diff options
author | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
---|---|---|
committer | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
commit | e1d39294aee16fa6db9ba079b14442358217db71 (patch) | |
tree | 30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zhegv.f | |
parent | 5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff) | |
download | lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2 lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip |
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zhegv.f')
-rw-r--r-- | SRC/zhegv.f | 271 |
1 files changed, 177 insertions, 94 deletions
diff --git a/SRC/zhegv.f b/SRC/zhegv.f index bee5fc1d..f67c9f9f 100644 --- a/SRC/zhegv.f +++ b/SRC/zhegv.f @@ -1,10 +1,185 @@ +*> \brief \b ZHEGST +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, +* LWORK, RWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBZ, UPLO +* INTEGER INFO, ITYPE, LDA, LDB, LWORK, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION RWORK( * ), W( * ) +* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +*>\details \b Purpose: +*>\verbatim +*> +*> ZHEGV computes all the eigenvalues, and optionally, the eigenvectors +*> of a complex generalized Hermitian-definite eigenproblem, of the form +*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. +*> Here A and B are assumed to be Hermitian and B is also +*> positive definite. +*> +*>\endverbatim +* +* Arguments +* ========= +* +*> \param[in] ITYPE +*> \verbatim +*> ITYPE is INTEGER +*> Specifies the problem type to be solved: +*> = 1: A*x = (lambda)*B*x +*> = 2: A*B*x = (lambda)*x +*> = 3: B*A*x = (lambda)*x +*> \endverbatim +*> +*> \param[in] JOBZ +*> \verbatim +*> JOBZ is CHARACTER*1 +*> = 'N': Compute eigenvalues only; +*> = 'V': Compute eigenvalues and eigenvectors. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> = 'U': Upper triangles of A and B are stored; +*> = 'L': Lower triangles of A and B are stored. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrices A and B. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX*16 array, dimension (LDA, N) +*> On entry, the Hermitian matrix A. If UPLO = 'U', the +*> leading N-by-N upper triangular part of A contains the +*> upper triangular part of the matrix A. If UPLO = 'L', +*> the leading N-by-N lower triangular part of A contains +*> the lower triangular part of the matrix A. +*> \endverbatim +*> \verbatim +*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the +*> matrix Z of eigenvectors. The eigenvectors are normalized +*> as follows: +*> if ITYPE = 1 or 2, Z**H*B*Z = I; +*> if ITYPE = 3, Z**H*inv(B)*Z = I. +*> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') +*> or the lower triangle (if UPLO='L') of A, including the +*> diagonal, is destroyed. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is COMPLEX*16 array, dimension (LDB, N) +*> On entry, the Hermitian positive definite matrix B. +*> If UPLO = 'U', the leading N-by-N upper triangular part of B +*> contains the upper triangular part of the matrix B. +*> If UPLO = 'L', the leading N-by-N lower triangular part of B +*> contains the lower triangular part of the matrix B. +*> \endverbatim +*> \verbatim +*> On exit, if INFO <= N, the part of B containing the matrix is +*> overwritten by the triangular factor U or L from the Cholesky +*> factorization B = U**H*U or B = L*L**H. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> If INFO = 0, the eigenvalues in ascending order. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The length of the array WORK. LWORK >= max(1,2*N-1). +*> For optimal efficiency, LWORK >= (NB+1)*N, +*> where NB is the blocksize for ZHETRD returned by ILAENV. +*> \endverbatim +*> \verbatim +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] RWORK +*> \verbatim +*> RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2)) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: ZPOTRF or ZHEEV returned an error code: +*> <= N: if INFO = i, ZHEEV failed to converge; +*> i off-diagonal elements of an intermediate +*> tridiagonal form did not converge to zero; +*> > N: if INFO = N + i, for 1 <= i <= N, then the leading +*> minor of order i of B is not positive definite. +*> The factorization of B could not be completed and +*> no eigenvalues or eigenvectors were computed. +*> \endverbatim +*> +* +* Authors +* ======= +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup complex16HEeigen +* +* ===================================================================== SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, $ LWORK, RWORK, INFO ) * -* -- LAPACK driver routine (version 3.3.1) -- +* -- LAPACK eigen routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2011 -- +* November 2011 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO @@ -15,98 +190,6 @@ COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) * .. * -* Purpose -* ======= -* -* ZHEGV computes all the eigenvalues, and optionally, the eigenvectors -* of a complex generalized Hermitian-definite eigenproblem, of the form -* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. -* Here A and B are assumed to be Hermitian and B is also -* positive definite. -* -* Arguments -* ========= -* -* ITYPE (input) INTEGER -* Specifies the problem type to be solved: -* = 1: A*x = (lambda)*B*x -* = 2: A*B*x = (lambda)*x -* = 3: B*A*x = (lambda)*x -* -* JOBZ (input) CHARACTER*1 -* = 'N': Compute eigenvalues only; -* = 'V': Compute eigenvalues and eigenvectors. -* -* UPLO (input) CHARACTER*1 -* = 'U': Upper triangles of A and B are stored; -* = 'L': Lower triangles of A and B are stored. -* -* N (input) INTEGER -* The order of the matrices A and B. N >= 0. -* -* A (input/output) COMPLEX*16 array, dimension (LDA, N) -* On entry, the Hermitian matrix A. If UPLO = 'U', the -* leading N-by-N upper triangular part of A contains the -* upper triangular part of the matrix A. If UPLO = 'L', -* the leading N-by-N lower triangular part of A contains -* the lower triangular part of the matrix A. -* -* On exit, if JOBZ = 'V', then if INFO = 0, A contains the -* matrix Z of eigenvectors. The eigenvectors are normalized -* as follows: -* if ITYPE = 1 or 2, Z**H*B*Z = I; -* if ITYPE = 3, Z**H*inv(B)*Z = I. -* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') -* or the lower triangle (if UPLO='L') of A, including the -* diagonal, is destroyed. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* B (input/output) COMPLEX*16 array, dimension (LDB, N) -* On entry, the Hermitian positive definite matrix B. -* If UPLO = 'U', the leading N-by-N upper triangular part of B -* contains the upper triangular part of the matrix B. -* If UPLO = 'L', the leading N-by-N lower triangular part of B -* contains the lower triangular part of the matrix B. -* -* On exit, if INFO <= N, the part of B containing the matrix is -* overwritten by the triangular factor U or L from the Cholesky -* factorization B = U**H*U or B = L*L**H. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,N). -* -* W (output) DOUBLE PRECISION array, dimension (N) -* If INFO = 0, the eigenvalues in ascending order. -* -* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The length of the array WORK. LWORK >= max(1,2*N-1). -* For optimal efficiency, LWORK >= (NB+1)*N, -* where NB is the blocksize for ZHETRD returned by ILAENV. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2)) -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: ZPOTRF or ZHEEV returned an error code: -* <= N: if INFO = i, ZHEEV failed to converge; -* i off-diagonal elements of an intermediate -* tridiagonal form did not converge to zero; -* > N: if INFO = N + i, for 1 <= i <= N, then the leading -* minor of order i of B is not positive definite. -* The factorization of B could not be completed and -* no eigenvalues or eigenvectors were computed. -* * ===================================================================== * * .. Parameters .. |