diff options
author | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
---|---|---|
committer | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
commit | e1d39294aee16fa6db9ba079b14442358217db71 (patch) | |
tree | 30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/sposvx.f | |
parent | 5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff) | |
download | lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2 lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip |
Integrating Doxygen in comments
Diffstat (limited to 'SRC/sposvx.f')
-rw-r--r-- | SRC/sposvx.f | 490 |
1 files changed, 299 insertions, 191 deletions
diff --git a/SRC/sposvx.f b/SRC/sposvx.f index 5efffce9..56994f26 100644 --- a/SRC/sposvx.f +++ b/SRC/sposvx.f @@ -1,11 +1,308 @@ +*> \brief <b> SPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b> +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, +* S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, +* IWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER EQUED, FACT, UPLO +* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS +* REAL RCOND +* .. +* .. Array Arguments .. +* INTEGER IWORK( * ) +* REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ), +* $ BERR( * ), FERR( * ), S( * ), WORK( * ), +* $ X( LDX, * ) +* .. +* +* Purpose +* ======= +* +*>\details \b Purpose: +*>\verbatim +*> +*> SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to +*> compute the solution to a real system of linear equations +*> A * X = B, +*> where A is an N-by-N symmetric positive definite matrix and X and B +*> are N-by-NRHS matrices. +*> +*> Error bounds on the solution and a condition estimate are also +*> provided. +*> +*> Description +*> =========== +*> +*> The following steps are performed: +*> +*> 1. If FACT = 'E', real scaling factors are computed to equilibrate +*> the system: +*> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B +*> Whether or not the system will be equilibrated depends on the +*> scaling of the matrix A, but if equilibration is used, A is +*> overwritten by diag(S)*A*diag(S) and B by diag(S)*B. +*> +*> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to +*> factor the matrix A (after equilibration if FACT = 'E') as +*> A = U**T* U, if UPLO = 'U', or +*> A = L * L**T, if UPLO = 'L', +*> where U is an upper triangular matrix and L is a lower triangular +*> matrix. +*> +*> 3. If the leading i-by-i principal minor is not positive definite, +*> then the routine returns with INFO = i. Otherwise, the factored +*> form of A is used to estimate the condition number of the matrix +*> A. If the reciprocal of the condition number is less than machine +*> precision, INFO = N+1 is returned as a warning, but the routine +*> still goes on to solve for X and compute error bounds as +*> described below. +*> +*> 4. The system of equations is solved for X using the factored form +*> of A. +*> +*> 5. Iterative refinement is applied to improve the computed solution +*> matrix and calculate error bounds and backward error estimates +*> for it. +*> +*> 6. If equilibration was used, the matrix X is premultiplied by +*> diag(S) so that it solves the original system before +*> equilibration. +*> +*>\endverbatim +* +* Arguments +* ========= +* +*> \param[in] FACT +*> \verbatim +*> FACT is CHARACTER*1 +*> Specifies whether or not the factored form of the matrix A is +*> supplied on entry, and if not, whether the matrix A should be +*> equilibrated before it is factored. +*> = 'F': On entry, AF contains the factored form of A. +*> If EQUED = 'Y', the matrix A has been equilibrated +*> with scaling factors given by S. A and AF will not +*> be modified. +*> = 'N': The matrix A will be copied to AF and factored. +*> = 'E': The matrix A will be equilibrated if necessary, then +*> copied to AF and factored. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> = 'U': Upper triangle of A is stored; +*> = 'L': Lower triangle of A is stored. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of linear equations, i.e., the order of the +*> matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of columns +*> of the matrices B and X. NRHS >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is REAL array, dimension (LDA,N) +*> On entry, the symmetric matrix A, except if FACT = 'F' and +*> EQUED = 'Y', then A must contain the equilibrated matrix +*> diag(S)*A*diag(S). If UPLO = 'U', the leading +*> N-by-N upper triangular part of A contains the upper +*> triangular part of the matrix A, and the strictly lower +*> triangular part of A is not referenced. If UPLO = 'L', the +*> leading N-by-N lower triangular part of A contains the lower +*> triangular part of the matrix A, and the strictly upper +*> triangular part of A is not referenced. A is not modified if +*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. +*> \endverbatim +*> \verbatim +*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by +*> diag(S)*A*diag(S). +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] AF +*> \verbatim +*> AF is or output) REAL array, dimension (LDAF,N) +*> If FACT = 'F', then AF is an input argument and on entry +*> contains the triangular factor U or L from the Cholesky +*> factorization A = U**T*U or A = L*L**T, in the same storage +*> format as A. If EQUED .ne. 'N', then AF is the factored form +*> of the equilibrated matrix diag(S)*A*diag(S). +*> \endverbatim +*> \verbatim +*> If FACT = 'N', then AF is an output argument and on exit +*> returns the triangular factor U or L from the Cholesky +*> factorization A = U**T*U or A = L*L**T of the original +*> matrix A. +*> \endverbatim +*> \verbatim +*> If FACT = 'E', then AF is an output argument and on exit +*> returns the triangular factor U or L from the Cholesky +*> factorization A = U**T*U or A = L*L**T of the equilibrated +*> matrix A (see the description of A for the form of the +*> equilibrated matrix). +*> \endverbatim +*> +*> \param[in] LDAF +*> \verbatim +*> LDAF is INTEGER +*> The leading dimension of the array AF. LDAF >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] EQUED +*> \verbatim +*> EQUED is or output) CHARACTER*1 +*> Specifies the form of equilibration that was done. +*> = 'N': No equilibration (always true if FACT = 'N'). +*> = 'Y': Equilibration was done, i.e., A has been replaced by +*> diag(S) * A * diag(S). +*> EQUED is an input argument if FACT = 'F'; otherwise, it is an +*> output argument. +*> \endverbatim +*> +*> \param[in,out] S +*> \verbatim +*> S is or output) REAL array, dimension (N) +*> The scale factors for A; not accessed if EQUED = 'N'. S is +*> an input argument if FACT = 'F'; otherwise, S is an output +*> argument. If FACT = 'F' and EQUED = 'Y', each element of S +*> must be positive. +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is REAL array, dimension (LDB,NRHS) +*> On entry, the N-by-NRHS right hand side matrix B. +*> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', +*> B is overwritten by diag(S) * B. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[out] X +*> \verbatim +*> X is REAL array, dimension (LDX,NRHS) +*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to +*> the original system of equations. Note that if EQUED = 'Y', +*> A and B are modified on exit, and the solution to the +*> equilibrated system is inv(diag(S))*X. +*> \endverbatim +*> +*> \param[in] LDX +*> \verbatim +*> LDX is INTEGER +*> The leading dimension of the array X. LDX >= max(1,N). +*> \endverbatim +*> +*> \param[out] RCOND +*> \verbatim +*> RCOND is REAL +*> The estimate of the reciprocal condition number of the matrix +*> A after equilibration (if done). If RCOND is less than the +*> machine precision (in particular, if RCOND = 0), the matrix +*> is singular to working precision. This condition is +*> indicated by a return code of INFO > 0. +*> \endverbatim +*> +*> \param[out] FERR +*> \verbatim +*> FERR is REAL array, dimension (NRHS) +*> The estimated forward error bound for each solution vector +*> X(j) (the j-th column of the solution matrix X). +*> If XTRUE is the true solution corresponding to X(j), FERR(j) +*> is an estimated upper bound for the magnitude of the largest +*> element in (X(j) - XTRUE) divided by the magnitude of the +*> largest element in X(j). The estimate is as reliable as +*> the estimate for RCOND, and is almost always a slight +*> overestimate of the true error. +*> \endverbatim +*> +*> \param[out] BERR +*> \verbatim +*> BERR is REAL array, dimension (NRHS) +*> The componentwise relative backward error of each solution +*> vector X(j) (i.e., the smallest relative change in +*> any element of A or B that makes X(j) an exact solution). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is REAL array, dimension (3*N) +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, and i is +*> <= N: the leading minor of order i of A is +*> not positive definite, so the factorization +*> could not be completed, and the solution has not +*> been computed. RCOND = 0 is returned. +*> = N+1: U is nonsingular, but RCOND is less than machine +*> precision, meaning that the matrix is singular +*> to working precision. Nevertheless, the +*> solution and error bounds are computed because +*> there are a number of situations where the +*> computed solution can be more accurate than the +*> value of RCOND would suggest. +*> \endverbatim +*> +* +* Authors +* ======= +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup realPOsolve +* +* ===================================================================== SUBROUTINE SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, $ S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, $ IWORK, INFO ) * -* -- LAPACK driver routine (version 3.3.1) -- +* -- LAPACK solve routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2011 -- +* November 2011 * * .. Scalar Arguments .. CHARACTER EQUED, FACT, UPLO @@ -19,195 +316,6 @@ $ X( LDX, * ) * .. * -* Purpose -* ======= -* -* SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to -* compute the solution to a real system of linear equations -* A * X = B, -* where A is an N-by-N symmetric positive definite matrix and X and B -* are N-by-NRHS matrices. -* -* Error bounds on the solution and a condition estimate are also -* provided. -* -* Description -* =========== -* -* The following steps are performed: -* -* 1. If FACT = 'E', real scaling factors are computed to equilibrate -* the system: -* diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B -* Whether or not the system will be equilibrated depends on the -* scaling of the matrix A, but if equilibration is used, A is -* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. -* -* 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to -* factor the matrix A (after equilibration if FACT = 'E') as -* A = U**T* U, if UPLO = 'U', or -* A = L * L**T, if UPLO = 'L', -* where U is an upper triangular matrix and L is a lower triangular -* matrix. -* -* 3. If the leading i-by-i principal minor is not positive definite, -* then the routine returns with INFO = i. Otherwise, the factored -* form of A is used to estimate the condition number of the matrix -* A. If the reciprocal of the condition number is less than machine -* precision, INFO = N+1 is returned as a warning, but the routine -* still goes on to solve for X and compute error bounds as -* described below. -* -* 4. The system of equations is solved for X using the factored form -* of A. -* -* 5. Iterative refinement is applied to improve the computed solution -* matrix and calculate error bounds and backward error estimates -* for it. -* -* 6. If equilibration was used, the matrix X is premultiplied by -* diag(S) so that it solves the original system before -* equilibration. -* -* Arguments -* ========= -* -* FACT (input) CHARACTER*1 -* Specifies whether or not the factored form of the matrix A is -* supplied on entry, and if not, whether the matrix A should be -* equilibrated before it is factored. -* = 'F': On entry, AF contains the factored form of A. -* If EQUED = 'Y', the matrix A has been equilibrated -* with scaling factors given by S. A and AF will not -* be modified. -* = 'N': The matrix A will be copied to AF and factored. -* = 'E': The matrix A will be equilibrated if necessary, then -* copied to AF and factored. -* -* UPLO (input) CHARACTER*1 -* = 'U': Upper triangle of A is stored; -* = 'L': Lower triangle of A is stored. -* -* N (input) INTEGER -* The number of linear equations, i.e., the order of the -* matrix A. N >= 0. -* -* NRHS (input) INTEGER -* The number of right hand sides, i.e., the number of columns -* of the matrices B and X. NRHS >= 0. -* -* A (input/output) REAL array, dimension (LDA,N) -* On entry, the symmetric matrix A, except if FACT = 'F' and -* EQUED = 'Y', then A must contain the equilibrated matrix -* diag(S)*A*diag(S). If UPLO = 'U', the leading -* N-by-N upper triangular part of A contains the upper -* triangular part of the matrix A, and the strictly lower -* triangular part of A is not referenced. If UPLO = 'L', the -* leading N-by-N lower triangular part of A contains the lower -* triangular part of the matrix A, and the strictly upper -* triangular part of A is not referenced. A is not modified if -* FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. -* -* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by -* diag(S)*A*diag(S). -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* AF (input or output) REAL array, dimension (LDAF,N) -* If FACT = 'F', then AF is an input argument and on entry -* contains the triangular factor U or L from the Cholesky -* factorization A = U**T*U or A = L*L**T, in the same storage -* format as A. If EQUED .ne. 'N', then AF is the factored form -* of the equilibrated matrix diag(S)*A*diag(S). -* -* If FACT = 'N', then AF is an output argument and on exit -* returns the triangular factor U or L from the Cholesky -* factorization A = U**T*U or A = L*L**T of the original -* matrix A. -* -* If FACT = 'E', then AF is an output argument and on exit -* returns the triangular factor U or L from the Cholesky -* factorization A = U**T*U or A = L*L**T of the equilibrated -* matrix A (see the description of A for the form of the -* equilibrated matrix). -* -* LDAF (input) INTEGER -* The leading dimension of the array AF. LDAF >= max(1,N). -* -* EQUED (input or output) CHARACTER*1 -* Specifies the form of equilibration that was done. -* = 'N': No equilibration (always true if FACT = 'N'). -* = 'Y': Equilibration was done, i.e., A has been replaced by -* diag(S) * A * diag(S). -* EQUED is an input argument if FACT = 'F'; otherwise, it is an -* output argument. -* -* S (input or output) REAL array, dimension (N) -* The scale factors for A; not accessed if EQUED = 'N'. S is -* an input argument if FACT = 'F'; otherwise, S is an output -* argument. If FACT = 'F' and EQUED = 'Y', each element of S -* must be positive. -* -* B (input/output) REAL array, dimension (LDB,NRHS) -* On entry, the N-by-NRHS right hand side matrix B. -* On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', -* B is overwritten by diag(S) * B. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,N). -* -* X (output) REAL array, dimension (LDX,NRHS) -* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to -* the original system of equations. Note that if EQUED = 'Y', -* A and B are modified on exit, and the solution to the -* equilibrated system is inv(diag(S))*X. -* -* LDX (input) INTEGER -* The leading dimension of the array X. LDX >= max(1,N). -* -* RCOND (output) REAL -* The estimate of the reciprocal condition number of the matrix -* A after equilibration (if done). If RCOND is less than the -* machine precision (in particular, if RCOND = 0), the matrix -* is singular to working precision. This condition is -* indicated by a return code of INFO > 0. -* -* FERR (output) REAL array, dimension (NRHS) -* The estimated forward error bound for each solution vector -* X(j) (the j-th column of the solution matrix X). -* If XTRUE is the true solution corresponding to X(j), FERR(j) -* is an estimated upper bound for the magnitude of the largest -* element in (X(j) - XTRUE) divided by the magnitude of the -* largest element in X(j). The estimate is as reliable as -* the estimate for RCOND, and is almost always a slight -* overestimate of the true error. -* -* BERR (output) REAL array, dimension (NRHS) -* The componentwise relative backward error of each solution -* vector X(j) (i.e., the smallest relative change in -* any element of A or B that makes X(j) an exact solution). -* -* WORK (workspace) REAL array, dimension (3*N) -* -* IWORK (workspace) INTEGER array, dimension (N) -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = i, and i is -* <= N: the leading minor of order i of A is -* not positive definite, so the factorization -* could not be completed, and the solution has not -* been computed. RCOND = 0 is returned. -* = N+1: U is nonsingular, but RCOND is less than machine -* precision, meaning that the matrix is singular -* to working precision. Nevertheless, the -* solution and error bounds are computed because -* there are a number of situations where the -* computed solution can be more accurate than the -* value of RCOND would suggest. -* * ===================================================================== * * .. Parameters .. |