summaryrefslogtreecommitdiff
path: root/SRC/zunbdb.f
diff options
context:
space:
mode:
authorbrian <brian@8a072113-8704-0410-8d35-dd094bca7971>2010-11-03 23:02:29 +0000
committerbrian <brian@8a072113-8704-0410-8d35-dd094bca7971>2010-11-03 23:02:29 +0000
commit4ca2feaf79883558f849f792f6813819da97a821 (patch)
tree7079f3949a0356cd2914ab4984e928ef2ebf1b8e /SRC/zunbdb.f
parent1237a0d5b7f033a117062f78bf055026928af9ec (diff)
downloadlapack-4ca2feaf79883558f849f792f6813819da97a821.tar.gz
lapack-4ca2feaf79883558f849f792f6813819da97a821.tar.bz2
lapack-4ca2feaf79883558f849f792f6813819da97a821.zip
Added CS decomposition source files to SRC/
Diffstat (limited to 'SRC/zunbdb.f')
-rw-r--r--SRC/zunbdb.f520
1 files changed, 520 insertions, 0 deletions
diff --git a/SRC/zunbdb.f b/SRC/zunbdb.f
new file mode 100644
index 00000000..08298387
--- /dev/null
+++ b/SRC/zunbdb.f
@@ -0,0 +1,520 @@
+ SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
+ $ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
+ $ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
+ IMPLICIT NONE
+*
+* Brian Sutton
+* Randolph-Macon College
+* July 2010
+*
+* .. Scalar Arguments ..
+ CHARACTER SIGNS, TRANS
+ INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
+ $ Q
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION PHI( * ), THETA( * )
+ COMPLEX*16 TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
+ $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
+ $ X21( LDX21, * ), X22( LDX22, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
+* partitioned unitary matrix X:
+*
+* [ B11 | B12 0 0 ]
+* [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H
+* X = [-----------] = [---------] [----------------] [---------] .
+* [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
+* [ 0 | 0 0 I ]
+*
+* X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
+* not the case, then X must be transposed and/or permuted. This can be
+* done in constant time using the TRANS and SIGNS options. See ZUNCSD
+* for details.)
+*
+* The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
+* (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
+* represented implicitly by Householder vectors.
+*
+* B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
+* implicitly by angles THETA, PHI.
+*
+* Arguments
+* =========
+*
+* TRANS (input) CHARACTER
+* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
+* order;
+* otherwise: X, U1, U2, V1T, and V2T are stored in column-
+* major order.
+*
+* SIGNS (input) CHARACTER
+* = 'O': The lower-left block is made nonpositive (the
+* "other" convention);
+* otherwise: The upper-right block is made nonpositive (the
+* "default" convention).
+*
+* M (input) INTEGER
+* The number of rows and columns in X.
+*
+* P (input) INTEGER
+* The number of rows in X11 and X12. 0 <= P <= M.
+*
+* Q (input) INTEGER
+* The number of columns in X11 and X21. 0 <= Q <=
+* MIN(P,M-P,M-Q).
+*
+* X11 (input/output) COMPLEX*16 array, dimension (LDX11,Q)
+* On entry, the top-left block of the unitary matrix to be
+* reduced. On exit, the form depends on TRANS:
+* If TRANS = 'N', then
+* the columns of tril(X11) specify reflectors for P1,
+* the rows of triu(X11,1) specify reflectors for Q1;
+* else TRANS = 'T', and
+* the rows of triu(X11) specify reflectors for P1,
+* the columns of tril(X11,-1) specify reflectors for Q1.
+*
+* LDX11 (input) INTEGER
+* The leading dimension of X11. If TRANS = 'N', then LDX11 >=
+* P; else LDX11 >= Q.
+*
+* X12 (input/output) COMPLEX*16 array, dimension (LDX12,M-Q)
+* On entry, the top-right block of the unitary matrix to
+* be reduced. On exit, the form depends on TRANS:
+* If TRANS = 'N', then
+* the rows of triu(X12) specify the first P reflectors for
+* Q2;
+* else TRANS = 'T', and
+* the columns of tril(X12) specify the first P reflectors
+* for Q2.
+*
+* LDX12 (input) INTEGER
+* The leading dimension of X12. If TRANS = 'N', then LDX12 >=
+* P; else LDX11 >= M-Q.
+*
+* X21 (input/output) COMPLEX*16 array, dimension (LDX21,Q)
+* On entry, the bottom-left block of the unitary matrix to
+* be reduced. On exit, the form depends on TRANS:
+* If TRANS = 'N', then
+* the columns of tril(X21) specify reflectors for P2;
+* else TRANS = 'T', and
+* the rows of triu(X21) specify reflectors for P2.
+*
+* LDX21 (input) INTEGER
+* The leading dimension of X21. If TRANS = 'N', then LDX21 >=
+* M-P; else LDX21 >= Q.
+*
+* X22 (input/output) COMPLEX*16 array, dimension (LDX22,M-Q)
+* On entry, the bottom-right block of the unitary matrix to
+* be reduced. On exit, the form depends on TRANS:
+* If TRANS = 'N', then
+* the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
+* M-P-Q reflectors for Q2,
+* else TRANS = 'T', and
+* the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
+* M-P-Q reflectors for P2.
+*
+* LDX22 (input) INTEGER
+* The leading dimension of X22. If TRANS = 'N', then LDX22 >=
+* M-P; else LDX22 >= M-Q.
+*
+* THETA (output) DOUBLE PRECISION array, dimension (Q)
+* The entries of the bidiagonal blocks B11, B12, B21, B22 can
+* be computed from the angles THETA and PHI. See Further
+* Details.
+*
+* PHI (output) DOUBLE PRECISION array, dimension (Q-1)
+* The entries of the bidiagonal blocks B11, B12, B21, B22 can
+* be computed from the angles THETA and PHI. See Further
+* Details.
+*
+* TAUP1 (output) COMPLEX*16 array, dimension (P)
+* The scalar factors of the elementary reflectors that define
+* P1.
+*
+* TAUP2 (output) COMPLEX*16 array, dimension (M-P)
+* The scalar factors of the elementary reflectors that define
+* P2.
+*
+* TAUQ1 (output) COMPLEX*16 array, dimension (Q)
+* The scalar factors of the elementary reflectors that define
+* Q1.
+*
+* TAUQ2 (output) COMPLEX*16 array, dimension (M-Q)
+* The scalar factors of the elementary reflectors that define
+* Q2.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (LWORK)
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= M-Q.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* Further Details
+* ===============
+*
+* The bidiagonal blocks B11, B12, B21, and B22 are represented
+* implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
+* PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
+* lower bidiagonal. Every entry in each bidiagonal band is a product
+* of a sine or cosine of a THETA with a sine or cosine of a PHI. See
+* [1] or ZUNCSD for details.
+*
+* P1, P2, Q1, and Q2 are represented as products of elementary
+* reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
+* using ZUNGQR and ZUNGLQ.
+*
+* Reference
+* =========
+*
+* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
+* Algorithms, 50(1):33-65, 2009.
+*
+* ====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION REALONE
+ PARAMETER ( REALONE = 1.0D0 )
+ COMPLEX*16 NEGONE, ONE
+ PARAMETER ( NEGONE = (-1.0D0,0.0D0),
+ $ ONE = (1.0D0,0.0D0) )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLMAJOR, LQUERY
+ INTEGER I, LWORKMIN, LWORKOPT
+ DOUBLE PRECISION Z1, Z2, Z3, Z4
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
+ EXTERNAL ZLACGV
+*
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DZNRM2
+ LOGICAL LSAME
+ EXTERNAL DZNRM2, LSAME
+* ..
+* .. Intrinsic Functions
+ INTRINSIC ATAN2, COS, MAX, MIN, SIN
+ INTRINSIC COMPLEX, DCONJG
+* ..
+* .. Executable Statements ..
+*
+* Test input arguments
+*
+ INFO = 0
+ COLMAJOR = .NOT. LSAME( TRANS, 'T' )
+ IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
+ Z1 = REALONE
+ Z2 = REALONE
+ Z3 = REALONE
+ Z4 = REALONE
+ ELSE
+ Z1 = REALONE
+ Z2 = -REALONE
+ Z3 = REALONE
+ Z4 = -REALONE
+ END IF
+ LQUERY = LWORK .EQ. -1
+*
+ IF( M .LT. 0 ) THEN
+ INFO = -3
+ ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
+ INFO = -4
+ ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
+ $ Q .GT. M-Q ) THEN
+ INFO = -5
+ ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
+ INFO = -7
+ ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
+ INFO = -7
+ ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
+ INFO = -9
+ ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
+ INFO = -9
+ ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
+ INFO = -11
+ ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
+ INFO = -11
+ ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
+ INFO = -13
+ ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
+ INFO = -13
+ END IF
+*
+* Compute workspace
+*
+ IF( INFO .EQ. 0 ) THEN
+ LWORKOPT = M - Q
+ LWORKMIN = M - Q
+ WORK(1) = LWORKOPT
+ IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
+ INFO = -21
+ END IF
+ END IF
+ IF( INFO .NE. 0 ) THEN
+ CALL XERBLA( 'xORBDB', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Handle column-major and row-major separately
+*
+ IF( COLMAJOR ) THEN
+*
+* Reduce columns 1, ..., Q of X11, X12, X21, and X22
+*
+ DO I = 1, Q
+*
+ IF( I .EQ. 1 ) THEN
+ CALL ZSCAL( P-I+1, COMPLEX( Z1, 0.0D0 ), X11(I,I), 1 )
+ ELSE
+ CALL ZSCAL( P-I+1, COMPLEX( Z1*COS(PHI(I-1)), 0.0D0 ),
+ $ X11(I,I), 1 )
+ CALL ZAXPY( P-I+1, COMPLEX( -Z1*Z3*Z4*SIN(PHI(I-1)),
+ $ 0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
+ END IF
+ IF( I .EQ. 1 ) THEN
+ CALL ZSCAL( M-P-I+1, COMPLEX( Z2, 0.0D0 ), X21(I,I), 1 )
+ ELSE
+ CALL ZSCAL( M-P-I+1, COMPLEX( Z2*COS(PHI(I-1)), 0.0D0 ),
+ $ X21(I,I), 1 )
+ CALL ZAXPY( M-P-I+1, COMPLEX( -Z2*Z3*Z4*SIN(PHI(I-1)),
+ $ 0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
+ END IF
+*
+ THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
+ $ DZNRM2( P-I+1, X11(I,I), 1 ) )
+*
+ CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
+ X11(I,I) = ONE
+ CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
+ X21(I,I) = ONE
+*
+ CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
+ $ X11(I,I+1), LDX11, WORK )
+ CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
+ $ DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
+ CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
+ $ DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
+ CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
+ $ DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
+*
+ IF( I .LT. Q ) THEN
+ CALL ZSCAL( Q-I, COMPLEX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
+ $ X11(I,I+1), LDX11 )
+ CALL ZAXPY( Q-I, COMPLEX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
+ $ X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
+ END IF
+ CALL ZSCAL( M-Q-I+1, COMPLEX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
+ $ X12(I,I), LDX12 )
+ CALL ZAXPY( M-Q-I+1, COMPLEX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
+ $ X22(I,I), LDX22, X12(I,I), LDX12 )
+*
+ IF( I .LT. Q )
+ $ PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
+ $ DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
+*
+ IF( I .LT. Q ) THEN
+ CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
+ CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
+ $ TAUQ1(I) )
+ X11(I,I+1) = ONE
+ END IF
+ CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
+ CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
+ $ TAUQ2(I) )
+ X12(I,I) = ONE
+*
+ IF( I .LT. Q ) THEN
+ CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
+ $ X11(I+1,I+1), LDX11, WORK )
+ CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
+ $ X21(I+1,I+1), LDX21, WORK )
+ END IF
+ CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
+ $ X12(I+1,I), LDX12, WORK )
+ CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
+ $ X22(I+1,I), LDX22, WORK )
+*
+ IF( I .LT. Q )
+ $ CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
+ CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
+*
+ END DO
+*
+* Reduce columns Q + 1, ..., P of X12, X22
+*
+ DO I = Q + 1, P
+*
+ CALL ZSCAL( M-Q-I+1, COMPLEX( -Z1*Z4, 0.0D0 ), X12(I,I),
+ $ LDX12 )
+ CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
+ CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
+ $ TAUQ2(I) )
+ X12(I,I) = ONE
+*
+ CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
+ $ X12(I+1,I), LDX12, WORK )
+ IF( M-P-Q .GE. 1 )
+ $ CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
+ $ TAUQ2(I), X22(Q+1,I), LDX22, WORK )
+*
+ CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
+*
+ END DO
+*
+* Reduce columns P + 1, ..., M - Q of X12, X22
+*
+ DO I = 1, M - P - Q
+*
+ CALL ZSCAL( M-P-Q-I+1, COMPLEX( Z2*Z4, 0.0D0 ),
+ $ X22(Q+I,P+I), LDX22 )
+ CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
+ CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
+ $ LDX22, TAUQ2(P+I) )
+ X22(Q+I,P+I) = ONE
+ CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
+ $ TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
+*
+ CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
+*
+ END DO
+*
+ ELSE
+*
+* Reduce columns 1, ..., Q of X11, X12, X21, X22
+*
+ DO I = 1, Q
+*
+ IF( I .EQ. 1 ) THEN
+ CALL ZSCAL( P-I+1, COMPLEX( Z1, 0.0D0 ), X11(I,I),
+ $ LDX11 )
+ ELSE
+ CALL ZSCAL( P-I+1, COMPLEX( Z1*COS(PHI(I-1)), 0.0D0 ),
+ $ X11(I,I), LDX11 )
+ CALL ZAXPY( P-I+1, COMPLEX( -Z1*Z3*Z4*SIN(PHI(I-1)),
+ $ 0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
+ END IF
+ IF( I .EQ. 1 ) THEN
+ CALL ZSCAL( M-P-I+1, COMPLEX( Z2, 0.0D0 ), X21(I,I),
+ $ LDX21 )
+ ELSE
+ CALL ZSCAL( M-P-I+1, COMPLEX( Z2*COS(PHI(I-1)), 0.0D0 ),
+ $ X21(I,I), LDX21 )
+ CALL ZAXPY( M-P-I+1, COMPLEX( -Z2*Z3*Z4*SIN(PHI(I-1)),
+ $ 0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
+ END IF
+*
+ THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
+ $ DZNRM2( P-I+1, X11(I,I), LDX11 ) )
+*
+ CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
+ CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
+*
+ CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
+ X11(I,I) = ONE
+ CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
+ $ TAUP2(I) )
+ X21(I,I) = ONE
+*
+ CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
+ $ X11(I+1,I), LDX11, WORK )
+ CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
+ $ X12(I,I), LDX12, WORK )
+ CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
+ $ X21(I+1,I), LDX21, WORK )
+ CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
+ $ TAUP2(I), X22(I,I), LDX22, WORK )
+*
+ CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
+ CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
+*
+ IF( I .LT. Q ) THEN
+ CALL ZSCAL( Q-I, COMPLEX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
+ $ X11(I+1,I), 1 )
+ CALL ZAXPY( Q-I, COMPLEX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
+ $ X21(I+1,I), 1, X11(I+1,I), 1 )
+ END IF
+ CALL ZSCAL( M-Q-I+1, COMPLEX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
+ $ X12(I,I), 1 )
+ CALL ZAXPY( M-Q-I+1, COMPLEX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
+ $ X22(I,I), 1, X12(I,I), 1 )
+*
+ IF( I .LT. Q )
+ $ PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
+ $ DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
+*
+ IF( I .LT. Q ) THEN
+ CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
+ X11(I+1,I) = ONE
+ END IF
+ CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
+ X12(I,I) = ONE
+*
+ IF( I .LT. Q ) THEN
+ CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
+ $ DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
+ CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
+ $ DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
+ END IF
+ CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
+ $ DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
+ CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
+ $ DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
+*
+ END DO
+*
+* Reduce columns Q + 1, ..., P of X12, X22
+*
+ DO I = Q + 1, P
+*
+ CALL ZSCAL( M-Q-I+1, COMPLEX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
+ CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
+ X12(I,I) = ONE
+*
+ CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
+ $ DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
+ IF( M-P-Q .GE. 1 )
+ $ CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
+ $ DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
+*
+ END DO
+*
+* Reduce columns P + 1, ..., M - Q of X12, X22
+*
+ DO I = 1, M - P - Q
+*
+ CALL ZSCAL( M-P-Q-I+1, COMPLEX( Z2*Z4, 0.0D0 ),
+ $ X22(P+I,Q+I), 1 )
+ CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
+ $ TAUQ2(P+I) )
+ X22(P+I,Q+I) = ONE
+*
+ CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
+ $ DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
+ $ WORK )
+*
+ END DO
+*
+ END IF
+*
+ RETURN
+*
+* End of ZUNBDB
+*
+ END
+