summaryrefslogtreecommitdiff
path: root/SRC/zlaesy.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zlaesy.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zlaesy.f')
-rw-r--r--SRC/zlaesy.f152
1 files changed, 152 insertions, 0 deletions
diff --git a/SRC/zlaesy.f b/SRC/zlaesy.f
new file mode 100644
index 00000000..43b76705
--- /dev/null
+++ b/SRC/zlaesy.f
@@ -0,0 +1,152 @@
+ SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ COMPLEX*16 A, B, C, CS1, EVSCAL, RT1, RT2, SN1
+* ..
+*
+* Purpose
+* =======
+*
+* ZLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix
+* ( ( A, B );( B, C ) )
+* provided the norm of the matrix of eigenvectors is larger than
+* some threshold value.
+*
+* RT1 is the eigenvalue of larger absolute value, and RT2 of
+* smaller absolute value. If the eigenvectors are computed, then
+* on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence
+*
+* [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ]
+* [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]
+*
+* Arguments
+* =========
+*
+* A (input) COMPLEX*16
+* The ( 1, 1 ) element of input matrix.
+*
+* B (input) COMPLEX*16
+* The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element
+* is also given by B, since the 2-by-2 matrix is symmetric.
+*
+* C (input) COMPLEX*16
+* The ( 2, 2 ) element of input matrix.
+*
+* RT1 (output) COMPLEX*16
+* The eigenvalue of larger modulus.
+*
+* RT2 (output) COMPLEX*16
+* The eigenvalue of smaller modulus.
+*
+* EVSCAL (output) COMPLEX*16
+* The complex value by which the eigenvector matrix was scaled
+* to make it orthonormal. If EVSCAL is zero, the eigenvectors
+* were not computed. This means one of two things: the 2-by-2
+* matrix could not be diagonalized, or the norm of the matrix
+* of eigenvectors before scaling was larger than the threshold
+* value THRESH (set below).
+*
+* CS1 (output) COMPLEX*16
+* SN1 (output) COMPLEX*16
+* If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector
+* for RT1.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0D0 )
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D0 )
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = 0.5D0 )
+ DOUBLE PRECISION THRESH
+ PARAMETER ( THRESH = 0.1D0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION BABS, EVNORM, TABS, Z
+ COMPLEX*16 S, T, TMP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+*
+* Special case: The matrix is actually diagonal.
+* To avoid divide by zero later, we treat this case separately.
+*
+ IF( ABS( B ).EQ.ZERO ) THEN
+ RT1 = A
+ RT2 = C
+ IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
+ TMP = RT1
+ RT1 = RT2
+ RT2 = TMP
+ CS1 = ZERO
+ SN1 = ONE
+ ELSE
+ CS1 = ONE
+ SN1 = ZERO
+ END IF
+ ELSE
+*
+* Compute the eigenvalues and eigenvectors.
+* The characteristic equation is
+* lambda **2 - (A+C) lambda + (A*C - B*B)
+* and we solve it using the quadratic formula.
+*
+ S = ( A+C )*HALF
+ T = ( A-C )*HALF
+*
+* Take the square root carefully to avoid over/under flow.
+*
+ BABS = ABS( B )
+ TABS = ABS( T )
+ Z = MAX( BABS, TABS )
+ IF( Z.GT.ZERO )
+ $ T = Z*SQRT( ( T / Z )**2+( B / Z )**2 )
+*
+* Compute the two eigenvalues. RT1 and RT2 are exchanged
+* if necessary so that RT1 will have the greater magnitude.
+*
+ RT1 = S + T
+ RT2 = S - T
+ IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
+ TMP = RT1
+ RT1 = RT2
+ RT2 = TMP
+ END IF
+*
+* Choose CS1 = 1 and SN1 to satisfy the first equation, then
+* scale the components of this eigenvector so that the matrix
+* of eigenvectors X satisfies X * X' = I . (No scaling is
+* done if the norm of the eigenvalue matrix is less than THRESH.)
+*
+ SN1 = ( RT1-A ) / B
+ TABS = ABS( SN1 )
+ IF( TABS.GT.ONE ) THEN
+ T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 )
+ ELSE
+ T = SQRT( CONE+SN1*SN1 )
+ END IF
+ EVNORM = ABS( T )
+ IF( EVNORM.GE.THRESH ) THEN
+ EVSCAL = CONE / T
+ CS1 = EVSCAL
+ SN1 = SN1*EVSCAL
+ ELSE
+ EVSCAL = ZERO
+ END IF
+ END IF
+ RETURN
+*
+* End of ZLAESY
+*
+ END