summaryrefslogtreecommitdiff
path: root/SRC/sggsvd3.f
diff options
context:
space:
mode:
authorphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-08-14 22:54:14 +0000
committerphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-08-14 22:54:14 +0000
commitde7f36e7f9592366fb7db0bf6fc353924966f340 (patch)
tree91cc8980f885f5b391efbbd2a5dc5e0824195397 /SRC/sggsvd3.f
parent06f432d14d1a4255929e35ffd4ee9d8cabf07ced (diff)
downloadlapack-de7f36e7f9592366fb7db0bf6fc353924966f340.tar.gz
lapack-de7f36e7f9592366fb7db0bf6fc353924966f340.tar.bz2
lapack-de7f36e7f9592366fb7db0bf6fc353924966f340.zip
Added BLAS3 routines for generalised SVD.
TODO: LAPACKE wrappers.
Diffstat (limited to 'SRC/sggsvd3.f')
-rw-r--r--SRC/sggsvd3.f503
1 files changed, 503 insertions, 0 deletions
diff --git a/SRC/sggsvd3.f b/SRC/sggsvd3.f
new file mode 100644
index 00000000..3e7b114e
--- /dev/null
+++ b/SRC/sggsvd3.f
@@ -0,0 +1,503 @@
+*> \brief <b> SGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGGSVD3 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvd3.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvd3.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvd3.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
+* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
+* LWORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBQ, JOBU, JOBV
+* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
+* ..
+* .. Array Arguments ..
+* INTEGER IWORK( * )
+* REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
+* $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
+* $ V( LDV, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SGGSVD3 computes the generalized singular value decomposition (GSVD)
+*> of an M-by-N real matrix A and P-by-N real matrix B:
+*>
+*> U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R )
+*>
+*> where U, V and Q are orthogonal matrices.
+*> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
+*> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
+*> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
+*> following structures, respectively:
+*>
+*> If M-K-L >= 0,
+*>
+*> K L
+*> D1 = K ( I 0 )
+*> L ( 0 C )
+*> M-K-L ( 0 0 )
+*>
+*> K L
+*> D2 = L ( 0 S )
+*> P-L ( 0 0 )
+*>
+*> N-K-L K L
+*> ( 0 R ) = K ( 0 R11 R12 )
+*> L ( 0 0 R22 )
+*>
+*> where
+*>
+*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
+*> S = diag( BETA(K+1), ... , BETA(K+L) ),
+*> C**2 + S**2 = I.
+*>
+*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
+*>
+*> If M-K-L < 0,
+*>
+*> K M-K K+L-M
+*> D1 = K ( I 0 0 )
+*> M-K ( 0 C 0 )
+*>
+*> K M-K K+L-M
+*> D2 = M-K ( 0 S 0 )
+*> K+L-M ( 0 0 I )
+*> P-L ( 0 0 0 )
+*>
+*> N-K-L K M-K K+L-M
+*> ( 0 R ) = K ( 0 R11 R12 R13 )
+*> M-K ( 0 0 R22 R23 )
+*> K+L-M ( 0 0 0 R33 )
+*>
+*> where
+*>
+*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
+*> S = diag( BETA(K+1), ... , BETA(M) ),
+*> C**2 + S**2 = I.
+*>
+*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
+*> ( 0 R22 R23 )
+*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
+*>
+*> The routine computes C, S, R, and optionally the orthogonal
+*> transformation matrices U, V and Q.
+*>
+*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
+*> A and B implicitly gives the SVD of A*inv(B):
+*> A*inv(B) = U*(D1*inv(D2))*V**T.
+*> If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is
+*> also equal to the CS decomposition of A and B. Furthermore, the GSVD
+*> can be used to derive the solution of the eigenvalue problem:
+*> A**T*A x = lambda* B**T*B x.
+*> In some literature, the GSVD of A and B is presented in the form
+*> U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 )
+*> where U and V are orthogonal and X is nonsingular, D1 and D2 are
+*> ``diagonal''. The former GSVD form can be converted to the latter
+*> form by taking the nonsingular matrix X as
+*>
+*> X = Q*( I 0 )
+*> ( 0 inv(R) ).
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> = 'U': Orthogonal matrix U is computed;
+*> = 'N': U is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> = 'V': Orthogonal matrix V is computed;
+*> = 'N': V is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBQ
+*> \verbatim
+*> JOBQ is CHARACTER*1
+*> = 'Q': Orthogonal matrix Q is computed;
+*> = 'N': Q is not computed.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and B. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] P
+*> \verbatim
+*> P is INTEGER
+*> The number of rows of the matrix B. P >= 0.
+*> \endverbatim
+*>
+*> \param[out] K
+*> \verbatim
+*> K is INTEGER
+*> \endverbatim
+*>
+*> \param[out] L
+*> \verbatim
+*> L is INTEGER
+*>
+*> On exit, K and L specify the dimension of the subblocks
+*> described in Purpose.
+*> K + L = effective numerical rank of (A**T,B**T)**T.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit, A contains the triangular matrix R, or part of R.
+*> See Purpose for details.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is REAL array, dimension (LDB,N)
+*> On entry, the P-by-N matrix B.
+*> On exit, B contains the triangular matrix R if M-K-L < 0.
+*> See Purpose for details.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,P).
+*> \endverbatim
+*>
+*> \param[out] ALPHA
+*> \verbatim
+*> ALPHA is REAL array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] BETA
+*> \verbatim
+*> BETA is REAL array, dimension (N)
+*>
+*> On exit, ALPHA and BETA contain the generalized singular
+*> value pairs of A and B;
+*> ALPHA(1:K) = 1,
+*> BETA(1:K) = 0,
+*> and if M-K-L >= 0,
+*> ALPHA(K+1:K+L) = C,
+*> BETA(K+1:K+L) = S,
+*> or if M-K-L < 0,
+*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
+*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
+*> and
+*> ALPHA(K+L+1:N) = 0
+*> BETA(K+L+1:N) = 0
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is REAL array, dimension (LDU,M)
+*> If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
+*> If JOBU = 'N', U is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of the array U. LDU >= max(1,M) if
+*> JOBU = 'U'; LDU >= 1 otherwise.
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is REAL array, dimension (LDV,P)
+*> If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
+*> If JOBV = 'N', V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V. LDV >= max(1,P) if
+*> JOBV = 'V'; LDV >= 1 otherwise.
+*> \endverbatim
+*>
+*> \param[out] Q
+*> \verbatim
+*> Q is REAL array, dimension (LDQ,N)
+*> If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
+*> If JOBQ = 'N', Q is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDQ
+*> \verbatim
+*> LDQ is INTEGER
+*> The leading dimension of the array Q. LDQ >= max(1,N) if
+*> JOBQ = 'Q'; LDQ >= 1 otherwise.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N)
+*> On exit, IWORK stores the sorting information. More
+*> precisely, the following loop will sort ALPHA
+*> for I = K+1, min(M,K+L)
+*> swap ALPHA(I) and ALPHA(IWORK(I))
+*> endfor
+*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit.
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> > 0: if INFO = 1, the Jacobi-type procedure failed to
+*> converge. For further details, see subroutine STGSJA.
+*> \endverbatim
+*
+*> \par Internal Parameters:
+* =========================
+*>
+*> \verbatim
+*> TOLA REAL
+*> TOLB REAL
+*> TOLA and TOLB are the thresholds to determine the effective
+*> rank of (A**T,B**T)**T. Generally, they are set to
+*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
+*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
+*> The size of TOLA and TOLB may affect the size of backward
+*> errors of the decomposition.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date August 2015
+*
+*> \ingroup realOTHERsing
+*
+*> \par Contributors:
+* ==================
+*>
+*> Ming Gu and Huan Ren, Computer Science Division, University of
+*> California at Berkeley, USA
+*>
+*
+*> \par Further Details:
+* =====================
+*>
+*> SGGSVD3 replaces the deprecated subroutine SGGSVD.
+*>
+* =====================================================================
+ SUBROUTINE SGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
+ $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
+ $ WORK, LWORK, IWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* August 2015
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBQ, JOBU, JOBV
+ INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
+ $ LWORK
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
+ $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
+ $ V( LDV, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL WANTQ, WANTU, WANTV, LQUERY
+ INTEGER I, IBND, ISUB, J, NCYCLE, LWKOPT
+ REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLANGE
+ EXTERNAL LSAME, SLAMCH, SLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SGGSVP3, STGSJA, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Decode and test the input parameters
+*
+ WANTU = LSAME( JOBU, 'U' )
+ WANTV = LSAME( JOBV, 'V' )
+ WANTQ = LSAME( JOBQ, 'Q' )
+ LQUERY = ( LWORK.EQ.-1 )
+ LWKOPT = 1
+*
+* Test the input arguments
+*
+ INFO = 0
+ IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( P.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -10
+ ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
+ INFO = -12
+ ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
+ INFO = -16
+ ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
+ INFO = -18
+ ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
+ INFO = -20
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -24
+ END IF
+*
+* Compute workspace
+*
+ IF( INFO.EQ.0 ) THEN
+ CALL SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
+ $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
+ $ WORK, -1, INFO )
+ LWKOPT = N + INT( WORK( 1 ) )
+ LWKOPT = MAX( 2*N, LWKOPT )
+ LWKOPT = MAX( 1, LWKOPT )
+ WORK( 1 ) = REAL( LWKOPT )
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGGSVD3', -INFO )
+ RETURN
+ END IF
+ IF( LQUERY ) THEN
+ RETURN
+ ENDIF
+*
+* Compute the Frobenius norm of matrices A and B
+*
+ ANORM = SLANGE( '1', M, N, A, LDA, WORK )
+ BNORM = SLANGE( '1', P, N, B, LDB, WORK )
+*
+* Get machine precision and set up threshold for determining
+* the effective numerical rank of the matrices A and B.
+*
+ ULP = SLAMCH( 'Precision' )
+ UNFL = SLAMCH( 'Safe Minimum' )
+ TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
+ TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
+*
+* Preprocessing
+*
+ CALL SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
+ $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
+ $ WORK( N+1 ), LWORK-N, INFO )
+*
+* Compute the GSVD of two upper "triangular" matrices
+*
+ CALL STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
+ $ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
+ $ WORK, NCYCLE, INFO )
+*
+* Sort the singular values and store the pivot indices in IWORK
+* Copy ALPHA to WORK, then sort ALPHA in WORK
+*
+ CALL SCOPY( N, ALPHA, 1, WORK, 1 )
+ IBND = MIN( L, M-K )
+ DO 20 I = 1, IBND
+*
+* Scan for largest ALPHA(K+I)
+*
+ ISUB = I
+ SMAX = WORK( K+I )
+ DO 10 J = I + 1, IBND
+ TEMP = WORK( K+J )
+ IF( TEMP.GT.SMAX ) THEN
+ ISUB = J
+ SMAX = TEMP
+ END IF
+ 10 CONTINUE
+ IF( ISUB.NE.I ) THEN
+ WORK( K+ISUB ) = WORK( K+I )
+ WORK( K+I ) = SMAX
+ IWORK( K+I ) = K + ISUB
+ ELSE
+ IWORK( K+I ) = K + I
+ END IF
+ 20 CONTINUE
+*
+ WORK( 1 ) = REAL( LWKOPT )
+ RETURN
+*
+* End of SGGSVD3
+*
+ END