summaryrefslogtreecommitdiff
path: root/SRC/zgbsv.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zgbsv.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zgbsv.f')
-rw-r--r--SRC/zgbsv.f240
1 files changed, 157 insertions, 83 deletions
diff --git a/SRC/zgbsv.f b/SRC/zgbsv.f
index be9c9cc1..eb3243e1 100644
--- a/SRC/zgbsv.f
+++ b/SRC/zgbsv.f
@@ -1,99 +1,173 @@
- SUBROUTINE ZGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
+*> \brief <b> ZGBSV computes the solution to system of linear equations A * X = B for GB matrices</b>
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX*16 AB( LDAB, * ), B( LDB, * )
+* ..
+*
+* Purpose
+* =======
*
-* -- LAPACK driver routine (version 3.2) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZGBSV computes the solution to a complex system of linear equations
+*> A * X = B, where A is a band matrix of order N with KL subdiagonals
+*> and KU superdiagonals, and X and B are N-by-NRHS matrices.
+*>
+*> The LU decomposition with partial pivoting and row interchanges is
+*> used to factor A as A = L * U, where L is a product of permutation
+*> and unit lower triangular matrices with KL subdiagonals, and U is
+*> upper triangular with KL+KU superdiagonals. The factored form of A
+*> is then used to solve the system of equations A * X = B.
+*>
+*>\endverbatim
*
-* .. Scalar Arguments ..
- INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
-* ..
-* .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 AB( LDAB, * ), B( LDB, * )
-* ..
+* Arguments
+* =========
*
-* Purpose
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KL
+*> \verbatim
+*> KL is INTEGER
+*> The number of subdiagonals within the band of A. KL >= 0.
+*> \endverbatim
+*>
+*> \param[in] KU
+*> \verbatim
+*> KU is INTEGER
+*> The number of superdiagonals within the band of A. KU >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrix B. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is COMPLEX*16 array, dimension (LDAB,N)
+*> On entry, the matrix A in band storage, in rows KL+1 to
+*> 2*KL+KU+1; rows 1 to KL of the array need not be set.
+*> The j-th column of A is stored in the j-th column of the
+*> array AB as follows:
+*> AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
+*> On exit, details of the factorization: U is stored as an
+*> upper triangular band matrix with KL+KU superdiagonals in
+*> rows 1 to KL+KU+1, and the multipliers used during the
+*> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
+*> See below for further details.
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> The pivot indices that define the permutation matrix P;
+*> row i of the matrix was interchanged with row IPIV(i).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
+*> has been completed, but the factor U is exactly
+*> singular, and the solution has not been computed.
+*> \endverbatim
+*>
+*
+* Authors
* =======
*
-* ZGBSV computes the solution to a complex system of linear equations
-* A * X = B, where A is a band matrix of order N with KL subdiagonals
-* and KU superdiagonals, and X and B are N-by-NRHS matrices.
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
*
-* The LU decomposition with partial pivoting and row interchanges is
-* used to factor A as A = L * U, where L is a product of permutation
-* and unit lower triangular matrices with KL subdiagonals, and U is
-* upper triangular with KL+KU superdiagonals. The factored form of A
-* is then used to solve the system of equations A * X = B.
+*> \date November 2011
*
-* Arguments
-* =========
+*> \ingroup complex16GBsolve
*
-* N (input) INTEGER
-* The number of linear equations, i.e., the order of the
-* matrix A. N >= 0.
-*
-* KL (input) INTEGER
-* The number of subdiagonals within the band of A. KL >= 0.
-*
-* KU (input) INTEGER
-* The number of superdiagonals within the band of A. KU >= 0.
-*
-* NRHS (input) INTEGER
-* The number of right hand sides, i.e., the number of columns
-* of the matrix B. NRHS >= 0.
-*
-* AB (input/output) COMPLEX*16 array, dimension (LDAB,N)
-* On entry, the matrix A in band storage, in rows KL+1 to
-* 2*KL+KU+1; rows 1 to KL of the array need not be set.
-* The j-th column of A is stored in the j-th column of the
-* array AB as follows:
-* AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
-* On exit, details of the factorization: U is stored as an
-* upper triangular band matrix with KL+KU superdiagonals in
-* rows 1 to KL+KU+1, and the multipliers used during the
-* factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
-* See below for further details.
-*
-* LDAB (input) INTEGER
-* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
-*
-* IPIV (output) INTEGER array, dimension (N)
-* The pivot indices that define the permutation matrix P;
-* row i of the matrix was interchanged with row IPIV(i).
-*
-* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
-* On entry, the N-by-NRHS right hand side matrix B.
-* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,N).
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
-* has been completed, but the factor U is exactly
-* singular, and the solution has not been computed.
*
* Further Details
* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> The band storage scheme is illustrated by the following example, when
+*> M = N = 6, KL = 2, KU = 1:
+*>
+*> On entry: On exit:
+*>
+*> * * * + + + * * * u14 u25 u36
+*> * * + + + + * * u13 u24 u35 u46
+*> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
+*> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
+*> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
+*> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
+*>
+*> Array elements marked * are not used by the routine; elements marked
+*> + need not be set on entry, but are required by the routine to store
+*> elements of U because of fill-in resulting from the row interchanges.
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
*
-* The band storage scheme is illustrated by the following example, when
-* M = N = 6, KL = 2, KU = 1:
-*
-* On entry: On exit:
-*
-* * * * + + + * * * u14 u25 u36
-* * * + + + + * * u13 u24 u35 u46
-* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
-* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
-* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
-* a31 a42 a53 a64 * * m31 m42 m53 m64 * *
+* -- LAPACK solve routine (version 3.2) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
-* Array elements marked * are not used by the routine; elements marked
-* + need not be set on entry, but are required by the routine to store
-* elements of U because of fill-in resulting from the row interchanges.
+* .. Scalar Arguments ..
+ INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 AB( LDAB, * ), B( LDB, * )
+* ..
*
* =====================================================================
*