summaryrefslogtreecommitdiff
path: root/SRC/chpgv.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/chpgv.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/chpgv.f')
-rw-r--r--SRC/chpgv.f241
1 files changed, 160 insertions, 81 deletions
diff --git a/SRC/chpgv.f b/SRC/chpgv.f
index d7ee75c2..857a513c 100644
--- a/SRC/chpgv.f
+++ b/SRC/chpgv.f
@@ -1,10 +1,168 @@
+*> \brief \b CHPGST
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
+* RWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBZ, UPLO
+* INTEGER INFO, ITYPE, LDZ, N
+* ..
+* .. Array Arguments ..
+* REAL RWORK( * ), W( * )
+* COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> CHPGV computes all the eigenvalues and, optionally, the eigenvectors
+*> of a complex generalized Hermitian-definite eigenproblem, of the form
+*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
+*> Here A and B are assumed to be Hermitian, stored in packed format,
+*> and B is also positive definite.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] ITYPE
+*> \verbatim
+*> ITYPE is INTEGER
+*> Specifies the problem type to be solved:
+*> = 1: A*x = (lambda)*B*x
+*> = 2: A*B*x = (lambda)*x
+*> = 3: B*A*x = (lambda)*x
+*> \endverbatim
+*>
+*> \param[in] JOBZ
+*> \verbatim
+*> JOBZ is CHARACTER*1
+*> = 'N': Compute eigenvalues only;
+*> = 'V': Compute eigenvalues and eigenvectors.
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangles of A and B are stored;
+*> = 'L': Lower triangles of A and B are stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrices A and B. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AP
+*> \verbatim
+*> AP is COMPLEX array, dimension (N*(N+1)/2)
+*> On entry, the upper or lower triangle of the Hermitian matrix
+*> A, packed columnwise in a linear array. The j-th column of A
+*> is stored in the array AP as follows:
+*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
+*> \endverbatim
+*> \verbatim
+*> On exit, the contents of AP are destroyed.
+*> \endverbatim
+*>
+*> \param[in,out] BP
+*> \verbatim
+*> BP is COMPLEX array, dimension (N*(N+1)/2)
+*> On entry, the upper or lower triangle of the Hermitian matrix
+*> B, packed columnwise in a linear array. The j-th column of B
+*> is stored in the array BP as follows:
+*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
+*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
+*> \endverbatim
+*> \verbatim
+*> On exit, the triangular factor U or L from the Cholesky
+*> factorization B = U**H*U or B = L*L**H, in the same storage
+*> format as B.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is REAL array, dimension (N)
+*> If INFO = 0, the eigenvalues in ascending order.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX array, dimension (LDZ, N)
+*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
+*> eigenvectors. The eigenvectors are normalized as follows:
+*> if ITYPE = 1 or 2, Z**H*B*Z = I;
+*> if ITYPE = 3, Z**H*inv(B)*Z = I.
+*> If JOBZ = 'N', then Z is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDZ
+*> \verbatim
+*> LDZ is INTEGER
+*> The leading dimension of the array Z. LDZ >= 1, and if
+*> JOBZ = 'V', LDZ >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (max(1, 2*N-1))
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (max(1, 3*N-2))
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: CPPTRF or CHPEV returned an error code:
+*> <= N: if INFO = i, CHPEV failed to converge;
+*> i off-diagonal elements of an intermediate
+*> tridiagonal form did not convergeto zero;
+*> > N: if INFO = N + i, for 1 <= i <= n, then the leading
+*> minor of order i of B is not positive definite.
+*> The factorization of B could not be completed and
+*> no eigenvalues or eigenvectors were computed.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complexOTHEReigen
+*
+* =====================================================================
SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
$ RWORK, INFO )
*
-* -- LAPACK driver routine (version 3.3.1) --
+* -- LAPACK eigen routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
@@ -15,85 +173,6 @@
COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
* ..
*
-* Purpose
-* =======
-*
-* CHPGV computes all the eigenvalues and, optionally, the eigenvectors
-* of a complex generalized Hermitian-definite eigenproblem, of the form
-* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-* Here A and B are assumed to be Hermitian, stored in packed format,
-* and B is also positive definite.
-*
-* Arguments
-* =========
-*
-* ITYPE (input) INTEGER
-* Specifies the problem type to be solved:
-* = 1: A*x = (lambda)*B*x
-* = 2: A*B*x = (lambda)*x
-* = 3: B*A*x = (lambda)*x
-*
-* JOBZ (input) CHARACTER*1
-* = 'N': Compute eigenvalues only;
-* = 'V': Compute eigenvalues and eigenvectors.
-*
-* UPLO (input) CHARACTER*1
-* = 'U': Upper triangles of A and B are stored;
-* = 'L': Lower triangles of A and B are stored.
-*
-* N (input) INTEGER
-* The order of the matrices A and B. N >= 0.
-*
-* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)
-* On entry, the upper or lower triangle of the Hermitian matrix
-* A, packed columnwise in a linear array. The j-th column of A
-* is stored in the array AP as follows:
-* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
-* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*
-* On exit, the contents of AP are destroyed.
-*
-* BP (input/output) COMPLEX array, dimension (N*(N+1)/2)
-* On entry, the upper or lower triangle of the Hermitian matrix
-* B, packed columnwise in a linear array. The j-th column of B
-* is stored in the array BP as follows:
-* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
-* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
-*
-* On exit, the triangular factor U or L from the Cholesky
-* factorization B = U**H*U or B = L*L**H, in the same storage
-* format as B.
-*
-* W (output) REAL array, dimension (N)
-* If INFO = 0, the eigenvalues in ascending order.
-*
-* Z (output) COMPLEX array, dimension (LDZ, N)
-* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
-* eigenvectors. The eigenvectors are normalized as follows:
-* if ITYPE = 1 or 2, Z**H*B*Z = I;
-* if ITYPE = 3, Z**H*inv(B)*Z = I.
-* If JOBZ = 'N', then Z is not referenced.
-*
-* LDZ (input) INTEGER
-* The leading dimension of the array Z. LDZ >= 1, and if
-* JOBZ = 'V', LDZ >= max(1,N).
-*
-* WORK (workspace) COMPLEX array, dimension (max(1, 2*N-1))
-*
-* RWORK (workspace) REAL array, dimension (max(1, 3*N-2))
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: CPPTRF or CHPEV returned an error code:
-* <= N: if INFO = i, CHPEV failed to converge;
-* i off-diagonal elements of an intermediate
-* tridiagonal form did not convergeto zero;
-* > N: if INFO = N + i, for 1 <= i <= n, then the leading
-* minor of order i of B is not positive definite.
-* The factorization of B could not be completed and
-* no eigenvalues or eigenvectors were computed.
-*
* =====================================================================
*
* .. Local Scalars ..