J = 1, N
+ IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
+ RESID = ONE / EPS
+ RETURN
+ END IF
+ 10 CONTINUE
+*
+* Initialize C to the identity matrix.
+*
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
+*
+* Call ZLAVHE_ROOK to form the product D * U' (or D * L' ).
+*
+ CALL ZLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC,
+ $ LDAFAC, IPIV, C, LDC, INFO )
+*
+* Call ZLAVHE_ROOK again to multiply by U (or L ).
+*
+ CALL ZLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
+ $ LDAFAC, IPIV, C, LDC, INFO )
+*
+* Compute the difference C - A .
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 30 J = 1, N
+ DO 20 I = 1, J - 1
+ C( I, J ) = C( I, J ) - A( I, J )
+ 20 CONTINUE
+ C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
+ 30 CONTINUE
+ ELSE
+ DO 50 J = 1, N
+ C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
+ DO 40 I = J + 1, N
+ C( I, J ) = C( I, J ) - A( I, J )
+ 40 CONTINUE
+ 50 CONTINUE
+ END IF
+*
+* Compute norm( C - A ) / ( N * norm(A) * EPS )
+*
+ RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
+*
+ IF( ANORM.LE.ZERO ) THEN
+ IF( RESID.NE.ZERO )
+ $ RESID = ONE / EPS
+ ELSE
+ RESID = ( ( RESID/DBLE( N ) )/ANORM ) / EPS
+ END IF
+*
+ RETURN
+*
+* End of ZHET01_ROOK
+*
+ END