diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/cunm2l.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/cunm2l.f')
-rw-r--r-- | SRC/cunm2l.f | 196 |
1 files changed, 196 insertions, 0 deletions
diff --git a/SRC/cunm2l.f b/SRC/cunm2l.f new file mode 100644 index 00000000..fb33c410 --- /dev/null +++ b/SRC/cunm2l.f @@ -0,0 +1,196 @@ + SUBROUTINE CUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, + $ WORK, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER SIDE, TRANS + INTEGER INFO, K, LDA, LDC, M, N +* .. +* .. Array Arguments .. + COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* CUNM2L overwrites the general complex m-by-n matrix C with +* +* Q * C if SIDE = 'L' and TRANS = 'N', or +* +* Q'* C if SIDE = 'L' and TRANS = 'C', or +* +* C * Q if SIDE = 'R' and TRANS = 'N', or +* +* C * Q' if SIDE = 'R' and TRANS = 'C', +* +* where Q is a complex unitary matrix defined as the product of k +* elementary reflectors +* +* Q = H(k) . . . H(2) H(1) +* +* as returned by CGEQLF. Q is of order m if SIDE = 'L' and of order n +* if SIDE = 'R'. +* +* Arguments +* ========= +* +* SIDE (input) CHARACTER*1 +* = 'L': apply Q or Q' from the Left +* = 'R': apply Q or Q' from the Right +* +* TRANS (input) CHARACTER*1 +* = 'N': apply Q (No transpose) +* = 'C': apply Q' (Conjugate transpose) +* +* M (input) INTEGER +* The number of rows of the matrix C. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix C. N >= 0. +* +* K (input) INTEGER +* The number of elementary reflectors whose product defines +* the matrix Q. +* If SIDE = 'L', M >= K >= 0; +* if SIDE = 'R', N >= K >= 0. +* +* A (input) COMPLEX array, dimension (LDA,K) +* The i-th column must contain the vector which defines the +* elementary reflector H(i), for i = 1,2,...,k, as returned by +* CGEQLF in the last k columns of its array argument A. +* A is modified by the routine but restored on exit. +* +* LDA (input) INTEGER +* The leading dimension of the array A. +* If SIDE = 'L', LDA >= max(1,M); +* if SIDE = 'R', LDA >= max(1,N). +* +* TAU (input) COMPLEX array, dimension (K) +* TAU(i) must contain the scalar factor of the elementary +* reflector H(i), as returned by CGEQLF. +* +* C (input/output) COMPLEX array, dimension (LDC,N) +* On entry, the m-by-n matrix C. +* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. +* +* LDC (input) INTEGER +* The leading dimension of the array C. LDC >= max(1,M). +* +* WORK (workspace) COMPLEX array, dimension +* (N) if SIDE = 'L', +* (M) if SIDE = 'R' +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX ONE + PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL LEFT, NOTRAN + INTEGER I, I1, I2, I3, MI, NI, NQ + COMPLEX AII, TAUI +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL CLARF, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC CONJG, MAX +* .. +* .. Executable Statements .. +* +* Test the input arguments +* + INFO = 0 + LEFT = LSAME( SIDE, 'L' ) + NOTRAN = LSAME( TRANS, 'N' ) +* +* NQ is the order of Q +* + IF( LEFT ) THEN + NQ = M + ELSE + NQ = N + END IF + IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN + INFO = -1 + ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN + INFO = -2 + ELSE IF( M.LT.0 ) THEN + INFO = -3 + ELSE IF( N.LT.0 ) THEN + INFO = -4 + ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN + INFO = -5 + ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN + INFO = -7 + ELSE IF( LDC.LT.MAX( 1, M ) ) THEN + INFO = -10 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CUNM2L', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) + $ RETURN +* + IF( ( LEFT .AND. NOTRAN .OR. .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN + I1 = 1 + I2 = K + I3 = 1 + ELSE + I1 = K + I2 = 1 + I3 = -1 + END IF +* + IF( LEFT ) THEN + NI = N + ELSE + MI = M + END IF +* + DO 10 I = I1, I2, I3 + IF( LEFT ) THEN +* +* H(i) or H(i)' is applied to C(1:m-k+i,1:n) +* + MI = M - K + I + ELSE +* +* H(i) or H(i)' is applied to C(1:m,1:n-k+i) +* + NI = N - K + I + END IF +* +* Apply H(i) or H(i)' +* + IF( NOTRAN ) THEN + TAUI = TAU( I ) + ELSE + TAUI = CONJG( TAU( I ) ) + END IF + AII = A( NQ-K+I, I ) + A( NQ-K+I, I ) = ONE + CALL CLARF( SIDE, MI, NI, A( 1, I ), 1, TAUI, C, LDC, WORK ) + A( NQ-K+I, I ) = AII + 10 CONTINUE + RETURN +* +* End of CUNM2L +* + END |