summaryrefslogtreecommitdiff
path: root/SRC/zhbgvx.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zhbgvx.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zhbgvx.f')
-rw-r--r--SRC/zhbgvx.f390
1 files changed, 390 insertions, 0 deletions
diff --git a/SRC/zhbgvx.f b/SRC/zhbgvx.f
new file mode 100644
index 00000000..28258d90
--- /dev/null
+++ b/SRC/zhbgvx.f
@@ -0,0 +1,390 @@
+ SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
+ $ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
+ $ LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, RANGE, UPLO
+ INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
+ $ N
+ DOUBLE PRECISION ABSTOL, VL, VU
+* ..
+* .. Array Arguments ..
+ INTEGER IFAIL( * ), IWORK( * )
+ DOUBLE PRECISION RWORK( * ), W( * )
+ COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
+ $ WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
+* of a complex generalized Hermitian-definite banded eigenproblem, of
+* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
+* and banded, and B is also positive definite. Eigenvalues and
+* eigenvectors can be selected by specifying either all eigenvalues,
+* a range of values or a range of indices for the desired eigenvalues.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* RANGE (input) CHARACTER*1
+* = 'A': all eigenvalues will be found;
+* = 'V': all eigenvalues in the half-open interval (VL,VU]
+* will be found;
+* = 'I': the IL-th through IU-th eigenvalues will be found.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangles of A and B are stored;
+* = 'L': Lower triangles of A and B are stored.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* KA (input) INTEGER
+* The number of superdiagonals of the matrix A if UPLO = 'U',
+* or the number of subdiagonals if UPLO = 'L'. KA >= 0.
+*
+* KB (input) INTEGER
+* The number of superdiagonals of the matrix B if UPLO = 'U',
+* or the number of subdiagonals if UPLO = 'L'. KB >= 0.
+*
+* AB (input/output) COMPLEX*16 array, dimension (LDAB, N)
+* On entry, the upper or lower triangle of the Hermitian band
+* matrix A, stored in the first ka+1 rows of the array. The
+* j-th column of A is stored in the j-th column of the array AB
+* as follows:
+* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
+*
+* On exit, the contents of AB are destroyed.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KA+1.
+*
+* BB (input/output) COMPLEX*16 array, dimension (LDBB, N)
+* On entry, the upper or lower triangle of the Hermitian band
+* matrix B, stored in the first kb+1 rows of the array. The
+* j-th column of B is stored in the j-th column of the array BB
+* as follows:
+* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
+* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
+*
+* On exit, the factor S from the split Cholesky factorization
+* B = S**H*S, as returned by ZPBSTF.
+*
+* LDBB (input) INTEGER
+* The leading dimension of the array BB. LDBB >= KB+1.
+*
+* Q (output) COMPLEX*16 array, dimension (LDQ, N)
+* If JOBZ = 'V', the n-by-n matrix used in the reduction of
+* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
+* and consequently C to tridiagonal form.
+* If JOBZ = 'N', the array Q is not referenced.
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. If JOBZ = 'N',
+* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
+*
+* VL (input) DOUBLE PRECISION
+* VU (input) DOUBLE PRECISION
+* If RANGE='V', the lower and upper bounds of the interval to
+* be searched for eigenvalues. VL < VU.
+* Not referenced if RANGE = 'A' or 'I'.
+*
+* IL (input) INTEGER
+* IU (input) INTEGER
+* If RANGE='I', the indices (in ascending order) of the
+* smallest and largest eigenvalues to be returned.
+* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
+* Not referenced if RANGE = 'A' or 'V'.
+*
+* ABSTOL (input) DOUBLE PRECISION
+* The absolute error tolerance for the eigenvalues.
+* An approximate eigenvalue is accepted as converged
+* when it is determined to lie in an interval [a,b]
+* of width less than or equal to
+*
+* ABSTOL + EPS * max( |a|,|b| ) ,
+*
+* where EPS is the machine precision. If ABSTOL is less than
+* or equal to zero, then EPS*|T| will be used in its place,
+* where |T| is the 1-norm of the tridiagonal matrix obtained
+* by reducing AP to tridiagonal form.
+*
+* Eigenvalues will be computed most accurately when ABSTOL is
+* set to twice the underflow threshold 2*DLAMCH('S'), not zero.
+* If this routine returns with INFO>0, indicating that some
+* eigenvectors did not converge, try setting ABSTOL to
+* 2*DLAMCH('S').
+*
+* M (output) INTEGER
+* The total number of eigenvalues found. 0 <= M <= N.
+* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
+*
+* W (output) DOUBLE PRECISION array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* Z (output) COMPLEX*16 array, dimension (LDZ, N)
+* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
+* eigenvectors, with the i-th column of Z holding the
+* eigenvector associated with W(i). The eigenvectors are
+* normalized so that Z**H*B*Z = I.
+* If JOBZ = 'N', then Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= N.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (N)
+*
+* RWORK (workspace) DOUBLE PRECISION array, dimension (7*N)
+*
+* IWORK (workspace) INTEGER array, dimension (5*N)
+*
+* IFAIL (output) INTEGER array, dimension (N)
+* If JOBZ = 'V', then if INFO = 0, the first M elements of
+* IFAIL are zero. If INFO > 0, then IFAIL contains the
+* indices of the eigenvectors that failed to converge.
+* If JOBZ = 'N', then IFAIL is not referenced.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, and i is:
+* <= N: then i eigenvectors failed to converge. Their
+* indices are stored in array IFAIL.
+* > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF
+* returned INFO = i: B is not positive definite.
+* The factorization of B could not be completed and
+* no eigenvalues or eigenvectors were computed.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0D+0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
+ CHARACTER ORDER, VECT
+ INTEGER I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
+ $ INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
+ DOUBLE PRECISION TMP1
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DSTEBZ, DSTERF, XERBLA, ZCOPY, ZGEMV,
+ $ ZHBGST, ZHBTRD, ZLACPY, ZPBSTF, ZSTEIN, ZSTEQR,
+ $ ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ UPPER = LSAME( UPLO, 'U' )
+ ALLEIG = LSAME( RANGE, 'A' )
+ VALEIG = LSAME( RANGE, 'V' )
+ INDEIG = LSAME( RANGE, 'I' )
+*
+ INFO = 0
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KA.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KA+1 ) THEN
+ INFO = -8
+ ELSE IF( LDBB.LT.KB+1 ) THEN
+ INFO = -10
+ ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
+ INFO = -12
+ ELSE
+ IF( VALEIG ) THEN
+ IF( N.GT.0 .AND. VU.LE.VL )
+ $ INFO = -14
+ ELSE IF( INDEIG ) THEN
+ IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
+ INFO = -15
+ ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
+ INFO = -16
+ END IF
+ END IF
+ END IF
+ IF( INFO.EQ.0) THEN
+ IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -21
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHBGVX', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ M = 0
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Form a split Cholesky factorization of B.
+*
+ CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
+ IF( INFO.NE.0 ) THEN
+ INFO = N + INFO
+ RETURN
+ END IF
+*
+* Transform problem to standard eigenvalue problem.
+*
+ CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
+ $ WORK, RWORK, IINFO )
+*
+* Solve the standard eigenvalue problem.
+* Reduce Hermitian band matrix to tridiagonal form.
+*
+ INDD = 1
+ INDE = INDD + N
+ INDRWK = INDE + N
+ INDWRK = 1
+ IF( WANTZ ) THEN
+ VECT = 'U'
+ ELSE
+ VECT = 'N'
+ END IF
+ CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
+ $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
+*
+* If all eigenvalues are desired and ABSTOL is less than or equal
+* to zero, then call DSTERF or ZSTEQR. If this fails for some
+* eigenvalue, then try DSTEBZ.
+*
+ TEST = .FALSE.
+ IF( INDEIG ) THEN
+ IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
+ TEST = .TRUE.
+ END IF
+ END IF
+ IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
+ CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
+ INDEE = INDRWK + 2*N
+ CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
+ IF( .NOT.WANTZ ) THEN
+ CALL DSTERF( N, W, RWORK( INDEE ), INFO )
+ ELSE
+ CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
+ CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
+ $ RWORK( INDRWK ), INFO )
+ IF( INFO.EQ.0 ) THEN
+ DO 10 I = 1, N
+ IFAIL( I ) = 0
+ 10 CONTINUE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ M = N
+ GO TO 30
+ END IF
+ INFO = 0
+ END IF
+*
+* Otherwise, call DSTEBZ and, if eigenvectors are desired,
+* call ZSTEIN.
+*
+ IF( WANTZ ) THEN
+ ORDER = 'B'
+ ELSE
+ ORDER = 'E'
+ END IF
+ INDIBL = 1
+ INDISP = INDIBL + N
+ INDIWK = INDISP + N
+ CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
+ $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
+ $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
+ $ IWORK( INDIWK ), INFO )
+*
+ IF( WANTZ ) THEN
+ CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
+ $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
+ $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
+*
+* Apply unitary matrix used in reduction to tridiagonal
+* form to eigenvectors returned by ZSTEIN.
+*
+ DO 20 J = 1, M
+ CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
+ CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
+ $ Z( 1, J ), 1 )
+ 20 CONTINUE
+ END IF
+*
+ 30 CONTINUE
+*
+* If eigenvalues are not in order, then sort them, along with
+* eigenvectors.
+*
+ IF( WANTZ ) THEN
+ DO 50 J = 1, M - 1
+ I = 0
+ TMP1 = W( J )
+ DO 40 JJ = J + 1, M
+ IF( W( JJ ).LT.TMP1 ) THEN
+ I = JJ
+ TMP1 = W( JJ )
+ END IF
+ 40 CONTINUE
+*
+ IF( I.NE.0 ) THEN
+ ITMP1 = IWORK( INDIBL+I-1 )
+ W( I ) = W( J )
+ IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
+ W( J ) = TMP1
+ IWORK( INDIBL+J-1 ) = ITMP1
+ CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
+ IF( INFO.NE.0 ) THEN
+ ITMP1 = IFAIL( I )
+ IFAIL( I ) = IFAIL( J )
+ IFAIL( J ) = ITMP1
+ END IF
+ END IF
+ 50 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of ZHBGVX
+*
+ END