summaryrefslogtreecommitdiff
path: root/SRC/zggevx.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zggevx.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zggevx.f')
-rw-r--r--SRC/zggevx.f652
1 files changed, 652 insertions, 0 deletions
diff --git a/SRC/zggevx.f b/SRC/zggevx.f
new file mode 100644
index 00000000..b12e513a
--- /dev/null
+++ b/SRC/zggevx.f
@@ -0,0 +1,652 @@
+ SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
+ $ ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
+ $ LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
+ $ WORK, LWORK, RWORK, IWORK, BWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER BALANC, JOBVL, JOBVR, SENSE
+ INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
+ DOUBLE PRECISION ABNRM, BBNRM
+* ..
+* .. Array Arguments ..
+ LOGICAL BWORK( * )
+ INTEGER IWORK( * )
+ DOUBLE PRECISION LSCALE( * ), RCONDE( * ), RCONDV( * ),
+ $ RSCALE( * ), RWORK( * )
+ COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
+ $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
+ $ WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZGGEVX computes for a pair of N-by-N complex nonsymmetric matrices
+* (A,B) the generalized eigenvalues, and optionally, the left and/or
+* right generalized eigenvectors.
+*
+* Optionally, it also computes a balancing transformation to improve
+* the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
+* LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
+* the eigenvalues (RCONDE), and reciprocal condition numbers for the
+* right eigenvectors (RCONDV).
+*
+* A generalized eigenvalue for a pair of matrices (A,B) is a scalar
+* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
+* singular. It is usually represented as the pair (alpha,beta), as
+* there is a reasonable interpretation for beta=0, and even for both
+* being zero.
+*
+* The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
+* of (A,B) satisfies
+* A * v(j) = lambda(j) * B * v(j) .
+* The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
+* of (A,B) satisfies
+* u(j)**H * A = lambda(j) * u(j)**H * B.
+* where u(j)**H is the conjugate-transpose of u(j).
+*
+*
+* Arguments
+* =========
+*
+* BALANC (input) CHARACTER*1
+* Specifies the balance option to be performed:
+* = 'N': do not diagonally scale or permute;
+* = 'P': permute only;
+* = 'S': scale only;
+* = 'B': both permute and scale.
+* Computed reciprocal condition numbers will be for the
+* matrices after permuting and/or balancing. Permuting does
+* not change condition numbers (in exact arithmetic), but
+* balancing does.
+*
+* JOBVL (input) CHARACTER*1
+* = 'N': do not compute the left generalized eigenvectors;
+* = 'V': compute the left generalized eigenvectors.
+*
+* JOBVR (input) CHARACTER*1
+* = 'N': do not compute the right generalized eigenvectors;
+* = 'V': compute the right generalized eigenvectors.
+*
+* SENSE (input) CHARACTER*1
+* Determines which reciprocal condition numbers are computed.
+* = 'N': none are computed;
+* = 'E': computed for eigenvalues only;
+* = 'V': computed for eigenvectors only;
+* = 'B': computed for eigenvalues and eigenvectors.
+*
+* N (input) INTEGER
+* The order of the matrices A, B, VL, and VR. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA, N)
+* On entry, the matrix A in the pair (A,B).
+* On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
+* or both, then A contains the first part of the complex Schur
+* form of the "balanced" versions of the input A and B.
+*
+* LDA (input) INTEGER
+* The leading dimension of A. LDA >= max(1,N).
+*
+* B (input/output) COMPLEX*16 array, dimension (LDB, N)
+* On entry, the matrix B in the pair (A,B).
+* On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
+* or both, then B contains the second part of the complex
+* Schur form of the "balanced" versions of the input A and B.
+*
+* LDB (input) INTEGER
+* The leading dimension of B. LDB >= max(1,N).
+*
+* ALPHA (output) COMPLEX*16 array, dimension (N)
+* BETA (output) COMPLEX*16 array, dimension (N)
+* On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
+* eigenvalues.
+*
+* Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
+* underflow, and BETA(j) may even be zero. Thus, the user
+* should avoid naively computing the ratio ALPHA/BETA.
+* However, ALPHA will be always less than and usually
+* comparable with norm(A) in magnitude, and BETA always less
+* than and usually comparable with norm(B).
+*
+* VL (output) COMPLEX*16 array, dimension (LDVL,N)
+* If JOBVL = 'V', the left generalized eigenvectors u(j) are
+* stored one after another in the columns of VL, in the same
+* order as their eigenvalues.
+* Each eigenvector will be scaled so the largest component
+* will have abs(real part) + abs(imag. part) = 1.
+* Not referenced if JOBVL = 'N'.
+*
+* LDVL (input) INTEGER
+* The leading dimension of the matrix VL. LDVL >= 1, and
+* if JOBVL = 'V', LDVL >= N.
+*
+* VR (output) COMPLEX*16 array, dimension (LDVR,N)
+* If JOBVR = 'V', the right generalized eigenvectors v(j) are
+* stored one after another in the columns of VR, in the same
+* order as their eigenvalues.
+* Each eigenvector will be scaled so the largest component
+* will have abs(real part) + abs(imag. part) = 1.
+* Not referenced if JOBVR = 'N'.
+*
+* LDVR (input) INTEGER
+* The leading dimension of the matrix VR. LDVR >= 1, and
+* if JOBVR = 'V', LDVR >= N.
+*
+* ILO (output) INTEGER
+* IHI (output) INTEGER
+* ILO and IHI are integer values such that on exit
+* A(i,j) = 0 and B(i,j) = 0 if i > j and
+* j = 1,...,ILO-1 or i = IHI+1,...,N.
+* If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
+*
+* LSCALE (output) DOUBLE PRECISION array, dimension (N)
+* Details of the permutations and scaling factors applied
+* to the left side of A and B. If PL(j) is the index of the
+* row interchanged with row j, and DL(j) is the scaling
+* factor applied to row j, then
+* LSCALE(j) = PL(j) for j = 1,...,ILO-1
+* = DL(j) for j = ILO,...,IHI
+* = PL(j) for j = IHI+1,...,N.
+* The order in which the interchanges are made is N to IHI+1,
+* then 1 to ILO-1.
+*
+* RSCALE (output) DOUBLE PRECISION array, dimension (N)
+* Details of the permutations and scaling factors applied
+* to the right side of A and B. If PR(j) is the index of the
+* column interchanged with column j, and DR(j) is the scaling
+* factor applied to column j, then
+* RSCALE(j) = PR(j) for j = 1,...,ILO-1
+* = DR(j) for j = ILO,...,IHI
+* = PR(j) for j = IHI+1,...,N
+* The order in which the interchanges are made is N to IHI+1,
+* then 1 to ILO-1.
+*
+* ABNRM (output) DOUBLE PRECISION
+* The one-norm of the balanced matrix A.
+*
+* BBNRM (output) DOUBLE PRECISION
+* The one-norm of the balanced matrix B.
+*
+* RCONDE (output) DOUBLE PRECISION array, dimension (N)
+* If SENSE = 'E' or 'B', the reciprocal condition numbers of
+* the eigenvalues, stored in consecutive elements of the array.
+* If SENSE = 'N' or 'V', RCONDE is not referenced.
+*
+* RCONDV (output) DOUBLE PRECISION array, dimension (N)
+* If JOB = 'V' or 'B', the estimated reciprocal condition
+* numbers of the eigenvectors, stored in consecutive elements
+* of the array. If the eigenvalues cannot be reordered to
+* compute RCONDV(j), RCONDV(j) is set to 0; this can only occur
+* when the true value would be very small anyway.
+* If SENSE = 'N' or 'E', RCONDV is not referenced.
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,2*N).
+* If SENSE = 'E', LWORK >= max(1,4*N).
+* If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* RWORK (workspace) REAL array, dimension (lrwork)
+* lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B',
+* and at least max(1,2*N) otherwise.
+* Real workspace.
+*
+* IWORK (workspace) INTEGER array, dimension (N+2)
+* If SENSE = 'E', IWORK is not referenced.
+*
+* BWORK (workspace) LOGICAL array, dimension (N)
+* If SENSE = 'N', BWORK is not referenced.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* = 1,...,N:
+* The QZ iteration failed. No eigenvectors have been
+* calculated, but ALPHA(j) and BETA(j) should be correct
+* for j=INFO+1,...,N.
+* > N: =N+1: other than QZ iteration failed in ZHGEQZ.
+* =N+2: error return from ZTGEVC.
+*
+* Further Details
+* ===============
+*
+* Balancing a matrix pair (A,B) includes, first, permuting rows and
+* columns to isolate eigenvalues, second, applying diagonal similarity
+* transformation to the rows and columns to make the rows and columns
+* as close in norm as possible. The computed reciprocal condition
+* numbers correspond to the balanced matrix. Permuting rows and columns
+* will not change the condition numbers (in exact arithmetic) but
+* diagonal scaling will. For further explanation of balancing, see
+* section 4.11.1.2 of LAPACK Users' Guide.
+*
+* An approximate error bound on the chordal distance between the i-th
+* computed generalized eigenvalue w and the corresponding exact
+* eigenvalue lambda is
+*
+* chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
+*
+* An approximate error bound for the angle between the i-th computed
+* eigenvector VL(i) or VR(i) is given by
+*
+* EPS * norm(ABNRM, BBNRM) / DIF(i).
+*
+* For further explanation of the reciprocal condition numbers RCONDE
+* and RCONDV, see section 4.11 of LAPACK User's Guide.
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
+ $ WANTSB, WANTSE, WANTSN, WANTSV
+ CHARACTER CHTEMP
+ INTEGER I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
+ $ ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, MINWRK
+ DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
+ $ SMLNUM, TEMP
+ COMPLEX*16 X
+* ..
+* .. Local Arrays ..
+ LOGICAL LDUMMA( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, DLASCL, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL,
+ $ ZGGHRD, ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC,
+ $ ZTGSNA, ZUNGQR, ZUNMQR
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION ABS1
+* ..
+* .. Statement Function definitions ..
+ ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
+* ..
+* .. Executable Statements ..
+*
+* Decode the input arguments
+*
+ IF( LSAME( JOBVL, 'N' ) ) THEN
+ IJOBVL = 1
+ ILVL = .FALSE.
+ ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
+ IJOBVL = 2
+ ILVL = .TRUE.
+ ELSE
+ IJOBVL = -1
+ ILVL = .FALSE.
+ END IF
+*
+ IF( LSAME( JOBVR, 'N' ) ) THEN
+ IJOBVR = 1
+ ILVR = .FALSE.
+ ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
+ IJOBVR = 2
+ ILVR = .TRUE.
+ ELSE
+ IJOBVR = -1
+ ILVR = .FALSE.
+ END IF
+ ILV = ILVL .OR. ILVR
+*
+ NOSCL = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
+ WANTSN = LSAME( SENSE, 'N' )
+ WANTSE = LSAME( SENSE, 'E' )
+ WANTSV = LSAME( SENSE, 'V' )
+ WANTSB = LSAME( SENSE, 'B' )
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( NOSCL .OR. LSAME( BALANC,'S' ) .OR.
+ $ LSAME( BALANC, 'B' ) ) ) THEN
+ INFO = -1
+ ELSE IF( IJOBVL.LE.0 ) THEN
+ INFO = -2
+ ELSE IF( IJOBVR.LE.0 ) THEN
+ INFO = -3
+ ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
+ $ THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
+ INFO = -13
+ ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
+ INFO = -15
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* NB refers to the optimal block size for the immediately
+* following subroutine, as returned by ILAENV. The workspace is
+* computed assuming ILO = 1 and IHI = N, the worst case.)
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ ELSE
+ MINWRK = 2*N
+ IF( WANTSE ) THEN
+ MINWRK = 4*N
+ ELSE IF( WANTSV .OR. WANTSB ) THEN
+ MINWRK = 2*N*( N + 1)
+ END IF
+ MAXWRK = MINWRK
+ MAXWRK = MAX( MAXWRK,
+ $ N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
+ MAXWRK = MAX( MAXWRK,
+ $ N + N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
+ IF( ILVL ) THEN
+ MAXWRK = MAX( MAXWRK, N +
+ $ N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, 0 ) )
+ END IF
+ END IF
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -25
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGGEVX', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SQRT( SMLNUM ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
+ ILASCL = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ ANRMTO = SMLNUM
+ ILASCL = .TRUE.
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ ANRMTO = BIGNUM
+ ILASCL = .TRUE.
+ END IF
+ IF( ILASCL )
+ $ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
+*
+* Scale B if max element outside range [SMLNUM,BIGNUM]
+*
+ BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
+ ILBSCL = .FALSE.
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+ BNRMTO = SMLNUM
+ ILBSCL = .TRUE.
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+ BNRMTO = BIGNUM
+ ILBSCL = .TRUE.
+ END IF
+ IF( ILBSCL )
+ $ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
+*
+* Permute and/or balance the matrix pair (A,B)
+* (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
+*
+ CALL ZGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
+ $ RWORK, IERR )
+*
+* Compute ABNRM and BBNRM
+*
+ ABNRM = ZLANGE( '1', N, N, A, LDA, RWORK( 1 ) )
+ IF( ILASCL ) THEN
+ RWORK( 1 ) = ABNRM
+ CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, RWORK( 1 ), 1,
+ $ IERR )
+ ABNRM = RWORK( 1 )
+ END IF
+*
+ BBNRM = ZLANGE( '1', N, N, B, LDB, RWORK( 1 ) )
+ IF( ILBSCL ) THEN
+ RWORK( 1 ) = BBNRM
+ CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, RWORK( 1 ), 1,
+ $ IERR )
+ BBNRM = RWORK( 1 )
+ END IF
+*
+* Reduce B to triangular form (QR decomposition of B)
+* (Complex Workspace: need N, prefer N*NB )
+*
+ IROWS = IHI + 1 - ILO
+ IF( ILV .OR. .NOT.WANTSN ) THEN
+ ICOLS = N + 1 - ILO
+ ELSE
+ ICOLS = IROWS
+ END IF
+ ITAU = 1
+ IWRK = ITAU + IROWS
+ CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
+ $ WORK( IWRK ), LWORK+1-IWRK, IERR )
+*
+* Apply the unitary transformation to A
+* (Complex Workspace: need N, prefer N*NB)
+*
+ CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
+ $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
+ $ LWORK+1-IWRK, IERR )
+*
+* Initialize VL and/or VR
+* (Workspace: need N, prefer N*NB)
+*
+ IF( ILVL ) THEN
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
+ IF( IROWS.GT.1 ) THEN
+ CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
+ $ VL( ILO+1, ILO ), LDVL )
+ END IF
+ CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
+ $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
+ END IF
+*
+ IF( ILVR )
+ $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
+*
+* Reduce to generalized Hessenberg form
+* (Workspace: none needed)
+*
+ IF( ILV .OR. .NOT.WANTSN ) THEN
+*
+* Eigenvectors requested -- work on whole matrix.
+*
+ CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
+ $ LDVL, VR, LDVR, IERR )
+ ELSE
+ CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
+ $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
+ END IF
+*
+* Perform QZ algorithm (Compute eigenvalues, and optionally, the
+* Schur forms and Schur vectors)
+* (Complex Workspace: need N)
+* (Real Workspace: need N)
+*
+ IWRK = ITAU
+ IF( ILV .OR. .NOT.WANTSN ) THEN
+ CHTEMP = 'S'
+ ELSE
+ CHTEMP = 'E'
+ END IF
+*
+ CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
+ $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
+ $ LWORK+1-IWRK, RWORK, IERR )
+ IF( IERR.NE.0 ) THEN
+ IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
+ INFO = IERR
+ ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
+ INFO = IERR - N
+ ELSE
+ INFO = N + 1
+ END IF
+ GO TO 90
+ END IF
+*
+* Compute Eigenvectors and estimate condition numbers if desired
+* ZTGEVC: (Complex Workspace: need 2*N )
+* (Real Workspace: need 2*N )
+* ZTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B')
+* (Integer Workspace: need N+2 )
+*
+ IF( ILV .OR. .NOT.WANTSN ) THEN
+ IF( ILV ) THEN
+ IF( ILVL ) THEN
+ IF( ILVR ) THEN
+ CHTEMP = 'B'
+ ELSE
+ CHTEMP = 'L'
+ END IF
+ ELSE
+ CHTEMP = 'R'
+ END IF
+*
+ CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
+ $ LDVL, VR, LDVR, N, IN, WORK( IWRK ), RWORK,
+ $ IERR )
+ IF( IERR.NE.0 ) THEN
+ INFO = N + 2
+ GO TO 90
+ END IF
+ END IF
+*
+ IF( .NOT.WANTSN ) THEN
+*
+* compute eigenvectors (DTGEVC) and estimate condition
+* numbers (DTGSNA). Note that the definition of the condition
+* number is not invariant under transformation (u,v) to
+* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
+* Schur form (S,T), Q and Z are orthogonal matrices. In order
+* to avoid using extra 2*N*N workspace, we have to
+* re-calculate eigenvectors and estimate the condition numbers
+* one at a time.
+*
+ DO 20 I = 1, N
+*
+ DO 10 J = 1, N
+ BWORK( J ) = .FALSE.
+ 10 CONTINUE
+ BWORK( I ) = .TRUE.
+*
+ IWRK = N + 1
+ IWRK1 = IWRK + N
+*
+ IF( WANTSE .OR. WANTSB ) THEN
+ CALL ZTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
+ $ WORK( 1 ), N, WORK( IWRK ), N, 1, M,
+ $ WORK( IWRK1 ), RWORK, IERR )
+ IF( IERR.NE.0 ) THEN
+ INFO = N + 2
+ GO TO 90
+ END IF
+ END IF
+*
+ CALL ZTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
+ $ WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
+ $ RCONDV( I ), 1, M, WORK( IWRK1 ),
+ $ LWORK-IWRK1+1, IWORK, IERR )
+*
+ 20 CONTINUE
+ END IF
+ END IF
+*
+* Undo balancing on VL and VR and normalization
+* (Workspace: none needed)
+*
+ IF( ILVL ) THEN
+ CALL ZGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
+ $ LDVL, IERR )
+*
+ DO 50 JC = 1, N
+ TEMP = ZERO
+ DO 30 JR = 1, N
+ TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
+ 30 CONTINUE
+ IF( TEMP.LT.SMLNUM )
+ $ GO TO 50
+ TEMP = ONE / TEMP
+ DO 40 JR = 1, N
+ VL( JR, JC ) = VL( JR, JC )*TEMP
+ 40 CONTINUE
+ 50 CONTINUE
+ END IF
+*
+ IF( ILVR ) THEN
+ CALL ZGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
+ $ LDVR, IERR )
+ DO 80 JC = 1, N
+ TEMP = ZERO
+ DO 60 JR = 1, N
+ TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
+ 60 CONTINUE
+ IF( TEMP.LT.SMLNUM )
+ $ GO TO 80
+ TEMP = ONE / TEMP
+ DO 70 JR = 1, N
+ VR( JR, JC ) = VR( JR, JC )*TEMP
+ 70 CONTINUE
+ 80 CONTINUE
+ END IF
+*
+* Undo scaling if necessary
+*
+ IF( ILASCL )
+ $ CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
+*
+ IF( ILBSCL )
+ $ CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
+*
+ 90 CONTINUE
+ WORK( 1 ) = MAXWRK
+*
+ RETURN
+*
+* End of ZGGEVX
+*
+ END