summaryrefslogtreecommitdiff
path: root/SRC/zgges3.f
diff options
context:
space:
mode:
authorphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-02-24 23:50:54 +0000
committerphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-02-24 23:50:54 +0000
commit6273f536d15680513e8cddfc4d8baa88ad2c64df (patch)
treea7f3303149eda2542ad7cf05fb470b60872e0161 /SRC/zgges3.f
parentc95be035b79cca2ba9e68c961d537344c5390765 (diff)
downloadlapack-6273f536d15680513e8cddfc4d8baa88ad2c64df.tar.gz
lapack-6273f536d15680513e8cddfc4d8baa88ad2c64df.tar.bz2
lapack-6273f536d15680513e8cddfc4d8baa88ad2c64df.zip
Add xGGHD3: blocked Hessenberg reduction, code from Daniel Kressner.
Add xGGES3 and xGGEV3: computation of the Schur form, the Schur vectors, and the generalized eigenvalues using the blocked Hessenberg reduction.
Diffstat (limited to 'SRC/zgges3.f')
-rw-r--r--SRC/zgges3.f595
1 files changed, 595 insertions, 0 deletions
diff --git a/SRC/zgges3.f b/SRC/zgges3.f
new file mode 100644
index 00000000..d4455148
--- /dev/null
+++ b/SRC/zgges3.f
@@ -0,0 +1,595 @@
+*> \brief <b> ZGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGGES3 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges3.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges3.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges3.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
+* $ LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
+* $ WORK, LWORK, RWORK, BWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBVSL, JOBVSR, SORT
+* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
+* ..
+* .. Array Arguments ..
+* LOGICAL BWORK( * )
+* DOUBLE PRECISION RWORK( * )
+* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
+* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
+* $ WORK( * )
+* ..
+* .. Function Arguments ..
+* LOGICAL SELCTG
+* EXTERNAL SELCTG
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGGES3 computes for a pair of N-by-N complex nonsymmetric matrices
+*> (A,B), the generalized eigenvalues, the generalized complex Schur
+*> form (S, T), and optionally left and/or right Schur vectors (VSL
+*> and VSR). This gives the generalized Schur factorization
+*>
+*> (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
+*>
+*> where (VSR)**H is the conjugate-transpose of VSR.
+*>
+*> Optionally, it also orders the eigenvalues so that a selected cluster
+*> of eigenvalues appears in the leading diagonal blocks of the upper
+*> triangular matrix S and the upper triangular matrix T. The leading
+*> columns of VSL and VSR then form an unitary basis for the
+*> corresponding left and right eigenspaces (deflating subspaces).
+*>
+*> (If only the generalized eigenvalues are needed, use the driver
+*> ZGGEV instead, which is faster.)
+*>
+*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
+*> or a ratio alpha/beta = w, such that A - w*B is singular. It is
+*> usually represented as the pair (alpha,beta), as there is a
+*> reasonable interpretation for beta=0, and even for both being zero.
+*>
+*> A pair of matrices (S,T) is in generalized complex Schur form if S
+*> and T are upper triangular and, in addition, the diagonal elements
+*> of T are non-negative real numbers.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBVSL
+*> \verbatim
+*> JOBVSL is CHARACTER*1
+*> = 'N': do not compute the left Schur vectors;
+*> = 'V': compute the left Schur vectors.
+*> \endverbatim
+*>
+*> \param[in] JOBVSR
+*> \verbatim
+*> JOBVSR is CHARACTER*1
+*> = 'N': do not compute the right Schur vectors;
+*> = 'V': compute the right Schur vectors.
+*> \endverbatim
+*>
+*> \param[in] SORT
+*> \verbatim
+*> SORT is CHARACTER*1
+*> Specifies whether or not to order the eigenvalues on the
+*> diagonal of the generalized Schur form.
+*> = 'N': Eigenvalues are not ordered;
+*> = 'S': Eigenvalues are ordered (see SELCTG).
+*> \endverbatim
+*>
+*> \param[in] SELCTG
+*> \verbatim
+*> SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
+*> SELCTG must be declared EXTERNAL in the calling subroutine.
+*> If SORT = 'N', SELCTG is not referenced.
+*> If SORT = 'S', SELCTG is used to select eigenvalues to sort
+*> to the top left of the Schur form.
+*> An eigenvalue ALPHA(j)/BETA(j) is selected if
+*> SELCTG(ALPHA(j),BETA(j)) is true.
+*>
+*> Note that a selected complex eigenvalue may no longer satisfy
+*> SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
+*> ordering may change the value of complex eigenvalues
+*> (especially if the eigenvalue is ill-conditioned), in this
+*> case INFO is set to N+2 (See INFO below).
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrices A, B, VSL, and VSR. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA, N)
+*> On entry, the first of the pair of matrices.
+*> On exit, A has been overwritten by its generalized Schur
+*> form S.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB, N)
+*> On entry, the second of the pair of matrices.
+*> On exit, B has been overwritten by its generalized Schur
+*> form T.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] SDIM
+*> \verbatim
+*> SDIM is INTEGER
+*> If SORT = 'N', SDIM = 0.
+*> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
+*> for which SELCTG is true.
+*> \endverbatim
+*>
+*> \param[out] ALPHA
+*> \verbatim
+*> ALPHA is COMPLEX*16 array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] BETA
+*> \verbatim
+*> BETA is COMPLEX*16 array, dimension (N)
+*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
+*> generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j),
+*> j=1,...,N are the diagonals of the complex Schur form (A,B)
+*> output by ZGGES3. The BETA(j) will be non-negative real.
+*>
+*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
+*> underflow, and BETA(j) may even be zero. Thus, the user
+*> should avoid naively computing the ratio alpha/beta.
+*> However, ALPHA will be always less than and usually
+*> comparable with norm(A) in magnitude, and BETA always less
+*> than and usually comparable with norm(B).
+*> \endverbatim
+*>
+*> \param[out] VSL
+*> \verbatim
+*> VSL is COMPLEX*16 array, dimension (LDVSL,N)
+*> If JOBVSL = 'V', VSL will contain the left Schur vectors.
+*> Not referenced if JOBVSL = 'N'.
+*> \endverbatim
+*>
+*> \param[in] LDVSL
+*> \verbatim
+*> LDVSL is INTEGER
+*> The leading dimension of the matrix VSL. LDVSL >= 1, and
+*> if JOBVSL = 'V', LDVSL >= N.
+*> \endverbatim
+*>
+*> \param[out] VSR
+*> \verbatim
+*> VSR is COMPLEX*16 array, dimension (LDVSR,N)
+*> If JOBVSR = 'V', VSR will contain the right Schur vectors.
+*> Not referenced if JOBVSR = 'N'.
+*> \endverbatim
+*>
+*> \param[in] LDVSR
+*> \verbatim
+*> LDVSR is INTEGER
+*> The leading dimension of the matrix VSR. LDVSR >= 1, and
+*> if JOBVSR = 'V', LDVSR >= N.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (8*N)
+*> \endverbatim
+*>
+*> \param[out] BWORK
+*> \verbatim
+*> BWORK is LOGICAL array, dimension (N)
+*> Not referenced if SORT = 'N'.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> =1,...,N:
+*> The QZ iteration failed. (A,B) are not in Schur
+*> form, but ALPHA(j) and BETA(j) should be correct for
+*> j=INFO+1,...,N.
+*> > N: =N+1: other than QZ iteration failed in ZHGEQZ
+*> =N+2: after reordering, roundoff changed values of
+*> some complex eigenvalues so that leading
+*> eigenvalues in the Generalized Schur form no
+*> longer satisfy SELCTG=.TRUE. This could also
+*> be caused due to scaling.
+*> =N+3: reordering failed in ZTGSEN.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date January 2015
+*
+*> \ingroup complex16GEeigen
+*
+* =====================================================================
+ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
+ $ LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
+ $ WORK, LWORK, RWORK, BWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* January 2015
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBVSL, JOBVSR, SORT
+ INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
+* ..
+* .. Array Arguments ..
+ LOGICAL BWORK( * )
+ DOUBLE PRECISION RWORK( * )
+ COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
+ $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
+ $ WORK( * )
+* ..
+* .. Function Arguments ..
+ LOGICAL SELCTG
+ EXTERNAL SELCTG
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
+ $ CONE = ( 1.0D0, 0.0D0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
+ $ LQUERY, WANTST
+ INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
+ $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT
+ DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
+ $ PVSR, SMLNUM
+* ..
+* .. Local Arrays ..
+ INTEGER IDUM( 1 )
+ DOUBLE PRECISION DIF( 2 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3,
+ $ ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
+ $ ZUNMQR
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, ZLANGE
+ EXTERNAL LSAME, DLAMCH, ZLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Decode the input arguments
+*
+ IF( LSAME( JOBVSL, 'N' ) ) THEN
+ IJOBVL = 1
+ ILVSL = .FALSE.
+ ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
+ IJOBVL = 2
+ ILVSL = .TRUE.
+ ELSE
+ IJOBVL = -1
+ ILVSL = .FALSE.
+ END IF
+*
+ IF( LSAME( JOBVSR, 'N' ) ) THEN
+ IJOBVR = 1
+ ILVSR = .FALSE.
+ ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
+ IJOBVR = 2
+ ILVSR = .TRUE.
+ ELSE
+ IJOBVR = -1
+ ILVSR = .FALSE.
+ END IF
+*
+ WANTST = LSAME( SORT, 'S' )
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( IJOBVL.LE.0 ) THEN
+ INFO = -1
+ ELSE IF( IJOBVR.LE.0 ) THEN
+ INFO = -2
+ ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
+ INFO = -14
+ ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
+ INFO = -16
+ ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
+ INFO = -18
+ END IF
+*
+* Compute workspace
+*
+ IF( INFO.EQ.0 ) THEN
+ CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
+ LWKOPT = MAX( 1, N + INT ( WORK( 1 ) ) )
+ CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
+ $ -1, IERR )
+ LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
+ IF( ILVSL ) THEN
+ CALL ZUNGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
+ LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
+ END IF
+ CALL ZGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
+ $ LDVSL, VSR, LDVSR, WORK, -1, IERR )
+ LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
+ CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
+ $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
+ $ -1, RWORK, IERR )
+ LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
+ IF( WANTST ) THEN
+ CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
+ $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM,
+ $ PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR )
+ LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
+ END IF
+ WORK( 1 ) = DCMPLX( WKOPT )
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGGES3 ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ SDIM = 0
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SQRT( SMLNUM ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
+ ILASCL = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ ANRMTO = SMLNUM
+ ILASCL = .TRUE.
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ ANRMTO = BIGNUM
+ ILASCL = .TRUE.
+ END IF
+*
+ IF( ILASCL )
+ $ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
+*
+* Scale B if max element outside range [SMLNUM,BIGNUM]
+*
+ BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
+ ILBSCL = .FALSE.
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+ BNRMTO = SMLNUM
+ ILBSCL = .TRUE.
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+ BNRMTO = BIGNUM
+ ILBSCL = .TRUE.
+ END IF
+*
+ IF( ILBSCL )
+ $ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
+*
+* Permute the matrix to make it more nearly triangular
+*
+ ILEFT = 1
+ IRIGHT = N + 1
+ IRWRK = IRIGHT + N
+ CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
+ $ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
+*
+* Reduce B to triangular form (QR decomposition of B)
+*
+ IROWS = IHI + 1 - ILO
+ ICOLS = N + 1 - ILO
+ ITAU = 1
+ IWRK = ITAU + IROWS
+ CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
+ $ WORK( IWRK ), LWORK+1-IWRK, IERR )
+*
+* Apply the orthogonal transformation to matrix A
+*
+ CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
+ $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
+ $ LWORK+1-IWRK, IERR )
+*
+* Initialize VSL
+*
+ IF( ILVSL ) THEN
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
+ IF( IROWS.GT.1 ) THEN
+ CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
+ $ VSL( ILO+1, ILO ), LDVSL )
+ END IF
+ CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
+ $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
+ END IF
+*
+* Initialize VSR
+*
+ IF( ILVSR )
+ $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
+*
+* Reduce to generalized Hessenberg form
+*
+ CALL ZGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
+ $ LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK, IERR )
+*
+ SDIM = 0
+*
+* Perform QZ algorithm, computing Schur vectors if desired
+*
+ IWRK = ITAU
+ CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
+ $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
+ $ LWORK+1-IWRK, RWORK( IRWRK ), IERR )
+ IF( IERR.NE.0 ) THEN
+ IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
+ INFO = IERR
+ ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
+ INFO = IERR - N
+ ELSE
+ INFO = N + 1
+ END IF
+ GO TO 30
+ END IF
+*
+* Sort eigenvalues ALPHA/BETA if desired
+*
+ IF( WANTST ) THEN
+*
+* Undo scaling on eigenvalues before selecting
+*
+ IF( ILASCL )
+ $ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
+ IF( ILBSCL )
+ $ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
+*
+* Select eigenvalues
+*
+ DO 10 I = 1, N
+ BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
+ 10 CONTINUE
+*
+ CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
+ $ BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
+ $ DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
+ IF( IERR.EQ.1 )
+ $ INFO = N + 3
+*
+ END IF
+*
+* Apply back-permutation to VSL and VSR
+*
+ IF( ILVSL )
+ $ CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
+ $ RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
+ IF( ILVSR )
+ $ CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
+ $ RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
+*
+* Undo scaling
+*
+ IF( ILASCL ) THEN
+ CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
+ CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
+ END IF
+*
+ IF( ILBSCL ) THEN
+ CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
+ CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
+ END IF
+*
+ IF( WANTST ) THEN
+*
+* Check if reordering is correct
+*
+ LASTSL = .TRUE.
+ SDIM = 0
+ DO 20 I = 1, N
+ CURSL = SELCTG( ALPHA( I ), BETA( I ) )
+ IF( CURSL )
+ $ SDIM = SDIM + 1
+ IF( CURSL .AND. .NOT.LASTSL )
+ $ INFO = N + 2
+ LASTSL = CURSL
+ 20 CONTINUE
+*
+ END IF
+*
+ 30 CONTINUE
+*
+ WORK( 1 ) = DCMPLX( LWKOPT )
+*
+ RETURN
+*
+* End of ZGGES3
+*
+ END