diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/slasd3.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/slasd3.f')
-rw-r--r-- | SRC/slasd3.f | 358 |
1 files changed, 358 insertions, 0 deletions
diff --git a/SRC/slasd3.f b/SRC/slasd3.f new file mode 100644 index 00000000..77cf6d3f --- /dev/null +++ b/SRC/slasd3.f @@ -0,0 +1,358 @@ + SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, + $ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, + $ INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, + $ SQRE +* .. +* .. Array Arguments .. + INTEGER CTOT( * ), IDXC( * ) + REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), + $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), + $ Z( * ) +* .. +* +* Purpose +* ======= +* +* SLASD3 finds all the square roots of the roots of the secular +* equation, as defined by the values in D and Z. It makes the +* appropriate calls to SLASD4 and then updates the singular +* vectors by matrix multiplication. +* +* This code makes very mild assumptions about floating point +* arithmetic. It will work on machines with a guard digit in +* add/subtract, or on those binary machines without guard digits +* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. +* It could conceivably fail on hexadecimal or decimal machines +* without guard digits, but we know of none. +* +* SLASD3 is called from SLASD1. +* +* Arguments +* ========= +* +* NL (input) INTEGER +* The row dimension of the upper block. NL >= 1. +* +* NR (input) INTEGER +* The row dimension of the lower block. NR >= 1. +* +* SQRE (input) INTEGER +* = 0: the lower block is an NR-by-NR square matrix. +* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. +* +* The bidiagonal matrix has N = NL + NR + 1 rows and +* M = N + SQRE >= N columns. +* +* K (input) INTEGER +* The size of the secular equation, 1 =< K = < N. +* +* D (output) REAL array, dimension(K) +* On exit the square roots of the roots of the secular equation, +* in ascending order. +* +* Q (workspace) REAL array, +* dimension at least (LDQ,K). +* +* LDQ (input) INTEGER +* The leading dimension of the array Q. LDQ >= K. +* +* DSIGMA (input/output) REAL array, dimension(K) +* The first K elements of this array contain the old roots +* of the deflated updating problem. These are the poles +* of the secular equation. +* +* U (output) REAL array, dimension (LDU, N) +* The last N - K columns of this matrix contain the deflated +* left singular vectors. +* +* LDU (input) INTEGER +* The leading dimension of the array U. LDU >= N. +* +* U2 (input) REAL array, dimension (LDU2, N) +* The first K columns of this matrix contain the non-deflated +* left singular vectors for the split problem. +* +* LDU2 (input) INTEGER +* The leading dimension of the array U2. LDU2 >= N. +* +* VT (output) REAL array, dimension (LDVT, M) +* The last M - K columns of VT' contain the deflated +* right singular vectors. +* +* LDVT (input) INTEGER +* The leading dimension of the array VT. LDVT >= N. +* +* VT2 (input/output) REAL array, dimension (LDVT2, N) +* The first K columns of VT2' contain the non-deflated +* right singular vectors for the split problem. +* +* LDVT2 (input) INTEGER +* The leading dimension of the array VT2. LDVT2 >= N. +* +* IDXC (input) INTEGER array, dimension (N) +* The permutation used to arrange the columns of U (and rows of +* VT) into three groups: the first group contains non-zero +* entries only at and above (or before) NL +1; the second +* contains non-zero entries only at and below (or after) NL+2; +* and the third is dense. The first column of U and the row of +* VT are treated separately, however. +* +* The rows of the singular vectors found by SLASD4 +* must be likewise permuted before the matrix multiplies can +* take place. +* +* CTOT (input) INTEGER array, dimension (4) +* A count of the total number of the various types of columns +* in U (or rows in VT), as described in IDXC. The fourth column +* type is any column which has been deflated. +* +* Z (input/output) REAL array, dimension (K) +* The first K elements of this array contain the components +* of the deflation-adjusted updating row vector. +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* > 0: if INFO = 1, an singular value did not converge +* +* Further Details +* =============== +* +* Based on contributions by +* Ming Gu and Huan Ren, Computer Science Division, University of +* California at Berkeley, USA +* +* ===================================================================== +* +* .. Parameters .. + REAL ONE, ZERO, NEGONE + PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0, + $ NEGONE = -1.0E+0 ) +* .. +* .. Local Scalars .. + INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1 + REAL RHO, TEMP +* .. +* .. External Functions .. + REAL SLAMC3, SNRM2 + EXTERNAL SLAMC3, SNRM2 +* .. +* .. External Subroutines .. + EXTERNAL SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, SIGN, SQRT +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 +* + IF( NL.LT.1 ) THEN + INFO = -1 + ELSE IF( NR.LT.1 ) THEN + INFO = -2 + ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN + INFO = -3 + END IF +* + N = NL + NR + 1 + M = N + SQRE + NLP1 = NL + 1 + NLP2 = NL + 2 +* + IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN + INFO = -4 + ELSE IF( LDQ.LT.K ) THEN + INFO = -7 + ELSE IF( LDU.LT.N ) THEN + INFO = -10 + ELSE IF( LDU2.LT.N ) THEN + INFO = -12 + ELSE IF( LDVT.LT.M ) THEN + INFO = -14 + ELSE IF( LDVT2.LT.M ) THEN + INFO = -16 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'SLASD3', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( K.EQ.1 ) THEN + D( 1 ) = ABS( Z( 1 ) ) + CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT ) + IF( Z( 1 ).GT.ZERO ) THEN + CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 ) + ELSE + DO 10 I = 1, N + U( I, 1 ) = -U2( I, 1 ) + 10 CONTINUE + END IF + RETURN + END IF +* +* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can +* be computed with high relative accuracy (barring over/underflow). +* This is a problem on machines without a guard digit in +* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). +* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), +* which on any of these machines zeros out the bottommost +* bit of DSIGMA(I) if it is 1; this makes the subsequent +* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation +* occurs. On binary machines with a guard digit (almost all +* machines) it does not change DSIGMA(I) at all. On hexadecimal +* and decimal machines with a guard digit, it slightly +* changes the bottommost bits of DSIGMA(I). It does not account +* for hexadecimal or decimal machines without guard digits +* (we know of none). We use a subroutine call to compute +* 2*DSIGMA(I) to prevent optimizing compilers from eliminating +* this code. +* + DO 20 I = 1, K + DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I ) + 20 CONTINUE +* +* Keep a copy of Z. +* + CALL SCOPY( K, Z, 1, Q, 1 ) +* +* Normalize Z. +* + RHO = SNRM2( K, Z, 1 ) + CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO ) + RHO = RHO*RHO +* +* Find the new singular values. +* + DO 30 J = 1, K + CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ), + $ VT( 1, J ), INFO ) +* +* If the zero finder fails, the computation is terminated. +* + IF( INFO.NE.0 ) THEN + RETURN + END IF + 30 CONTINUE +* +* Compute updated Z. +* + DO 60 I = 1, K + Z( I ) = U( I, K )*VT( I, K ) + DO 40 J = 1, I - 1 + Z( I ) = Z( I )*( U( I, J )*VT( I, J ) / + $ ( DSIGMA( I )-DSIGMA( J ) ) / + $ ( DSIGMA( I )+DSIGMA( J ) ) ) + 40 CONTINUE + DO 50 J = I, K - 1 + Z( I ) = Z( I )*( U( I, J )*VT( I, J ) / + $ ( DSIGMA( I )-DSIGMA( J+1 ) ) / + $ ( DSIGMA( I )+DSIGMA( J+1 ) ) ) + 50 CONTINUE + Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) ) + 60 CONTINUE +* +* Compute left singular vectors of the modified diagonal matrix, +* and store related information for the right singular vectors. +* + DO 90 I = 1, K + VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I ) + U( 1, I ) = NEGONE + DO 70 J = 2, K + VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I ) + U( J, I ) = DSIGMA( J )*VT( J, I ) + 70 CONTINUE + TEMP = SNRM2( K, U( 1, I ), 1 ) + Q( 1, I ) = U( 1, I ) / TEMP + DO 80 J = 2, K + JC = IDXC( J ) + Q( J, I ) = U( JC, I ) / TEMP + 80 CONTINUE + 90 CONTINUE +* +* Update the left singular vector matrix. +* + IF( K.EQ.2 ) THEN + CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U, + $ LDU ) + GO TO 100 + END IF + IF( CTOT( 1 ).GT.0 ) THEN + CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2, + $ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU ) + IF( CTOT( 3 ).GT.0 ) THEN + KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) + CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ), + $ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU ) + END IF + ELSE IF( CTOT( 3 ).GT.0 ) THEN + KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) + CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ), + $ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU ) + ELSE + CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU ) + END IF + CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU ) + KTEMP = 2 + CTOT( 1 ) + CTEMP = CTOT( 2 ) + CTOT( 3 ) + CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2, + $ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU ) +* +* Generate the right singular vectors. +* + 100 CONTINUE + DO 120 I = 1, K + TEMP = SNRM2( K, VT( 1, I ), 1 ) + Q( I, 1 ) = VT( 1, I ) / TEMP + DO 110 J = 2, K + JC = IDXC( J ) + Q( I, J ) = VT( JC, I ) / TEMP + 110 CONTINUE + 120 CONTINUE +* +* Update the right singular vector matrix. +* + IF( K.EQ.2 ) THEN + CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO, + $ VT, LDVT ) + RETURN + END IF + KTEMP = 1 + CTOT( 1 ) + CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ, + $ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT ) + KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) + IF( KTEMP.LE.LDVT2 ) + $ CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ), + $ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ), + $ LDVT ) +* + KTEMP = CTOT( 1 ) + 1 + NRP1 = NR + SQRE + IF( KTEMP.GT.1 ) THEN + DO 130 I = 1, K + Q( I, KTEMP ) = Q( I, 1 ) + 130 CONTINUE + DO 140 I = NLP2, M + VT2( KTEMP, I ) = VT2( 1, I ) + 140 CONTINUE + END IF + CTEMP = 1 + CTOT( 2 ) + CTOT( 3 ) + CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ, + $ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT ) +* + RETURN +* +* End of SLASD3 +* + END |