summaryrefslogtreecommitdiff
path: root/SRC/cgelsd.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/cgelsd.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/cgelsd.f')
-rw-r--r--SRC/cgelsd.f357
1 files changed, 225 insertions, 132 deletions
diff --git a/SRC/cgelsd.f b/SRC/cgelsd.f
index 2b17e7af..d47c9daf 100644
--- a/SRC/cgelsd.f
+++ b/SRC/cgelsd.f
@@ -1,10 +1,233 @@
+*> \brief <b> CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
+* WORK, LWORK, RWORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
+* REAL RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IWORK( * )
+* REAL RWORK( * ), S( * )
+* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> CGELSD computes the minimum-norm solution to a real linear least
+*> squares problem:
+*> minimize 2-norm(| b - A*x |)
+*> using the singular value decomposition (SVD) of A. A is an M-by-N
+*> matrix which may be rank-deficient.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*>
+*> The problem is solved in three steps:
+*> (1) Reduce the coefficient matrix A to bidiagonal form with
+*> Householder tranformations, reducing the original problem
+*> into a "bidiagonal least squares problem" (BLS)
+*> (2) Solve the BLS using a divide and conquer approach.
+*> (3) Apply back all the Householder tranformations to solve
+*> the original least squares problem.
+*>
+*> The effective rank of A is determined by treating as zero those
+*> singular values which are less than RCOND times the largest singular
+*> value.
+*>
+*> The divide and conquer algorithm makes very mild assumptions about
+*> floating point arithmetic. It will work on machines with a guard
+*> digit in add/subtract, or on those binary machines without guard
+*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
+*> without guard digits, but we know of none.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit, A has been destroyed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the M-by-NRHS right hand side matrix B.
+*> On exit, B is overwritten by the N-by-NRHS solution matrix X.
+*> If m >= n and RANK = n, the residual sum-of-squares for
+*> the solution in the i-th column is given by the sum of
+*> squares of the modulus of elements n+1:m in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] S
+*> \verbatim
+*> S is REAL array, dimension (min(M,N))
+*> The singular values of A in decreasing order.
+*> The condition number of A in the 2-norm = S(1)/S(min(m,n)).
+*> \endverbatim
+*>
+*> \param[in] RCOND
+*> \verbatim
+*> RCOND is REAL
+*> RCOND is used to determine the effective rank of A.
+*> Singular values S(i) <= RCOND*S(1) are treated as zero.
+*> If RCOND < 0, machine precision is used instead.
+*> \endverbatim
+*>
+*> \param[out] RANK
+*> \verbatim
+*> RANK is INTEGER
+*> The effective rank of A, i.e., the number of singular values
+*> which are greater than RCOND*S(1).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK must be at least 1.
+*> The exact minimum amount of workspace needed depends on M,
+*> N and NRHS. As long as LWORK is at least
+*> 2 * N + N * NRHS
+*> if M is greater than or equal to N or
+*> 2 * M + M * NRHS
+*> if M is less than N, the code will execute correctly.
+*> For good performance, LWORK should generally be larger.
+*> \endverbatim
+*> \verbatim
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the array WORK and the
+*> minimum sizes of the arrays RWORK and IWORK, and returns
+*> these values as the first entries of the WORK, RWORK and
+*> IWORK arrays, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (MAX(1,LRWORK))
+*> LRWORK >=
+*> 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
+*> MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
+*> if M is greater than or equal to N or
+*> 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
+*> MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
+*> if M is less than N, the code will execute correctly.
+*> SMLSIZ is returned by ILAENV and is equal to the maximum
+*> size of the subproblems at the bottom of the computation
+*> tree (usually about 25), and
+*> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
+*> On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
+*> LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
+*> where MINMN = MIN( M,N ).
+*> On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> > 0: the algorithm for computing the SVD failed to converge;
+*> if INFO = i, i off-diagonal elements of an intermediate
+*> bidiagonal form did not converge to zero.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complexGEsolve
+*
+*
+* Further Details
+* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> Based on contributions by
+*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
+*> California at Berkeley, USA
+*> Osni Marques, LBNL/NERSC, USA
+*>
+*> \endverbatim
+*>
+* =====================================================================
SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
$ WORK, LWORK, RWORK, IWORK, INFO )
*
-* -- LAPACK driver routine (version 3.2) --
+* -- LAPACK solve routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
@@ -16,136 +239,6 @@
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* CGELSD computes the minimum-norm solution to a real linear least
-* squares problem:
-* minimize 2-norm(| b - A*x |)
-* using the singular value decomposition (SVD) of A. A is an M-by-N
-* matrix which may be rank-deficient.
-*
-* Several right hand side vectors b and solution vectors x can be
-* handled in a single call; they are stored as the columns of the
-* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
-* matrix X.
-*
-* The problem is solved in three steps:
-* (1) Reduce the coefficient matrix A to bidiagonal form with
-* Householder tranformations, reducing the original problem
-* into a "bidiagonal least squares problem" (BLS)
-* (2) Solve the BLS using a divide and conquer approach.
-* (3) Apply back all the Householder tranformations to solve
-* the original least squares problem.
-*
-* The effective rank of A is determined by treating as zero those
-* singular values which are less than RCOND times the largest singular
-* value.
-*
-* The divide and conquer algorithm makes very mild assumptions about
-* floating point arithmetic. It will work on machines with a guard
-* digit in add/subtract, or on those binary machines without guard
-* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
-* Cray-2. It could conceivably fail on hexadecimal or decimal machines
-* without guard digits, but we know of none.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* NRHS (input) INTEGER
-* The number of right hand sides, i.e., the number of columns
-* of the matrices B and X. NRHS >= 0.
-*
-* A (input/output) COMPLEX array, dimension (LDA,N)
-* On entry, the M-by-N matrix A.
-* On exit, A has been destroyed.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* B (input/output) COMPLEX array, dimension (LDB,NRHS)
-* On entry, the M-by-NRHS right hand side matrix B.
-* On exit, B is overwritten by the N-by-NRHS solution matrix X.
-* If m >= n and RANK = n, the residual sum-of-squares for
-* the solution in the i-th column is given by the sum of
-* squares of the modulus of elements n+1:m in that column.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,M,N).
-*
-* S (output) REAL array, dimension (min(M,N))
-* The singular values of A in decreasing order.
-* The condition number of A in the 2-norm = S(1)/S(min(m,n)).
-*
-* RCOND (input) REAL
-* RCOND is used to determine the effective rank of A.
-* Singular values S(i) <= RCOND*S(1) are treated as zero.
-* If RCOND < 0, machine precision is used instead.
-*
-* RANK (output) INTEGER
-* The effective rank of A, i.e., the number of singular values
-* which are greater than RCOND*S(1).
-*
-* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK must be at least 1.
-* The exact minimum amount of workspace needed depends on M,
-* N and NRHS. As long as LWORK is at least
-* 2 * N + N * NRHS
-* if M is greater than or equal to N or
-* 2 * M + M * NRHS
-* if M is less than N, the code will execute correctly.
-* For good performance, LWORK should generally be larger.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the array WORK and the
-* minimum sizes of the arrays RWORK and IWORK, and returns
-* these values as the first entries of the WORK, RWORK and
-* IWORK arrays, and no error message related to LWORK is issued
-* by XERBLA.
-*
-* RWORK (workspace) REAL array, dimension (MAX(1,LRWORK))
-* LRWORK >=
-* 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
-* MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
-* if M is greater than or equal to N or
-* 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
-* MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
-* if M is less than N, the code will execute correctly.
-* SMLSIZ is returned by ILAENV and is equal to the maximum
-* size of the subproblems at the bottom of the computation
-* tree (usually about 25), and
-* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
-* On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
-*
-* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
-* LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
-* where MINMN = MIN( M,N ).
-* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-* > 0: the algorithm for computing the SVD failed to converge;
-* if INFO = i, i off-diagonal elements of an intermediate
-* bidiagonal form did not converge to zero.
-*
-* Further Details
-* ===============
-*
-* Based on contributions by
-* Ming Gu and Ren-Cang Li, Computer Science Division, University of
-* California at Berkeley, USA
-* Osni Marques, LBNL/NERSC, USA
-*
* =====================================================================
*
* .. Parameters ..