summaryrefslogtreecommitdiff
path: root/SRC/cuncsd.f
diff options
context:
space:
mode:
authorbrian <brian@8a072113-8704-0410-8d35-dd094bca7971>2010-11-03 23:02:29 +0000
committerbrian <brian@8a072113-8704-0410-8d35-dd094bca7971>2010-11-03 23:02:29 +0000
commit4ca2feaf79883558f849f792f6813819da97a821 (patch)
tree7079f3949a0356cd2914ab4984e928ef2ebf1b8e /SRC/cuncsd.f
parent1237a0d5b7f033a117062f78bf055026928af9ec (diff)
downloadlapack-4ca2feaf79883558f849f792f6813819da97a821.tar.gz
lapack-4ca2feaf79883558f849f792f6813819da97a821.tar.bz2
lapack-4ca2feaf79883558f849f792f6813819da97a821.zip
Added CS decomposition source files to SRC/
Diffstat (limited to 'SRC/cuncsd.f')
-rw-r--r--SRC/cuncsd.f466
1 files changed, 466 insertions, 0 deletions
diff --git a/SRC/cuncsd.f b/SRC/cuncsd.f
new file mode 100644
index 00000000..278564ae
--- /dev/null
+++ b/SRC/cuncsd.f
@@ -0,0 +1,466 @@
+ RECURSIVE SUBROUTINE CUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
+ $ SIGNS, M, P, Q, X11, LDX11, X12,
+ $ LDX12, X21, LDX21, X22, LDX22, THETA,
+ $ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
+ $ LDV2T, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK, INFO )
+ IMPLICIT NONE
+*
+* Brian Sutton
+* Randolph-Macon College
+* July 2010
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
+ INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
+ $ LDX21, LDX22, LRWORK, LWORK, M, P, Q
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ REAL THETA( * )
+ REAL RWORK( * )
+ COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
+ $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
+ $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
+ $ * )
+* ..
+*
+* Purpose
+* =======
+*
+* CUNCSD computes the CS decomposition of an M-by-M partitioned
+* unitary matrix X:
+*
+* [ I 0 0 | 0 0 0 ]
+* [ 0 C 0 | 0 -S 0 ]
+* [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H
+* X = [-----------] = [---------] [---------------------] [---------] .
+* [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]
+* [ 0 S 0 | 0 C 0 ]
+* [ 0 0 I | 0 0 0 ]
+*
+* X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
+* (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
+* R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
+* which R = MIN(P,M-P,Q,M-Q).
+*
+* Arguments
+* =========
+*
+* JOBU1 (input) CHARACTER
+* = 'Y': U1 is computed;
+* otherwise: U1 is not computed.
+*
+* JOBU2 (input) CHARACTER
+* = 'Y': U2 is computed;
+* otherwise: U2 is not computed.
+*
+* JOBV1T (input) CHARACTER
+* = 'Y': V1T is computed;
+* otherwise: V1T is not computed.
+*
+* JOBV2T (input) CHARACTER
+* = 'Y': V2T is computed;
+* otherwise: V2T is not computed.
+*
+* TRANS (input) CHARACTER
+* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
+* order;
+* otherwise: X, U1, U2, V1T, and V2T are stored in column-
+* major order.
+*
+* SIGNS (input) CHARACTER
+* = 'O': The lower-left block is made nonpositive (the
+* "other" convention);
+* otherwise: The upper-right block is made nonpositive (the
+* "default" convention).
+*
+* M (input) INTEGER
+* The number of rows and columns in X.
+*
+* P (input) INTEGER
+* The number of rows in X11 and X12. 0 <= P <= M.
+*
+* Q (input) INTEGER
+* The number of columns in X11 and X21. 0 <= Q <= M.
+*
+* X (input/workspace) COMPLEX array, dimension (LDX,M)
+* On entry, the unitary matrix whose CSD is desired.
+*
+* LDX (input) INTEGER
+* The leading dimension of X. LDX >= MAX(1,M).
+*
+* THETA (output) REAL array, dimension (R), in which R =
+* MIN(P,M-P,Q,M-Q).
+* C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
+* S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
+*
+* U1 (output) COMPLEX array, dimension (P)
+* If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
+*
+* LDU1 (input) INTEGER
+* The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
+* MAX(1,P).
+*
+* U2 (output) COMPLEX array, dimension (M-P)
+* If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
+* matrix U2.
+*
+* LDU2 (input) INTEGER
+* The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
+* MAX(1,M-P).
+*
+* V1T (output) COMPLEX array, dimension (Q)
+* If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
+* matrix V1**H.
+*
+* LDV1T (input) INTEGER
+* The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
+* MAX(1,Q).
+*
+* V2T (output) COMPLEX array, dimension (M-Q)
+* If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
+* matrix V2**H.
+*
+* LDV2T (input) INTEGER
+* The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
+* MAX(1,M-Q).
+*
+* WORK (workspace) COMPLEX array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the work array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* RWORK (workspace) REAL array, dimension MAX(1,LRWORK)
+* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
+* If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
+* ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
+* define the matrix in intermediate bidiagonal-block form
+* remaining after nonconvergence. INFO specifies the number
+* of nonzero PHI's.
+*
+* LRWORK (input) INTEGER
+* The dimension of the array RWORK.
+*
+* If LRWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the RWORK array, returns
+* this value as the first entry of the work array, and no error
+* message related to LRWORK is issued by XERBLA.
+*
+* IWORK (workspace) INTEGER array, dimension (M-Q)
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: CBBCSD did not converge. See the description of RWORK
+* above for details.
+*
+* Reference
+* =========
+*
+* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
+* Algorithms, 50(1):33-65, 2009.
+*
+* ===================================================================
+*
+* .. Parameters ..
+ REAL REALONE
+ PARAMETER ( REALONE = 1.0E0 )
+ COMPLEX NEGONE, ONE, PIOVER2, ZERO
+ PARAMETER ( NEGONE = (-1.0E0,0.0E0), ONE = (1.0E0,0.0E0),
+ $ PIOVER2 = 1.57079632679489662E0,
+ $ ZERO = (0.0E0,0.0E0) )
+* ..
+* .. Local Scalars ..
+ CHARACTER TRANST, SIGNST
+ INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
+ $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
+ $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
+ $ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
+ $ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
+ $ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
+ $ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
+ $ LORGQRWORKOPT, LWORKMIN, LWORKOPT
+ LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
+ $ WANTV1T, WANTV2T
+ INTEGER LRWORKMIN, LRWORKOPT
+ LOGICAL LRQUERY
+* ..
+* .. External Subroutines ..
+ EXTERNAL CBBCSD, CLACPY, CLAPMR, CLAPMT, CLASCL, CLASET,
+ $ CUNBDB, CUNGLQ, CUNGQR, XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Intrinsic Functions
+ INTRINSIC COS, INT, MAX, MIN, SIN
+* ..
+* .. Executable Statements ..
+*
+* Test input arguments
+*
+ INFO = 0
+ WANTU1 = LSAME( JOBU1, 'Y' )
+ WANTU2 = LSAME( JOBU2, 'Y' )
+ WANTV1T = LSAME( JOBV1T, 'Y' )
+ WANTV2T = LSAME( JOBV2T, 'Y' )
+ COLMAJOR = .NOT. LSAME( TRANS, 'T' )
+ DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
+ LQUERY = LWORK .EQ. -1
+ LRQUERY = LRWORK .EQ. -1
+ IF( M .LT. 0 ) THEN
+ INFO = -7
+ ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
+ INFO = -8
+ ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
+ INFO = -9
+ ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR.
+ $ ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN
+ INFO = -11
+ ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
+ INFO = -14
+ ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
+ INFO = -16
+ ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
+ INFO = -18
+ ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
+ INFO = -20
+ END IF
+*
+* Work with transpose if convenient
+*
+ IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
+ IF( COLMAJOR ) THEN
+ TRANST = 'T'
+ ELSE
+ TRANST = 'N'
+ END IF
+ IF( DEFAULTSIGNS ) THEN
+ SIGNST = 'O'
+ ELSE
+ SIGNST = 'D'
+ END IF
+ CALL CUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
+ $ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
+ $ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
+ $ U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
+ $ INFO )
+ RETURN
+ END IF
+*
+* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
+* convenient
+*
+ IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
+ IF( DEFAULTSIGNS ) THEN
+ SIGNST = 'O'
+ ELSE
+ SIGNST = 'D'
+ END IF
+ CALL CUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
+ $ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
+ $ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
+ $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
+ RETURN
+ END IF
+*
+* Compute workspace
+*
+ IF( INFO .EQ. 0 ) THEN
+*
+* Real workspace
+*
+ IPHI = 2
+ IB11D = IPHI + MAX( 1, Q - 1 )
+ IB11E = IB11D + MAX( 1, Q )
+ IB12D = IB11E + MAX( 1, Q - 1 )
+ IB12E = IB12D + MAX( 1, Q )
+ IB21D = IB12E + MAX( 1, Q - 1 )
+ IB21E = IB21D + MAX( 1, Q )
+ IB22D = IB21E + MAX( 1, Q - 1 )
+ IB22E = IB22D + MAX( 1, Q )
+ IBBCSD = IB22E + MAX( 1, Q - 1 )
+ CALL CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0,
+ $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0,
+ $ 0, 0, 0, 0, 0, 0, 0, RWORK, -1, CHILDINFO )
+ LBBCSDWORKOPT = INT( RWORK(1) )
+ LBBCSDWORKMIN = LBBCSDWORKOPT
+ LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
+ LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
+ RWORK(1) = LRWORKOPT
+*
+* Complex workspace
+*
+ ITAUP1 = 2
+ ITAUP2 = ITAUP1 + MAX( 1, P )
+ ITAUQ1 = ITAUP2 + MAX( 1, M - P )
+ ITAUQ2 = ITAUQ1 + MAX( 1, Q )
+ IORGQR = ITAUQ2 + MAX( 1, M - Q )
+ CALL CUNGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
+ $ CHILDINFO )
+ LORGQRWORKOPT = INT( WORK(1) )
+ LORGQRWORKMIN = MAX( 1, M - Q )
+ IORGLQ = ITAUQ2 + MAX( 1, M - Q )
+ CALL CUNGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
+ $ CHILDINFO )
+ LORGLQWORKOPT = INT( WORK(1) )
+ LORGLQWORKMIN = MAX( 1, M - Q )
+ IORBDB = ITAUQ2 + MAX( 1, M - Q )
+ CALL CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
+ $ X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK,
+ $ -1, CHILDINFO )
+ LORBDBWORKOPT = INT( WORK(1) )
+ LORBDBWORKMIN = LORBDBWORKOPT
+ LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
+ $ IORBDB + LORBDBWORKOPT ) - 1
+ LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
+ $ IORBDB + LORBDBWORKMIN ) - 1
+ WORK(1) = LWORKOPT
+*
+ IF( LWORK .LT. LWORKMIN
+ $ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
+ INFO = -22
+ ELSE IF( LRWORK .LT. LRWORKMIN
+ $ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
+ INFO = -24
+ ELSE
+ LORGQRWORK = LWORK - IORGQR + 1
+ LORGLQWORK = LWORK - IORGLQ + 1
+ LORBDBWORK = LWORK - IORBDB + 1
+ LBBCSDWORK = LRWORK - IBBCSD + 1
+ END IF
+ END IF
+*
+* Abort if any illegal arguments
+*
+ IF( INFO .NE. 0 ) THEN
+ CALL XERBLA( 'CUNCSD', -INFO )
+ RETURN
+ ELSE IF( LQUERY .OR. LRQUERY ) THEN
+ RETURN
+ END IF
+*
+* Transform to bidiagonal block form
+*
+ CALL CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
+ $ LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
+ $ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
+ $ WORK(IORBDB), LORBDBWORK, CHILDINFO )
+*
+* Accumulate Householder reflectors
+*
+ IF( COLMAJOR ) THEN
+ IF( WANTU1 .AND. P .GT. 0 ) THEN
+ CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
+ CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
+ $ LORGQRWORK, INFO)
+ END IF
+ IF( WANTU2 .AND. M-P .GT. 0 ) THEN
+ CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
+ CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
+ $ WORK(IORGQR), LORGQRWORK, INFO )
+ END IF
+ IF( WANTV1T .AND. Q .GT. 0 ) THEN
+ CALL CLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
+ $ LDV1T )
+ V1T(1, 1) = ONE
+ DO J = 2, Q
+ V1T(1,J) = ZERO
+ V1T(J,1) = ZERO
+ END DO
+ CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
+ $ WORK(IORGLQ), LORGLQWORK, INFO )
+ END IF
+ IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
+ CALL CLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
+ CALL CLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
+ $ V2T(P+1,P+1), LDV2T )
+ CALL CUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
+ $ WORK(IORGLQ), LORGLQWORK, INFO )
+ END IF
+ ELSE
+ IF( WANTU1 .AND. P .GT. 0 ) THEN
+ CALL CLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
+ CALL CUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
+ $ LORGLQWORK, INFO)
+ END IF
+ IF( WANTU2 .AND. M-P .GT. 0 ) THEN
+ CALL CLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
+ CALL CUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
+ $ WORK(IORGLQ), LORGLQWORK, INFO )
+ END IF
+ IF( WANTV1T .AND. Q .GT. 0 ) THEN
+ CALL CLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
+ $ LDV1T )
+ V1T(1, 1) = ONE
+ DO J = 2, Q
+ V1T(1,J) = ZERO
+ V1T(J,1) = ZERO
+ END DO
+ CALL CUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
+ $ WORK(IORGQR), LORGQRWORK, INFO )
+ END IF
+ IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
+ CALL CLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
+ CALL CLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
+ $ V2T(P+1,P+1), LDV2T )
+ CALL CUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
+ $ WORK(IORGQR), LORGQRWORK, INFO )
+ END IF
+ END IF
+*
+* Compute the CSD of the matrix in bidiagonal-block form
+*
+ CALL CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
+ $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
+ $ LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
+ $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
+ $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
+ $ LBBCSDWORK, INFO )
+*
+* Permute rows and columns to place identity submatrices in top-
+* left corner of (1,1)-block and/or bottom-right corner of (1,2)-
+* block and/or bottom-right corner of (2,1)-block and/or top-left
+* corner of (2,2)-block
+*
+ IF( Q .GT. 0 .AND. WANTU2 ) THEN
+ DO I = 1, Q
+ IWORK(I) = M - P - Q + I
+ END DO
+ DO I = Q + 1, M - P
+ IWORK(I) = I - Q
+ END DO
+ IF( COLMAJOR ) THEN
+ CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
+ ELSE
+ CALL CLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
+ END IF
+ END IF
+ IF( M .GT. 0 .AND. WANTV2T ) THEN
+ DO I = 1, P
+ IWORK(I) = M - P - Q + I
+ END DO
+ DO I = P + 1, M - Q
+ IWORK(I) = I - P
+ END DO
+ IF( .NOT. COLMAJOR ) THEN
+ CALL CLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
+ ELSE
+ CALL CLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
+ END IF
+ END IF
+*
+ RETURN
+*
+* End CUNCSD
+*
+ END
+