diff options
author | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
---|---|---|
committer | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
commit | e1d39294aee16fa6db9ba079b14442358217db71 (patch) | |
tree | 30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/dlals0.f | |
parent | 5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff) | |
download | lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2 lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip |
Integrating Doxygen in comments
Diffstat (limited to 'SRC/dlals0.f')
-rw-r--r-- | SRC/dlals0.f | 411 |
1 files changed, 267 insertions, 144 deletions
diff --git a/SRC/dlals0.f b/SRC/dlals0.f index 22f74610..04dbf98e 100644 --- a/SRC/dlals0.f +++ b/SRC/dlals0.f @@ -1,11 +1,276 @@ +*> \brief \b DLALS0 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, +* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, +* POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO ) +* +* .. Scalar Arguments .. +* INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, +* $ LDGNUM, NL, NR, NRHS, SQRE +* DOUBLE PRECISION C, S +* .. +* .. Array Arguments .. +* INTEGER GIVCOL( LDGCOL, * ), PERM( * ) +* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), DIFL( * ), +* $ DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ), +* $ POLES( LDGNUM, * ), WORK( * ), Z( * ) +* .. +* +* Purpose +* ======= +* +*>\details \b Purpose: +*>\verbatim +*> +*> DLALS0 applies back the multiplying factors of either the left or the +*> right singular vector matrix of a diagonal matrix appended by a row +*> to the right hand side matrix B in solving the least squares problem +*> using the divide-and-conquer SVD approach. +*> +*> For the left singular vector matrix, three types of orthogonal +*> matrices are involved: +*> +*> (1L) Givens rotations: the number of such rotations is GIVPTR; the +*> pairs of columns/rows they were applied to are stored in GIVCOL; +*> and the C- and S-values of these rotations are stored in GIVNUM. +*> +*> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first +*> row, and for J=2:N, PERM(J)-th row of B is to be moved to the +*> J-th row. +*> +*> (3L) The left singular vector matrix of the remaining matrix. +*> +*> For the right singular vector matrix, four types of orthogonal +*> matrices are involved: +*> +*> (1R) The right singular vector matrix of the remaining matrix. +*> +*> (2R) If SQRE = 1, one extra Givens rotation to generate the right +*> null space. +*> +*> (3R) The inverse transformation of (2L). +*> +*> (4R) The inverse transformation of (1L). +*> +*>\endverbatim +* +* Arguments +* ========= +* +*> \param[in] ICOMPQ +*> \verbatim +*> ICOMPQ is INTEGER +*> Specifies whether singular vectors are to be computed in +*> factored form: +*> = 0: Left singular vector matrix. +*> = 1: Right singular vector matrix. +*> \endverbatim +*> +*> \param[in] NL +*> \verbatim +*> NL is INTEGER +*> The row dimension of the upper block. NL >= 1. +*> \endverbatim +*> +*> \param[in] NR +*> \verbatim +*> NR is INTEGER +*> The row dimension of the lower block. NR >= 1. +*> \endverbatim +*> +*> \param[in] SQRE +*> \verbatim +*> SQRE is INTEGER +*> = 0: the lower block is an NR-by-NR square matrix. +*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix. +*> \endverbatim +*> \verbatim +*> The bidiagonal matrix has row dimension N = NL + NR + 1, +*> and column dimension M = N + SQRE. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of columns of B and BX. NRHS must be at least 1. +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension ( LDB, NRHS ) +*> On input, B contains the right hand sides of the least +*> squares problem in rows 1 through M. On output, B contains +*> the solution X in rows 1 through N. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of B. LDB must be at least +*> max(1,MAX( M, N ) ). +*> \endverbatim +*> +*> \param[out] BX +*> \verbatim +*> BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS ) +*> \endverbatim +*> +*> \param[in] LDBX +*> \verbatim +*> LDBX is INTEGER +*> The leading dimension of BX. +*> \endverbatim +*> +*> \param[in] PERM +*> \verbatim +*> PERM is INTEGER array, dimension ( N ) +*> The permutations (from deflation and sorting) applied +*> to the two blocks. +*> \endverbatim +*> +*> \param[in] GIVPTR +*> \verbatim +*> GIVPTR is INTEGER +*> The number of Givens rotations which took place in this +*> subproblem. +*> \endverbatim +*> +*> \param[in] GIVCOL +*> \verbatim +*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) +*> Each pair of numbers indicates a pair of rows/columns +*> involved in a Givens rotation. +*> \endverbatim +*> +*> \param[in] LDGCOL +*> \verbatim +*> LDGCOL is INTEGER +*> The leading dimension of GIVCOL, must be at least N. +*> \endverbatim +*> +*> \param[in] GIVNUM +*> \verbatim +*> GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) +*> Each number indicates the C or S value used in the +*> corresponding Givens rotation. +*> \endverbatim +*> +*> \param[in] LDGNUM +*> \verbatim +*> LDGNUM is INTEGER +*> The leading dimension of arrays DIFR, POLES and +*> GIVNUM, must be at least K. +*> \endverbatim +*> +*> \param[in] POLES +*> \verbatim +*> POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) +*> On entry, POLES(1:K, 1) contains the new singular +*> values obtained from solving the secular equation, and +*> POLES(1:K, 2) is an array containing the poles in the secular +*> equation. +*> \endverbatim +*> +*> \param[in] DIFL +*> \verbatim +*> DIFL is DOUBLE PRECISION array, dimension ( K ). +*> On entry, DIFL(I) is the distance between I-th updated +*> (undeflated) singular value and the I-th (undeflated) old +*> singular value. +*> \endverbatim +*> +*> \param[in] DIFR +*> \verbatim +*> DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). +*> On entry, DIFR(I, 1) contains the distances between I-th +*> updated (undeflated) singular value and the I+1-th +*> (undeflated) old singular value. And DIFR(I, 2) is the +*> normalizing factor for the I-th right singular vector. +*> \endverbatim +*> +*> \param[in] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension ( K ) +*> Contain the components of the deflation-adjusted updating row +*> vector. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> Contains the dimension of the non-deflated matrix, +*> This is the order of the related secular equation. 1 <= K <=N. +*> \endverbatim +*> +*> \param[in] C +*> \verbatim +*> C is DOUBLE PRECISION +*> C contains garbage if SQRE =0 and the C-value of a Givens +*> rotation related to the right null space if SQRE = 1. +*> \endverbatim +*> +*> \param[in] S +*> \verbatim +*> S is DOUBLE PRECISION +*> S contains garbage if SQRE =0 and the S-value of a Givens +*> rotation related to the right null space if SQRE = 1. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension ( K ) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit. +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> \endverbatim +*> +* +* Authors +* ======= +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERcomputational +* +* +* Further Details +* =============== +*>\details \b Further \b Details +*> \verbatim +*> +*> Based on contributions by +*> Ming Gu and Ren-Cang Li, Computer Science Division, University of +*> California at Berkeley, USA +*> Osni Marques, LBNL/NERSC, USA +*> +*> \endverbatim +*> +* ===================================================================== SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, $ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, $ POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO ) * -* -- LAPACK routine (version 3.2) -- +* -- LAPACK computational routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* November 2011 * * .. Scalar Arguments .. INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, @@ -19,148 +284,6 @@ $ POLES( LDGNUM, * ), WORK( * ), Z( * ) * .. * -* Purpose -* ======= -* -* DLALS0 applies back the multiplying factors of either the left or the -* right singular vector matrix of a diagonal matrix appended by a row -* to the right hand side matrix B in solving the least squares problem -* using the divide-and-conquer SVD approach. -* -* For the left singular vector matrix, three types of orthogonal -* matrices are involved: -* -* (1L) Givens rotations: the number of such rotations is GIVPTR; the -* pairs of columns/rows they were applied to are stored in GIVCOL; -* and the C- and S-values of these rotations are stored in GIVNUM. -* -* (2L) Permutation. The (NL+1)-st row of B is to be moved to the first -* row, and for J=2:N, PERM(J)-th row of B is to be moved to the -* J-th row. -* -* (3L) The left singular vector matrix of the remaining matrix. -* -* For the right singular vector matrix, four types of orthogonal -* matrices are involved: -* -* (1R) The right singular vector matrix of the remaining matrix. -* -* (2R) If SQRE = 1, one extra Givens rotation to generate the right -* null space. -* -* (3R) The inverse transformation of (2L). -* -* (4R) The inverse transformation of (1L). -* -* Arguments -* ========= -* -* ICOMPQ (input) INTEGER -* Specifies whether singular vectors are to be computed in -* factored form: -* = 0: Left singular vector matrix. -* = 1: Right singular vector matrix. -* -* NL (input) INTEGER -* The row dimension of the upper block. NL >= 1. -* -* NR (input) INTEGER -* The row dimension of the lower block. NR >= 1. -* -* SQRE (input) INTEGER -* = 0: the lower block is an NR-by-NR square matrix. -* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. -* -* The bidiagonal matrix has row dimension N = NL + NR + 1, -* and column dimension M = N + SQRE. -* -* NRHS (input) INTEGER -* The number of columns of B and BX. NRHS must be at least 1. -* -* B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) -* On input, B contains the right hand sides of the least -* squares problem in rows 1 through M. On output, B contains -* the solution X in rows 1 through N. -* -* LDB (input) INTEGER -* The leading dimension of B. LDB must be at least -* max(1,MAX( M, N ) ). -* -* BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) -* -* LDBX (input) INTEGER -* The leading dimension of BX. -* -* PERM (input) INTEGER array, dimension ( N ) -* The permutations (from deflation and sorting) applied -* to the two blocks. -* -* GIVPTR (input) INTEGER -* The number of Givens rotations which took place in this -* subproblem. -* -* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) -* Each pair of numbers indicates a pair of rows/columns -* involved in a Givens rotation. -* -* LDGCOL (input) INTEGER -* The leading dimension of GIVCOL, must be at least N. -* -* GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) -* Each number indicates the C or S value used in the -* corresponding Givens rotation. -* -* LDGNUM (input) INTEGER -* The leading dimension of arrays DIFR, POLES and -* GIVNUM, must be at least K. -* -* POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) -* On entry, POLES(1:K, 1) contains the new singular -* values obtained from solving the secular equation, and -* POLES(1:K, 2) is an array containing the poles in the secular -* equation. -* -* DIFL (input) DOUBLE PRECISION array, dimension ( K ). -* On entry, DIFL(I) is the distance between I-th updated -* (undeflated) singular value and the I-th (undeflated) old -* singular value. -* -* DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). -* On entry, DIFR(I, 1) contains the distances between I-th -* updated (undeflated) singular value and the I+1-th -* (undeflated) old singular value. And DIFR(I, 2) is the -* normalizing factor for the I-th right singular vector. -* -* Z (input) DOUBLE PRECISION array, dimension ( K ) -* Contain the components of the deflation-adjusted updating row -* vector. -* -* K (input) INTEGER -* Contains the dimension of the non-deflated matrix, -* This is the order of the related secular equation. 1 <= K <=N. -* -* C (input) DOUBLE PRECISION -* C contains garbage if SQRE =0 and the C-value of a Givens -* rotation related to the right null space if SQRE = 1. -* -* S (input) DOUBLE PRECISION -* S contains garbage if SQRE =0 and the S-value of a Givens -* rotation related to the right null space if SQRE = 1. -* -* WORK (workspace) DOUBLE PRECISION array, dimension ( K ) -* -* INFO (output) INTEGER -* = 0: successful exit. -* < 0: if INFO = -i, the i-th argument had an illegal value. -* -* Further Details -* =============== -* -* Based on contributions by -* Ming Gu and Ren-Cang Li, Computer Science Division, University of -* California at Berkeley, USA -* Osni Marques, LBNL/NERSC, USA -* * ===================================================================== * * .. Parameters .. |