summaryrefslogtreecommitdiff
path: root/SRC/zungbr.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zungbr.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zungbr.f')
-rw-r--r--SRC/zungbr.f234
1 files changed, 152 insertions, 82 deletions
diff --git a/SRC/zungbr.f b/SRC/zungbr.f
index c918ee3f..24860518 100644
--- a/SRC/zungbr.f
+++ b/SRC/zungbr.f
@@ -1,9 +1,159 @@
+*> \brief \b ZUNGBR
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER VECT
+* INTEGER INFO, K, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZUNGBR generates one of the complex unitary matrices Q or P**H
+*> determined by ZGEBRD when reducing a complex matrix A to bidiagonal
+*> form: A = Q * B * P**H. Q and P**H are defined as products of
+*> elementary reflectors H(i) or G(i) respectively.
+*>
+*> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
+*> is of order M:
+*> if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
+*> columns of Q, where m >= n >= k;
+*> if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
+*> M-by-M matrix.
+*>
+*> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
+*> is of order N:
+*> if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
+*> rows of P**H, where n >= m >= k;
+*> if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
+*> an N-by-N matrix.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] VECT
+*> \verbatim
+*> VECT is CHARACTER*1
+*> Specifies whether the matrix Q or the matrix P**H is
+*> required, as defined in the transformation applied by ZGEBRD:
+*> = 'Q': generate Q;
+*> = 'P': generate P**H.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix Q or P**H to be returned.
+*> M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix Q or P**H to be returned.
+*> N >= 0.
+*> If VECT = 'Q', M >= N >= min(M,K);
+*> if VECT = 'P', N >= M >= min(N,K).
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> If VECT = 'Q', the number of columns in the original M-by-K
+*> matrix reduced by ZGEBRD.
+*> If VECT = 'P', the number of rows in the original K-by-N
+*> matrix reduced by ZGEBRD.
+*> K >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the vectors which define the elementary reflectors,
+*> as returned by ZGEBRD.
+*> On exit, the M-by-N matrix Q or P**H.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= M.
+*> \endverbatim
+*>
+*> \param[in] TAU
+*> \verbatim
+*> TAU is COMPLEX*16 array, dimension
+*> (min(M,K)) if VECT = 'Q'
+*> (min(N,K)) if VECT = 'P'
+*> TAU(i) must contain the scalar factor of the elementary
+*> reflector H(i) or G(i), which determines Q or P**H, as
+*> returned by ZGEBRD in its array argument TAUQ or TAUP.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
+*> For optimum performance LWORK >= min(M,N)*NB, where NB
+*> is the optimal blocksize.
+*> \endverbatim
+*> \verbatim
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16GBcomputational
+*
+* =====================================================================
SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
-* -- LAPACK routine (version 3.2) --
+* -- LAPACK computational routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER VECT
@@ -13,86 +163,6 @@
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* ZUNGBR generates one of the complex unitary matrices Q or P**H
-* determined by ZGEBRD when reducing a complex matrix A to bidiagonal
-* form: A = Q * B * P**H. Q and P**H are defined as products of
-* elementary reflectors H(i) or G(i) respectively.
-*
-* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
-* is of order M:
-* if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
-* columns of Q, where m >= n >= k;
-* if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
-* M-by-M matrix.
-*
-* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
-* is of order N:
-* if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
-* rows of P**H, where n >= m >= k;
-* if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
-* an N-by-N matrix.
-*
-* Arguments
-* =========
-*
-* VECT (input) CHARACTER*1
-* Specifies whether the matrix Q or the matrix P**H is
-* required, as defined in the transformation applied by ZGEBRD:
-* = 'Q': generate Q;
-* = 'P': generate P**H.
-*
-* M (input) INTEGER
-* The number of rows of the matrix Q or P**H to be returned.
-* M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix Q or P**H to be returned.
-* N >= 0.
-* If VECT = 'Q', M >= N >= min(M,K);
-* if VECT = 'P', N >= M >= min(N,K).
-*
-* K (input) INTEGER
-* If VECT = 'Q', the number of columns in the original M-by-K
-* matrix reduced by ZGEBRD.
-* If VECT = 'P', the number of rows in the original K-by-N
-* matrix reduced by ZGEBRD.
-* K >= 0.
-*
-* A (input/output) COMPLEX*16 array, dimension (LDA,N)
-* On entry, the vectors which define the elementary reflectors,
-* as returned by ZGEBRD.
-* On exit, the M-by-N matrix Q or P**H.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= M.
-*
-* TAU (input) COMPLEX*16 array, dimension
-* (min(M,K)) if VECT = 'Q'
-* (min(N,K)) if VECT = 'P'
-* TAU(i) must contain the scalar factor of the elementary
-* reflector H(i) or G(i), which determines Q or P**H, as
-* returned by ZGEBRD in its array argument TAUQ or TAUP.
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,min(M,N)).
-* For optimum performance LWORK >= min(M,N)*NB, where NB
-* is the optimal blocksize.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
* =====================================================================
*
* .. Parameters ..