diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/cbdsqr.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/cbdsqr.f')
-rw-r--r-- | SRC/cbdsqr.f | 742 |
1 files changed, 742 insertions, 0 deletions
diff --git a/SRC/cbdsqr.f b/SRC/cbdsqr.f new file mode 100644 index 00000000..cc03e132 --- /dev/null +++ b/SRC/cbdsqr.f @@ -0,0 +1,742 @@ + SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, + $ LDU, C, LDC, RWORK, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU +* .. +* .. Array Arguments .. + REAL D( * ), E( * ), RWORK( * ) + COMPLEX C( LDC, * ), U( LDU, * ), VT( LDVT, * ) +* .. +* +* Purpose +* ======= +* +* CBDSQR computes the singular values and, optionally, the right and/or +* left singular vectors from the singular value decomposition (SVD) of +* a real N-by-N (upper or lower) bidiagonal matrix B using the implicit +* zero-shift QR algorithm. The SVD of B has the form +* +* B = Q * S * P**H +* +* where S is the diagonal matrix of singular values, Q is an orthogonal +* matrix of left singular vectors, and P is an orthogonal matrix of +* right singular vectors. If left singular vectors are requested, this +* subroutine actually returns U*Q instead of Q, and, if right singular +* vectors are requested, this subroutine returns P**H*VT instead of +* P**H, for given complex input matrices U and VT. When U and VT are +* the unitary matrices that reduce a general matrix A to bidiagonal +* form: A = U*B*VT, as computed by CGEBRD, then +* +* A = (U*Q) * S * (P**H*VT) +* +* is the SVD of A. Optionally, the subroutine may also compute Q**H*C +* for a given complex input matrix C. +* +* See "Computing Small Singular Values of Bidiagonal Matrices With +* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, +* LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, +* no. 5, pp. 873-912, Sept 1990) and +* "Accurate singular values and differential qd algorithms," by +* B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics +* Department, University of California at Berkeley, July 1992 +* for a detailed description of the algorithm. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* = 'U': B is upper bidiagonal; +* = 'L': B is lower bidiagonal. +* +* N (input) INTEGER +* The order of the matrix B. N >= 0. +* +* NCVT (input) INTEGER +* The number of columns of the matrix VT. NCVT >= 0. +* +* NRU (input) INTEGER +* The number of rows of the matrix U. NRU >= 0. +* +* NCC (input) INTEGER +* The number of columns of the matrix C. NCC >= 0. +* +* D (input/output) REAL array, dimension (N) +* On entry, the n diagonal elements of the bidiagonal matrix B. +* On exit, if INFO=0, the singular values of B in decreasing +* order. +* +* E (input/output) REAL array, dimension (N-1) +* On entry, the N-1 offdiagonal elements of the bidiagonal +* matrix B. +* On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E +* will contain the diagonal and superdiagonal elements of a +* bidiagonal matrix orthogonally equivalent to the one given +* as input. +* +* VT (input/output) COMPLEX array, dimension (LDVT, NCVT) +* On entry, an N-by-NCVT matrix VT. +* On exit, VT is overwritten by P**H * VT. +* Not referenced if NCVT = 0. +* +* LDVT (input) INTEGER +* The leading dimension of the array VT. +* LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. +* +* U (input/output) COMPLEX array, dimension (LDU, N) +* On entry, an NRU-by-N matrix U. +* On exit, U is overwritten by U * Q. +* Not referenced if NRU = 0. +* +* LDU (input) INTEGER +* The leading dimension of the array U. LDU >= max(1,NRU). +* +* C (input/output) COMPLEX array, dimension (LDC, NCC) +* On entry, an N-by-NCC matrix C. +* On exit, C is overwritten by Q**H * C. +* Not referenced if NCC = 0. +* +* LDC (input) INTEGER +* The leading dimension of the array C. +* LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. +* +* RWORK (workspace) REAL array, dimension (2*N) +* if NCVT = NRU = NCC = 0, (max(1, 4*N-4)) otherwise +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: If INFO = -i, the i-th argument had an illegal value +* > 0: the algorithm did not converge; D and E contain the +* elements of a bidiagonal matrix which is orthogonally +* similar to the input matrix B; if INFO = i, i +* elements of E have not converged to zero. +* +* Internal Parameters +* =================== +* +* TOLMUL REAL, default = max(10,min(100,EPS**(-1/8))) +* TOLMUL controls the convergence criterion of the QR loop. +* If it is positive, TOLMUL*EPS is the desired relative +* precision in the computed singular values. +* If it is negative, abs(TOLMUL*EPS*sigma_max) is the +* desired absolute accuracy in the computed singular +* values (corresponds to relative accuracy +* abs(TOLMUL*EPS) in the largest singular value. +* abs(TOLMUL) should be between 1 and 1/EPS, and preferably +* between 10 (for fast convergence) and .1/EPS +* (for there to be some accuracy in the results). +* Default is to lose at either one eighth or 2 of the +* available decimal digits in each computed singular value +* (whichever is smaller). +* +* MAXITR INTEGER, default = 6 +* MAXITR controls the maximum number of passes of the +* algorithm through its inner loop. The algorithms stops +* (and so fails to converge) if the number of passes +* through the inner loop exceeds MAXITR*N**2. +* +* ===================================================================== +* +* .. Parameters .. + REAL ZERO + PARAMETER ( ZERO = 0.0E0 ) + REAL ONE + PARAMETER ( ONE = 1.0E0 ) + REAL NEGONE + PARAMETER ( NEGONE = -1.0E0 ) + REAL HNDRTH + PARAMETER ( HNDRTH = 0.01E0 ) + REAL TEN + PARAMETER ( TEN = 10.0E0 ) + REAL HNDRD + PARAMETER ( HNDRD = 100.0E0 ) + REAL MEIGTH + PARAMETER ( MEIGTH = -0.125E0 ) + INTEGER MAXITR + PARAMETER ( MAXITR = 6 ) +* .. +* .. Local Scalars .. + LOGICAL LOWER, ROTATE + INTEGER I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1, + $ NM12, NM13, OLDLL, OLDM + REAL ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU, + $ OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL, + $ SINR, SLL, SMAX, SMIN, SMINL, SMINOA, + $ SN, THRESH, TOL, TOLMUL, UNFL +* .. +* .. External Functions .. + LOGICAL LSAME + REAL SLAMCH + EXTERNAL LSAME, SLAMCH +* .. +* .. External Subroutines .. + EXTERNAL CLASR, CSROT, CSSCAL, CSWAP, SLARTG, SLAS2, + $ SLASQ1, SLASV2, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN, REAL, SIGN, SQRT +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + LOWER = LSAME( UPLO, 'L' ) + IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NCVT.LT.0 ) THEN + INFO = -3 + ELSE IF( NRU.LT.0 ) THEN + INFO = -4 + ELSE IF( NCC.LT.0 ) THEN + INFO = -5 + ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. + $ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN + INFO = -9 + ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN + INFO = -11 + ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. + $ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN + INFO = -13 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CBDSQR', -INFO ) + RETURN + END IF + IF( N.EQ.0 ) + $ RETURN + IF( N.EQ.1 ) + $ GO TO 160 +* +* ROTATE is true if any singular vectors desired, false otherwise +* + ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 ) +* +* If no singular vectors desired, use qd algorithm +* + IF( .NOT.ROTATE ) THEN + CALL SLASQ1( N, D, E, RWORK, INFO ) + RETURN + END IF +* + NM1 = N - 1 + NM12 = NM1 + NM1 + NM13 = NM12 + NM1 + IDIR = 0 +* +* Get machine constants +* + EPS = SLAMCH( 'Epsilon' ) + UNFL = SLAMCH( 'Safe minimum' ) +* +* If matrix lower bidiagonal, rotate to be upper bidiagonal +* by applying Givens rotations on the left +* + IF( LOWER ) THEN + DO 10 I = 1, N - 1 + CALL SLARTG( D( I ), E( I ), CS, SN, R ) + D( I ) = R + E( I ) = SN*D( I+1 ) + D( I+1 ) = CS*D( I+1 ) + RWORK( I ) = CS + RWORK( NM1+I ) = SN + 10 CONTINUE +* +* Update singular vectors if desired +* + IF( NRU.GT.0 ) + $ CALL CLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ), + $ U, LDU ) + IF( NCC.GT.0 ) + $ CALL CLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ), + $ C, LDC ) + END IF +* +* Compute singular values to relative accuracy TOL +* (By setting TOL to be negative, algorithm will compute +* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) +* + TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) ) + TOL = TOLMUL*EPS +* +* Compute approximate maximum, minimum singular values +* + SMAX = ZERO + DO 20 I = 1, N + SMAX = MAX( SMAX, ABS( D( I ) ) ) + 20 CONTINUE + DO 30 I = 1, N - 1 + SMAX = MAX( SMAX, ABS( E( I ) ) ) + 30 CONTINUE + SMINL = ZERO + IF( TOL.GE.ZERO ) THEN +* +* Relative accuracy desired +* + SMINOA = ABS( D( 1 ) ) + IF( SMINOA.EQ.ZERO ) + $ GO TO 50 + MU = SMINOA + DO 40 I = 2, N + MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) ) + SMINOA = MIN( SMINOA, MU ) + IF( SMINOA.EQ.ZERO ) + $ GO TO 50 + 40 CONTINUE + 50 CONTINUE + SMINOA = SMINOA / SQRT( REAL( N ) ) + THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL ) + ELSE +* +* Absolute accuracy desired +* + THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL ) + END IF +* +* Prepare for main iteration loop for the singular values +* (MAXIT is the maximum number of passes through the inner +* loop permitted before nonconvergence signalled.) +* + MAXIT = MAXITR*N*N + ITER = 0 + OLDLL = -1 + OLDM = -1 +* +* M points to last element of unconverged part of matrix +* + M = N +* +* Begin main iteration loop +* + 60 CONTINUE +* +* Check for convergence or exceeding iteration count +* + IF( M.LE.1 ) + $ GO TO 160 + IF( ITER.GT.MAXIT ) + $ GO TO 200 +* +* Find diagonal block of matrix to work on +* + IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH ) + $ D( M ) = ZERO + SMAX = ABS( D( M ) ) + SMIN = SMAX + DO 70 LLL = 1, M - 1 + LL = M - LLL + ABSS = ABS( D( LL ) ) + ABSE = ABS( E( LL ) ) + IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH ) + $ D( LL ) = ZERO + IF( ABSE.LE.THRESH ) + $ GO TO 80 + SMIN = MIN( SMIN, ABSS ) + SMAX = MAX( SMAX, ABSS, ABSE ) + 70 CONTINUE + LL = 0 + GO TO 90 + 80 CONTINUE + E( LL ) = ZERO +* +* Matrix splits since E(LL) = 0 +* + IF( LL.EQ.M-1 ) THEN +* +* Convergence of bottom singular value, return to top of loop +* + M = M - 1 + GO TO 60 + END IF + 90 CONTINUE + LL = LL + 1 +* +* E(LL) through E(M-1) are nonzero, E(LL-1) is zero +* + IF( LL.EQ.M-1 ) THEN +* +* 2 by 2 block, handle separately +* + CALL SLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR, + $ COSR, SINL, COSL ) + D( M-1 ) = SIGMX + E( M-1 ) = ZERO + D( M ) = SIGMN +* +* Compute singular vectors, if desired +* + IF( NCVT.GT.0 ) + $ CALL CSROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, + $ COSR, SINR ) + IF( NRU.GT.0 ) + $ CALL CSROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL ) + IF( NCC.GT.0 ) + $ CALL CSROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL, + $ SINL ) + M = M - 2 + GO TO 60 + END IF +* +* If working on new submatrix, choose shift direction +* (from larger end diagonal element towards smaller) +* + IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN + IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN +* +* Chase bulge from top (big end) to bottom (small end) +* + IDIR = 1 + ELSE +* +* Chase bulge from bottom (big end) to top (small end) +* + IDIR = 2 + END IF + END IF +* +* Apply convergence tests +* + IF( IDIR.EQ.1 ) THEN +* +* Run convergence test in forward direction +* First apply standard test to bottom of matrix +* + IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR. + $ ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN + E( M-1 ) = ZERO + GO TO 60 + END IF +* + IF( TOL.GE.ZERO ) THEN +* +* If relative accuracy desired, +* apply convergence criterion forward +* + MU = ABS( D( LL ) ) + SMINL = MU + DO 100 LLL = LL, M - 1 + IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN + E( LLL ) = ZERO + GO TO 60 + END IF + MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) ) + SMINL = MIN( SMINL, MU ) + 100 CONTINUE + END IF +* + ELSE +* +* Run convergence test in backward direction +* First apply standard test to top of matrix +* + IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR. + $ ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN + E( LL ) = ZERO + GO TO 60 + END IF +* + IF( TOL.GE.ZERO ) THEN +* +* If relative accuracy desired, +* apply convergence criterion backward +* + MU = ABS( D( M ) ) + SMINL = MU + DO 110 LLL = M - 1, LL, -1 + IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN + E( LLL ) = ZERO + GO TO 60 + END IF + MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) ) + SMINL = MIN( SMINL, MU ) + 110 CONTINUE + END IF + END IF + OLDLL = LL + OLDM = M +* +* Compute shift. First, test if shifting would ruin relative +* accuracy, and if so set the shift to zero. +* + IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE. + $ MAX( EPS, HNDRTH*TOL ) ) THEN +* +* Use a zero shift to avoid loss of relative accuracy +* + SHIFT = ZERO + ELSE +* +* Compute the shift from 2-by-2 block at end of matrix +* + IF( IDIR.EQ.1 ) THEN + SLL = ABS( D( LL ) ) + CALL SLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R ) + ELSE + SLL = ABS( D( M ) ) + CALL SLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R ) + END IF +* +* Test if shift negligible, and if so set to zero +* + IF( SLL.GT.ZERO ) THEN + IF( ( SHIFT / SLL )**2.LT.EPS ) + $ SHIFT = ZERO + END IF + END IF +* +* Increment iteration count +* + ITER = ITER + M - LL +* +* If SHIFT = 0, do simplified QR iteration +* + IF( SHIFT.EQ.ZERO ) THEN + IF( IDIR.EQ.1 ) THEN +* +* Chase bulge from top to bottom +* Save cosines and sines for later singular vector updates +* + CS = ONE + OLDCS = ONE + DO 120 I = LL, M - 1 + CALL SLARTG( D( I )*CS, E( I ), CS, SN, R ) + IF( I.GT.LL ) + $ E( I-1 ) = OLDSN*R + CALL SLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) ) + RWORK( I-LL+1 ) = CS + RWORK( I-LL+1+NM1 ) = SN + RWORK( I-LL+1+NM12 ) = OLDCS + RWORK( I-LL+1+NM13 ) = OLDSN + 120 CONTINUE + H = D( M )*CS + D( M ) = H*OLDCS + E( M-1 ) = H*OLDSN +* +* Update singular vectors +* + IF( NCVT.GT.0 ) + $ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ), + $ RWORK( N ), VT( LL, 1 ), LDVT ) + IF( NRU.GT.0 ) + $ CALL CLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ), + $ RWORK( NM13+1 ), U( 1, LL ), LDU ) + IF( NCC.GT.0 ) + $ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ), + $ RWORK( NM13+1 ), C( LL, 1 ), LDC ) +* +* Test convergence +* + IF( ABS( E( M-1 ) ).LE.THRESH ) + $ E( M-1 ) = ZERO +* + ELSE +* +* Chase bulge from bottom to top +* Save cosines and sines for later singular vector updates +* + CS = ONE + OLDCS = ONE + DO 130 I = M, LL + 1, -1 + CALL SLARTG( D( I )*CS, E( I-1 ), CS, SN, R ) + IF( I.LT.M ) + $ E( I ) = OLDSN*R + CALL SLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) ) + RWORK( I-LL ) = CS + RWORK( I-LL+NM1 ) = -SN + RWORK( I-LL+NM12 ) = OLDCS + RWORK( I-LL+NM13 ) = -OLDSN + 130 CONTINUE + H = D( LL )*CS + D( LL ) = H*OLDCS + E( LL ) = H*OLDSN +* +* Update singular vectors +* + IF( NCVT.GT.0 ) + $ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ), + $ RWORK( NM13+1 ), VT( LL, 1 ), LDVT ) + IF( NRU.GT.0 ) + $ CALL CLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ), + $ RWORK( N ), U( 1, LL ), LDU ) + IF( NCC.GT.0 ) + $ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ), + $ RWORK( N ), C( LL, 1 ), LDC ) +* +* Test convergence +* + IF( ABS( E( LL ) ).LE.THRESH ) + $ E( LL ) = ZERO + END IF + ELSE +* +* Use nonzero shift +* + IF( IDIR.EQ.1 ) THEN +* +* Chase bulge from top to bottom +* Save cosines and sines for later singular vector updates +* + F = ( ABS( D( LL ) )-SHIFT )* + $ ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) ) + G = E( LL ) + DO 140 I = LL, M - 1 + CALL SLARTG( F, G, COSR, SINR, R ) + IF( I.GT.LL ) + $ E( I-1 ) = R + F = COSR*D( I ) + SINR*E( I ) + E( I ) = COSR*E( I ) - SINR*D( I ) + G = SINR*D( I+1 ) + D( I+1 ) = COSR*D( I+1 ) + CALL SLARTG( F, G, COSL, SINL, R ) + D( I ) = R + F = COSL*E( I ) + SINL*D( I+1 ) + D( I+1 ) = COSL*D( I+1 ) - SINL*E( I ) + IF( I.LT.M-1 ) THEN + G = SINL*E( I+1 ) + E( I+1 ) = COSL*E( I+1 ) + END IF + RWORK( I-LL+1 ) = COSR + RWORK( I-LL+1+NM1 ) = SINR + RWORK( I-LL+1+NM12 ) = COSL + RWORK( I-LL+1+NM13 ) = SINL + 140 CONTINUE + E( M-1 ) = F +* +* Update singular vectors +* + IF( NCVT.GT.0 ) + $ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ), + $ RWORK( N ), VT( LL, 1 ), LDVT ) + IF( NRU.GT.0 ) + $ CALL CLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ), + $ RWORK( NM13+1 ), U( 1, LL ), LDU ) + IF( NCC.GT.0 ) + $ CALL CLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ), + $ RWORK( NM13+1 ), C( LL, 1 ), LDC ) +* +* Test convergence +* + IF( ABS( E( M-1 ) ).LE.THRESH ) + $ E( M-1 ) = ZERO +* + ELSE +* +* Chase bulge from bottom to top +* Save cosines and sines for later singular vector updates +* + F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT / + $ D( M ) ) + G = E( M-1 ) + DO 150 I = M, LL + 1, -1 + CALL SLARTG( F, G, COSR, SINR, R ) + IF( I.LT.M ) + $ E( I ) = R + F = COSR*D( I ) + SINR*E( I-1 ) + E( I-1 ) = COSR*E( I-1 ) - SINR*D( I ) + G = SINR*D( I-1 ) + D( I-1 ) = COSR*D( I-1 ) + CALL SLARTG( F, G, COSL, SINL, R ) + D( I ) = R + F = COSL*E( I-1 ) + SINL*D( I-1 ) + D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 ) + IF( I.GT.LL+1 ) THEN + G = SINL*E( I-2 ) + E( I-2 ) = COSL*E( I-2 ) + END IF + RWORK( I-LL ) = COSR + RWORK( I-LL+NM1 ) = -SINR + RWORK( I-LL+NM12 ) = COSL + RWORK( I-LL+NM13 ) = -SINL + 150 CONTINUE + E( LL ) = F +* +* Test convergence +* + IF( ABS( E( LL ) ).LE.THRESH ) + $ E( LL ) = ZERO +* +* Update singular vectors if desired +* + IF( NCVT.GT.0 ) + $ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ), + $ RWORK( NM13+1 ), VT( LL, 1 ), LDVT ) + IF( NRU.GT.0 ) + $ CALL CLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ), + $ RWORK( N ), U( 1, LL ), LDU ) + IF( NCC.GT.0 ) + $ CALL CLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ), + $ RWORK( N ), C( LL, 1 ), LDC ) + END IF + END IF +* +* QR iteration finished, go back and check convergence +* + GO TO 60 +* +* All singular values converged, so make them positive +* + 160 CONTINUE + DO 170 I = 1, N + IF( D( I ).LT.ZERO ) THEN + D( I ) = -D( I ) +* +* Change sign of singular vectors, if desired +* + IF( NCVT.GT.0 ) + $ CALL CSSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT ) + END IF + 170 CONTINUE +* +* Sort the singular values into decreasing order (insertion sort on +* singular values, but only one transposition per singular vector) +* + DO 190 I = 1, N - 1 +* +* Scan for smallest D(I) +* + ISUB = 1 + SMIN = D( 1 ) + DO 180 J = 2, N + 1 - I + IF( D( J ).LE.SMIN ) THEN + ISUB = J + SMIN = D( J ) + END IF + 180 CONTINUE + IF( ISUB.NE.N+1-I ) THEN +* +* Swap singular values and vectors +* + D( ISUB ) = D( N+1-I ) + D( N+1-I ) = SMIN + IF( NCVT.GT.0 ) + $ CALL CSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ), + $ LDVT ) + IF( NRU.GT.0 ) + $ CALL CSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 ) + IF( NCC.GT.0 ) + $ CALL CSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC ) + END IF + 190 CONTINUE + GO TO 220 +* +* Maximum number of iterations exceeded, failure to converge +* + 200 CONTINUE + INFO = 0 + DO 210 I = 1, N - 1 + IF( E( I ).NE.ZERO ) + $ INFO = INFO + 1 + 210 CONTINUE + 220 CONTINUE + RETURN +* +* End of CBDSQR +* + END |