summaryrefslogtreecommitdiff
path: root/SRC/sptsvx.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/sptsvx.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/sptsvx.f')
-rw-r--r--SRC/sptsvx.f233
1 files changed, 233 insertions, 0 deletions
diff --git a/SRC/sptsvx.f b/SRC/sptsvx.f
new file mode 100644
index 00000000..9c7527b8
--- /dev/null
+++ b/SRC/sptsvx.f
@@ -0,0 +1,233 @@
+ SUBROUTINE SPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
+ $ RCOND, FERR, BERR, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER FACT
+ INTEGER INFO, LDB, LDX, N, NRHS
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
+ $ E( * ), EF( * ), FERR( * ), WORK( * ),
+ $ X( LDX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* SPTSVX uses the factorization A = L*D*L**T to compute the solution
+* to a real system of linear equations A*X = B, where A is an N-by-N
+* symmetric positive definite tridiagonal matrix and X and B are
+* N-by-NRHS matrices.
+*
+* Error bounds on the solution and a condition estimate are also
+* provided.
+*
+* Description
+* ===========
+*
+* The following steps are performed:
+*
+* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
+* is a unit lower bidiagonal matrix and D is diagonal. The
+* factorization can also be regarded as having the form
+* A = U**T*D*U.
+*
+* 2. If the leading i-by-i principal minor is not positive definite,
+* then the routine returns with INFO = i. Otherwise, the factored
+* form of A is used to estimate the condition number of the matrix
+* A. If the reciprocal of the condition number is less than machine
+* precision, INFO = N+1 is returned as a warning, but the routine
+* still goes on to solve for X and compute error bounds as
+* described below.
+*
+* 3. The system of equations is solved for X using the factored form
+* of A.
+*
+* 4. Iterative refinement is applied to improve the computed solution
+* matrix and calculate error bounds and backward error estimates
+* for it.
+*
+* Arguments
+* =========
+*
+* FACT (input) CHARACTER*1
+* Specifies whether or not the factored form of A has been
+* supplied on entry.
+* = 'F': On entry, DF and EF contain the factored form of A.
+* D, E, DF, and EF will not be modified.
+* = 'N': The matrix A will be copied to DF and EF and
+* factored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrices B and X. NRHS >= 0.
+*
+* D (input) REAL array, dimension (N)
+* The n diagonal elements of the tridiagonal matrix A.
+*
+* E (input) REAL array, dimension (N-1)
+* The (n-1) subdiagonal elements of the tridiagonal matrix A.
+*
+* DF (input or output) REAL array, dimension (N)
+* If FACT = 'F', then DF is an input argument and on entry
+* contains the n diagonal elements of the diagonal matrix D
+* from the L*D*L**T factorization of A.
+* If FACT = 'N', then DF is an output argument and on exit
+* contains the n diagonal elements of the diagonal matrix D
+* from the L*D*L**T factorization of A.
+*
+* EF (input or output) REAL array, dimension (N-1)
+* If FACT = 'F', then EF is an input argument and on entry
+* contains the (n-1) subdiagonal elements of the unit
+* bidiagonal factor L from the L*D*L**T factorization of A.
+* If FACT = 'N', then EF is an output argument and on exit
+* contains the (n-1) subdiagonal elements of the unit
+* bidiagonal factor L from the L*D*L**T factorization of A.
+*
+* B (input) REAL array, dimension (LDB,NRHS)
+* The N-by-NRHS right hand side matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* X (output) REAL array, dimension (LDX,NRHS)
+* If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
+*
+* LDX (input) INTEGER
+* The leading dimension of the array X. LDX >= max(1,N).
+*
+* RCOND (output) REAL
+* The reciprocal condition number of the matrix A. If RCOND
+* is less than the machine precision (in particular, if
+* RCOND = 0), the matrix is singular to working precision.
+* This condition is indicated by a return code of INFO > 0.
+*
+* FERR (output) REAL array, dimension (NRHS)
+* The forward error bound for each solution vector
+* X(j) (the j-th column of the solution matrix X).
+* If XTRUE is the true solution corresponding to X(j), FERR(j)
+* is an estimated upper bound for the magnitude of the largest
+* element in (X(j) - XTRUE) divided by the magnitude of the
+* largest element in X(j).
+*
+* BERR (output) REAL array, dimension (NRHS)
+* The componentwise relative backward error of each solution
+* vector X(j) (i.e., the smallest relative change in any
+* element of A or B that makes X(j) an exact solution).
+*
+* WORK (workspace) REAL array, dimension (2*N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, and i is
+* <= N: the leading minor of order i of A is
+* not positive definite, so the factorization
+* could not be completed, and the solution has not
+* been computed. RCOND = 0 is returned.
+* = N+1: U is nonsingular, but RCOND is less than machine
+* precision, meaning that the matrix is singular
+* to working precision. Nevertheless, the
+* solution and error bounds are computed because
+* there are a number of situations where the
+* computed solution can be more accurate than the
+* value of RCOND would suggest.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO
+ PARAMETER ( ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOFACT
+ REAL ANORM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLANST
+ EXTERNAL LSAME, SLAMCH, SLANST
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SLACPY, SPTCON, SPTRFS, SPTTRF, SPTTRS,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -11
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SPTSVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( NOFACT ) THEN
+*
+* Compute the L*D*L' (or U'*D*U) factorization of A.
+*
+ CALL SCOPY( N, D, 1, DF, 1 )
+ IF( N.GT.1 )
+ $ CALL SCOPY( N-1, E, 1, EF, 1 )
+ CALL SPTTRF( N, DF, EF, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 )THEN
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A.
+*
+ ANORM = SLANST( '1', N, D, E )
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL SPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
+*
+* Compute the solution vectors X.
+*
+ CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL SPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
+*
+* Use iterative refinement to improve the computed solutions and
+* compute error bounds and backward error estimates for them.
+*
+ CALL SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
+ $ WORK, INFO )
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ RETURN
+*
+* End of SPTSVX
+*
+ END