summaryrefslogtreecommitdiff
path: root/SRC/clarfb.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/clarfb.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/clarfb.f')
-rw-r--r--SRC/clarfb.f649
1 files changed, 649 insertions, 0 deletions
diff --git a/SRC/clarfb.f b/SRC/clarfb.f
new file mode 100644
index 00000000..3418b460
--- /dev/null
+++ b/SRC/clarfb.f
@@ -0,0 +1,649 @@
+ SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
+ $ T, LDT, C, LDC, WORK, LDWORK )
+ IMPLICIT NONE
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIRECT, SIDE, STOREV, TRANS
+ INTEGER K, LDC, LDT, LDV, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* Purpose
+* =======
+*
+* CLARFB applies a complex block reflector H or its transpose H' to a
+* complex M-by-N matrix C, from either the left or the right.
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'L': apply H or H' from the Left
+* = 'R': apply H or H' from the Right
+*
+* TRANS (input) CHARACTER*1
+* = 'N': apply H (No transpose)
+* = 'C': apply H' (Conjugate transpose)
+*
+* DIRECT (input) CHARACTER*1
+* Indicates how H is formed from a product of elementary
+* reflectors
+* = 'F': H = H(1) H(2) . . . H(k) (Forward)
+* = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*
+* STOREV (input) CHARACTER*1
+* Indicates how the vectors which define the elementary
+* reflectors are stored:
+* = 'C': Columnwise
+* = 'R': Rowwise
+*
+* M (input) INTEGER
+* The number of rows of the matrix C.
+*
+* N (input) INTEGER
+* The number of columns of the matrix C.
+*
+* K (input) INTEGER
+* The order of the matrix T (= the number of elementary
+* reflectors whose product defines the block reflector).
+*
+* V (input) COMPLEX array, dimension
+* (LDV,K) if STOREV = 'C'
+* (LDV,M) if STOREV = 'R' and SIDE = 'L'
+* (LDV,N) if STOREV = 'R' and SIDE = 'R'
+* The matrix V. See further details.
+*
+* LDV (input) INTEGER
+* The leading dimension of the array V.
+* If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
+* if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
+* if STOREV = 'R', LDV >= K.
+*
+* T (input) COMPLEX array, dimension (LDT,K)
+* The triangular K-by-K matrix T in the representation of the
+* block reflector.
+*
+* LDT (input) INTEGER
+* The leading dimension of the array T. LDT >= K.
+*
+* C (input/output) COMPLEX array, dimension (LDC,N)
+* On entry, the M-by-N matrix C.
+* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M).
+*
+* WORK (workspace) COMPLEX array, dimension (LDWORK,K)
+*
+* LDWORK (input) INTEGER
+* The leading dimension of the array WORK.
+* If SIDE = 'L', LDWORK >= max(1,N);
+* if SIDE = 'R', LDWORK >= max(1,M).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX ONE
+ PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ CHARACTER TRANST
+ INTEGER I, J, LASTV, LASTC
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILACLR, ILACLC
+ EXTERNAL LSAME, ILACLR, ILACLC
+* ..
+* .. External Subroutines ..
+ EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CONJG
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LE.0 .OR. N.LE.0 )
+ $ RETURN
+*
+ IF( LSAME( TRANS, 'N' ) ) THEN
+ TRANST = 'C'
+ ELSE
+ TRANST = 'N'
+ END IF
+*
+ IF( LSAME( STOREV, 'C' ) ) THEN
+*
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+*
+* Let V = ( V1 ) (first K rows)
+* ( V2 )
+* where V1 is unit lower triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+ LASTV = MAX( K, ILACLR( M, K, V, LDV ) )
+ LASTC = ILACLC( LASTV, N, C, LDC )
+*
+* W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
+*
+* W := C1'
+*
+ DO 10 J = 1, K
+ CALL CCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+ CALL CLACGV( LASTC, WORK( 1, J ), 1 )
+ 10 CONTINUE
+*
+* W := W * V1
+*
+ CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C2'*V2
+*
+ CALL CGEMM( 'Conjugate transpose', 'No transpose',
+ $ LASTC, K, LASTV-K, ONE, C( K+1, 1 ), LDC,
+ $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V * W'
+*
+ IF( M.GT.K ) THEN
+*
+* C2 := C2 - V2 * W'
+*
+ CALL CGEMM( 'No transpose', 'Conjugate transpose',
+ $ LASTV-K, LASTC, K, -ONE, V( K+1, 1 ), LDV,
+ $ WORK, LDWORK, ONE, C( K+1, 1 ), LDC )
+ END IF
+*
+* W := W * V1'
+*
+ CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W'
+*
+ DO 30 J = 1, K
+ DO 20 I = 1, LASTC
+ C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) )
+ 20 CONTINUE
+ 30 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+ LASTV = MAX( K, ILACLR( N, K, V, LDV ) )
+ LASTC = ILACLR( M, LASTV, C, LDC )
+*
+* W := C * V = (C1*V1 + C2*V2) (stored in WORK)
+*
+* W := C1
+*
+ DO 40 J = 1, K
+ CALL CCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
+ 40 CONTINUE
+*
+* W := W * V1
+*
+ CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C2 * V2
+*
+ CALL CGEMM( 'No transpose', 'No transpose',
+ $ LASTC, K, LASTV-K,
+ $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
+ $ ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V'
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C2 := C2 - W * V2'
+*
+ CALL CGEMM( 'No transpose', 'Conjugate transpose',
+ $ LASTC, LASTV-K, K,
+ $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV,
+ $ ONE, C( 1, K+1 ), LDC )
+ END IF
+*
+* W := W * V1'
+*
+ CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W
+*
+ DO 60 J = 1, K
+ DO 50 I = 1, LASTC
+ C( I, J ) = C( I, J ) - WORK( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ ELSE
+*
+* Let V = ( V1 )
+* ( V2 ) (last K rows)
+* where V2 is unit upper triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+ LASTV = MAX( K, ILACLR( M, K, V, LDV ) )
+ LASTC = ILACLC( LASTV, N, C, LDC )
+*
+* W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
+*
+* W := C2'
+*
+ DO 70 J = 1, K
+ CALL CCOPY( LASTC, C( LASTV-K+J, 1 ), LDC,
+ $ WORK( 1, J ), 1 )
+ CALL CLACGV( LASTC, WORK( 1, J ), 1 )
+ 70 CONTINUE
+*
+* W := W * V2
+*
+ CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
+ $ WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C1'*V1
+*
+ CALL CGEMM( 'Conjugate transpose', 'No transpose',
+ $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV,
+ $ ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V * W'
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C1 := C1 - V1 * W'
+*
+ CALL CGEMM( 'No transpose', 'Conjugate transpose',
+ $ LASTV-K, LASTC, K, -ONE, V, LDV, WORK, LDWORK,
+ $ ONE, C, LDC )
+ END IF
+*
+* W := W * V2'
+*
+ CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
+ $ WORK, LDWORK )
+*
+* C2 := C2 - W'
+*
+ DO 90 J = 1, K
+ DO 80 I = 1, LASTC
+ C( LASTV-K+J, I ) = C( LASTV-K+J, I ) -
+ $ CONJG( WORK( I, J ) )
+ 80 CONTINUE
+ 90 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+ LASTV = MAX( K, ILACLR( N, K, V, LDV ) )
+ LASTC = ILACLR( M, LASTV, C, LDC )
+*
+* W := C * V = (C1*V1 + C2*V2) (stored in WORK)
+*
+* W := C2
+*
+ DO 100 J = 1, K
+ CALL CCOPY( LASTC, C( 1, LASTV-K+J ), 1,
+ $ WORK( 1, J ), 1 )
+ 100 CONTINUE
+*
+* W := W * V2
+*
+ CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
+ $ WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C1 * V1
+*
+ CALL CGEMM( 'No transpose', 'No transpose',
+ $ LASTC, K, LASTV-K,
+ $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V'
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C1 := C1 - W * V1'
+*
+ CALL CGEMM( 'No transpose', 'Conjugate transpose',
+ $ LASTC, LASTV-K, K, -ONE, WORK, LDWORK, V, LDV,
+ $ ONE, C, LDC )
+ END IF
+*
+* W := W * V2'
+*
+ CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
+ $ WORK, LDWORK )
+*
+* C2 := C2 - W
+*
+ DO 120 J = 1, K
+ DO 110 I = 1, LASTC
+ C( I, LASTV-K+J ) = C( I, LASTV-K+J )
+ $ - WORK( I, J )
+ 110 CONTINUE
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ ELSE IF( LSAME( STOREV, 'R' ) ) THEN
+*
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+*
+* Let V = ( V1 V2 ) (V1: first K columns)
+* where V1 is unit upper triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+ LASTV = MAX( K, ILACLC( K, M, V, LDV ) )
+ LASTC = ILACLC( LASTV, N, C, LDC )
+*
+* W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
+*
+* W := C1'
+*
+ DO 130 J = 1, K
+ CALL CCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+ CALL CLACGV( LASTC, WORK( 1, J ), 1 )
+ 130 CONTINUE
+*
+* W := W * V1'
+*
+ CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C2'*V2'
+*
+ CALL CGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', LASTC, K, LASTV-K,
+ $ ONE, C( K+1, 1 ), LDC, V( 1, K+1 ), LDV,
+ $ ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V' * W'
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C2 := C2 - V2' * W'
+*
+ CALL CGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', LASTV-K, LASTC, K,
+ $ -ONE, V( 1, K+1 ), LDV, WORK, LDWORK,
+ $ ONE, C( K+1, 1 ), LDC )
+ END IF
+*
+* W := W * V1
+*
+ CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W'
+*
+ DO 150 J = 1, K
+ DO 140 I = 1, LASTC
+ C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) )
+ 140 CONTINUE
+ 150 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+ LASTV = MAX( K, ILACLC( K, N, V, LDV ) )
+ LASTC = ILACLR( M, LASTV, C, LDC )
+*
+* W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
+*
+* W := C1
+*
+ DO 160 J = 1, K
+ CALL CCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
+ 160 CONTINUE
+*
+* W := W * V1'
+*
+ CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C2 * V2'
+*
+ CALL CGEMM( 'No transpose', 'Conjugate transpose',
+ $ LASTC, K, LASTV-K, ONE, C( 1, K+1 ), LDC,
+ $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C2 := C2 - W * V2
+*
+ CALL CGEMM( 'No transpose', 'No transpose',
+ $ LASTC, LASTV-K, K,
+ $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV,
+ $ ONE, C( 1, K+1 ), LDC )
+ END IF
+*
+* W := W * V1
+*
+ CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W
+*
+ DO 180 J = 1, K
+ DO 170 I = 1, LASTC
+ C( I, J ) = C( I, J ) - WORK( I, J )
+ 170 CONTINUE
+ 180 CONTINUE
+*
+ END IF
+*
+ ELSE
+*
+* Let V = ( V1 V2 ) (V2: last K columns)
+* where V2 is unit lower triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+ LASTV = MAX( K, ILACLC( K, M, V, LDV ) )
+ LASTC = ILACLC( LASTV, N, C, LDC )
+*
+* W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
+*
+* W := C2'
+*
+ DO 190 J = 1, K
+ CALL CCOPY( LASTC, C( LASTV-K+J, 1 ), LDC,
+ $ WORK( 1, J ), 1 )
+ CALL CLACGV( LASTC, WORK( 1, J ), 1 )
+ 190 CONTINUE
+*
+* W := W * V2'
+*
+ CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
+ $ WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C1'*V1'
+*
+ CALL CGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', LASTC, K, LASTV-K,
+ $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V' * W'
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C1 := C1 - V1' * W'
+*
+ CALL CGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', LASTV-K, LASTC, K,
+ $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
+ END IF
+*
+* W := W * V2
+*
+ CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
+ $ WORK, LDWORK )
+*
+* C2 := C2 - W'
+*
+ DO 210 J = 1, K
+ DO 200 I = 1, LASTC
+ C( LASTV-K+J, I ) = C( LASTV-K+J, I ) -
+ $ CONJG( WORK( I, J ) )
+ 200 CONTINUE
+ 210 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+ LASTV = MAX( K, ILACLC( K, N, V, LDV ) )
+ LASTC = ILACLR( M, LASTV, C, LDC )
+*
+* W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
+*
+* W := C2
+*
+ DO 220 J = 1, K
+ CALL CCOPY( LASTC, C( 1, LASTV-K+J ), 1,
+ $ WORK( 1, J ), 1 )
+ 220 CONTINUE
+*
+* W := W * V2'
+*
+ CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
+ $ WORK, LDWORK )
+ IF( LASTV.GT.K ) THEN
+*
+* W := W + C1 * V1'
+*
+ CALL CGEMM( 'No transpose', 'Conjugate transpose',
+ $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV, ONE,
+ $ WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit',
+ $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V
+*
+ IF( LASTV.GT.K ) THEN
+*
+* C1 := C1 - W * V1
+*
+ CALL CGEMM( 'No transpose', 'No transpose',
+ $ LASTC, LASTV-K, K, -ONE, WORK, LDWORK, V, LDV,
+ $ ONE, C, LDC )
+ END IF
+*
+* W := W * V2
+*
+ CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
+ $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
+ $ WORK, LDWORK )
+*
+* C1 := C1 - W
+*
+ DO 240 J = 1, K
+ DO 230 I = 1, LASTC
+ C( I, LASTV-K+J ) = C( I, LASTV-K+J )
+ $ - WORK( I, J )
+ 230 CONTINUE
+ 240 CONTINUE
+*
+ END IF
+*
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of CLARFB
+*
+ END