summaryrefslogtreecommitdiff
path: root/SRC/dorm22.f
diff options
context:
space:
mode:
authorphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-02-24 23:50:54 +0000
committerphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-02-24 23:50:54 +0000
commit6273f536d15680513e8cddfc4d8baa88ad2c64df (patch)
treea7f3303149eda2542ad7cf05fb470b60872e0161 /SRC/dorm22.f
parentc95be035b79cca2ba9e68c961d537344c5390765 (diff)
downloadlapack-6273f536d15680513e8cddfc4d8baa88ad2c64df.tar.gz
lapack-6273f536d15680513e8cddfc4d8baa88ad2c64df.tar.bz2
lapack-6273f536d15680513e8cddfc4d8baa88ad2c64df.zip
Add xGGHD3: blocked Hessenberg reduction, code from Daniel Kressner.
Add xGGES3 and xGGEV3: computation of the Schur form, the Schur vectors, and the generalized eigenvalues using the blocked Hessenberg reduction.
Diffstat (limited to 'SRC/dorm22.f')
-rw-r--r--SRC/dorm22.f441
1 files changed, 441 insertions, 0 deletions
diff --git a/SRC/dorm22.f b/SRC/dorm22.f
new file mode 100644
index 00000000..ac79e1e7
--- /dev/null
+++ b/SRC/dorm22.f
@@ -0,0 +1,441 @@
+*> \brief \b DORM22 multiplies a general matrix by a banded orthogonal matrix.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DORM22 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorm22.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorm22.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorm22.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
+* $ WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER SIDE, TRANS
+* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION Q( LDQ, * ), C( LDC, * ), WORK( * )
+* ..
+*
+*> \par Purpose
+* ============
+*>
+*> \verbatim
+*>
+*>
+*> DORM22 overwrites the general real M-by-N matrix C with
+*>
+*> SIDE = 'L' SIDE = 'R'
+*> TRANS = 'N': Q * C C * Q
+*> TRANS = 'T': Q**T * C C * Q**T
+*>
+*> where Q is a real orthogonal matrix of order NQ, with NQ = M if
+*> SIDE = 'L' and NQ = N if SIDE = 'R'.
+*> The orthogonal matrix Q processes a 2-by-2 block structure
+*>
+*> [ Q11 Q12 ]
+*> Q = [ ]
+*> [ Q21 Q22 ],
+*>
+*> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
+*> N2-by-N2 upper triangular matrix.
+*> \endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] SIDE
+*> \verbatim
+*> SIDE is CHARACTER*1
+*> = 'L': apply Q or Q**T from the Left;
+*> = 'R': apply Q or Q**T from the Right.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': apply Q (No transpose);
+*> = 'C': apply Q**T (Conjugate transpose).
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix C. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix C. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] N1
+*> \param[in] N2
+*> \verbatim
+*> N1 is INTEGER
+*> N2 is INTEGER
+*> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
+*> The following requirement must be satisfied:
+*> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
+*> \endverbatim
+*>
+*> \param[in] Q
+*> \verbatim
+*> Q is DOUBLE PRECISION array, dimension
+*> (LDQ,M) if SIDE = 'L'
+*> (LDQ,N) if SIDE = 'R'
+*> \endverbatim
+*>
+*> \param[in] LDQ
+*> \verbatim
+*> LDQ is INTEGER
+*> The leading dimension of the array Q.
+*> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is DOUBLE PRECISION array, dimension (LDC,N)
+*> On entry, the M-by-N matrix C.
+*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+*> \endverbatim
+*>
+*> \param[in] LDC
+*> \verbatim
+*> LDC is INTEGER
+*> The leading dimension of the array C. LDC >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> If SIDE = 'L', LWORK >= max(1,N);
+*> if SIDE = 'R', LWORK >= max(1,M).
+*> For optimum performance LWORK >= M*N.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date January 2015
+*
+*> \ingroup complexOTHERcomputational
+*
+* =====================================================================
+ SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
+ $ WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* January 2015
+*
+ IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+ CHARACTER SIDE, TRANS
+ INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION Q( LDQ, * ), C( LDC, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+*
+* .. Local Scalars ..
+ LOGICAL LEFT, LQUERY, NOTRAN
+ INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMM, DLACPY, DTRMM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LEFT = LSAME( SIDE, 'L' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+* NQ is the order of Q;
+* NW is the minimum dimension of WORK.
+*
+ IF( LEFT ) THEN
+ NQ = M
+ ELSE
+ NQ = N
+ END IF
+ NW = NQ
+ IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
+ IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
+ $ THEN
+ INFO = -2
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
+ INFO = -5
+ ELSE IF( N2.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
+ INFO = -8
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -10
+ ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ LWKOPT = M*N
+ WORK( 1 ) = DBLE( LWKOPT )
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORM22', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+* Degenerate cases (N1 = 0 or N2 = 0) are handled using DTRMM.
+*
+ IF( N1.EQ.0 ) THEN
+ CALL DTRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
+ $ Q, LDQ, C, LDC )
+ WORK( 1 ) = ONE
+ RETURN
+ ELSE IF( N2.EQ.0 ) THEN
+ CALL DTRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
+ $ Q, LDQ, C, LDC )
+ WORK( 1 ) = ONE
+ RETURN
+ END IF
+*
+* Compute the largest chunk size available from the workspace.
+*
+ NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
+*
+ IF( LEFT ) THEN
+ IF( NOTRAN ) THEN
+ DO I = 1, N, NB
+ LEN = MIN( NB, N-I+1 )
+ LDWORK = M
+*
+* Multiply bottom part of C by Q12.
+*
+ CALL DLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
+ $ LDWORK )
+ CALL DTRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
+ $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
+ $ LDWORK )
+*
+* Multiply top part of C by Q11.
+*
+ CALL DGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
+ $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
+ $ LDWORK )
+*
+* Multiply top part of C by Q21.
+*
+ CALL DLACPY( 'All', N2, LEN, C( 1, I ), LDC,
+ $ WORK( N1+1 ), LDWORK )
+ CALL DTRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
+ $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
+ $ WORK( N1+1 ), LDWORK )
+*
+* Multiply bottom part of C by Q22.
+*
+ CALL DGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
+ $ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
+ $ ONE, WORK( N1+1 ), LDWORK )
+*
+* Copy everything back.
+*
+ CALL DLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
+ $ LDC )
+ END DO
+ ELSE
+ DO I = 1, N, NB
+ LEN = MIN( NB, N-I+1 )
+ LDWORK = M
+*
+* Multiply bottom part of C by Q21**T.
+*
+ CALL DLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
+ $ LDWORK )
+ CALL DTRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
+ $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
+ $ LDWORK )
+*
+* Multiply top part of C by Q11**T.
+*
+ CALL DGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
+ $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
+ $ LDWORK )
+*
+* Multiply top part of C by Q12**T.
+*
+ CALL DLACPY( 'All', N1, LEN, C( 1, I ), LDC,
+ $ WORK( N2+1 ), LDWORK )
+ CALL DTRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
+ $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
+ $ WORK( N2+1 ), LDWORK )
+*
+* Multiply bottom part of C by Q22**T.
+*
+ CALL DGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
+ $ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
+ $ ONE, WORK( N2+1 ), LDWORK )
+*
+* Copy everything back.
+*
+ CALL DLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
+ $ LDC )
+ END DO
+ END IF
+ ELSE
+ IF( NOTRAN ) THEN
+ DO I = 1, M, NB
+ LEN = MIN( NB, M-I+1 )
+ LDWORK = LEN
+*
+* Multiply right part of C by Q21.
+*
+ CALL DLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
+ $ LDWORK )
+ CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
+ $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
+ $ LDWORK )
+*
+* Multiply left part of C by Q11.
+*
+ CALL DGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
+ $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
+ $ LDWORK )
+*
+* Multiply left part of C by Q12.
+*
+ CALL DLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
+ $ WORK( 1 + N2*LDWORK ), LDWORK )
+ CALL DTRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
+ $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
+ $ WORK( 1 + N2*LDWORK ), LDWORK )
+*
+* Multiply right part of C by Q22.
+*
+ CALL DGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
+ $ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
+ $ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
+*
+* Copy everything back.
+*
+ CALL DLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
+ $ LDC )
+ END DO
+ ELSE
+ DO I = 1, M, NB
+ LEN = MIN( NB, M-I+1 )
+ LDWORK = LEN
+*
+* Multiply right part of C by Q12**T.
+*
+ CALL DLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
+ $ LDWORK )
+ CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
+ $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
+ $ LDWORK )
+*
+* Multiply left part of C by Q11**T.
+*
+ CALL DGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
+ $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
+ $ LDWORK )
+*
+* Multiply left part of C by Q21**T.
+*
+ CALL DLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
+ $ WORK( 1 + N1*LDWORK ), LDWORK )
+ CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
+ $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
+ $ WORK( 1 + N1*LDWORK ), LDWORK )
+*
+* Multiply right part of C by Q22**T.
+*
+ CALL DGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
+ $ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
+ $ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
+*
+* Copy everything back.
+*
+ CALL DLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
+ $ LDC )
+ END DO
+ END IF
+ END IF
+*
+ WORK( 1 ) = DBLE( LWKOPT )
+ RETURN
+*
+* End of DORM22
+*
+ END