1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_basis_reduction.h"
#include "isl_scan.h"
#include <isl/seq.h>
#include "isl_tab.h"
struct isl_counter {
struct isl_scan_callback callback;
isl_int count;
isl_int max;
};
static int increment_counter(struct isl_scan_callback *cb,
__isl_take isl_vec *sample)
{
struct isl_counter *cnt = (struct isl_counter *)cb;
isl_int_add_ui(cnt->count, cnt->count, 1);
isl_vec_free(sample);
if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max))
return 0;
return -1;
}
static int increment_range(struct isl_scan_callback *cb, isl_int min, isl_int max)
{
struct isl_counter *cnt = (struct isl_counter *)cb;
isl_int_add(cnt->count, cnt->count, max);
isl_int_sub(cnt->count, cnt->count, min);
isl_int_add_ui(cnt->count, cnt->count, 1);
if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max))
return 0;
isl_int_set(cnt->count, cnt->max);
return -1;
}
/* Call callback->add with the current sample value of the tableau "tab".
*/
static int add_solution(struct isl_tab *tab, struct isl_scan_callback *callback)
{
struct isl_vec *sample;
if (!tab)
return -1;
sample = isl_tab_get_sample_value(tab);
if (!sample)
return -1;
return callback->add(callback, sample);
}
static int scan_0D(struct isl_basic_set *bset,
struct isl_scan_callback *callback)
{
struct isl_vec *sample;
sample = isl_vec_alloc(bset->ctx, 1);
isl_basic_set_free(bset);
if (!sample)
return -1;
isl_int_set_si(sample->el[0], 1);
return callback->add(callback, sample);
}
/* Look for all integer points in "bset", which is assumed to be bounded,
* and call callback->add on each of them.
*
* We first compute a reduced basis for the set and then scan
* the set in the directions of this basis.
* We basically perform a depth first search, where in each level i
* we compute the range in the i-th basis vector direction, given
* fixed values in the directions of the previous basis vector.
* We then add an equality to the tableau fixing the value in the
* direction of the current basis vector to each value in the range
* in turn and then continue to the next level.
*
* The search is implemented iteratively. "level" identifies the current
* basis vector. "init" is true if we want the first value at the current
* level and false if we want the next value.
* Solutions are added in the leaves of the search tree, i.e., after
* we have fixed a value in each direction of the basis.
*/
int isl_basic_set_scan(struct isl_basic_set *bset,
struct isl_scan_callback *callback)
{
unsigned dim;
struct isl_mat *B = NULL;
struct isl_tab *tab = NULL;
struct isl_vec *min;
struct isl_vec *max;
struct isl_tab_undo **snap;
int level;
int init;
enum isl_lp_result res;
if (!bset)
return -1;
dim = isl_basic_set_total_dim(bset);
if (dim == 0)
return scan_0D(bset, callback);
min = isl_vec_alloc(bset->ctx, dim);
max = isl_vec_alloc(bset->ctx, dim);
snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim);
if (!min || !max || !snap)
goto error;
tab = isl_tab_from_basic_set(bset, 0);
if (!tab)
goto error;
if (isl_tab_extend_cons(tab, dim + 1) < 0)
goto error;
tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
if (1)
tab = isl_tab_compute_reduced_basis(tab);
if (!tab)
goto error;
B = isl_mat_copy(tab->basis);
if (!B)
goto error;
level = 0;
init = 1;
while (level >= 0) {
int empty = 0;
if (init) {
res = isl_tab_min(tab, B->row[1 + level],
bset->ctx->one, &min->el[level], NULL, 0);
if (res == isl_lp_empty)
empty = 1;
if (res == isl_lp_error || res == isl_lp_unbounded)
goto error;
isl_seq_neg(B->row[1 + level] + 1,
B->row[1 + level] + 1, dim);
res = isl_tab_min(tab, B->row[1 + level],
bset->ctx->one, &max->el[level], NULL, 0);
isl_seq_neg(B->row[1 + level] + 1,
B->row[1 + level] + 1, dim);
isl_int_neg(max->el[level], max->el[level]);
if (res == isl_lp_empty)
empty = 1;
if (res == isl_lp_error || res == isl_lp_unbounded)
goto error;
snap[level] = isl_tab_snap(tab);
} else
isl_int_add_ui(min->el[level], min->el[level], 1);
if (empty || isl_int_gt(min->el[level], max->el[level])) {
level--;
init = 0;
if (level >= 0)
if (isl_tab_rollback(tab, snap[level]) < 0)
goto error;
continue;
}
if (level == dim - 1 && callback->add == increment_counter) {
if (increment_range(callback,
min->el[level], max->el[level]))
goto error;
level--;
init = 0;
if (level >= 0)
if (isl_tab_rollback(tab, snap[level]) < 0)
goto error;
continue;
}
isl_int_neg(B->row[1 + level][0], min->el[level]);
if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0)
goto error;
isl_int_set_si(B->row[1 + level][0], 0);
if (level < dim - 1) {
++level;
init = 1;
continue;
}
if (add_solution(tab, callback) < 0)
goto error;
init = 0;
if (isl_tab_rollback(tab, snap[level]) < 0)
goto error;
}
isl_tab_free(tab);
free(snap);
isl_vec_free(min);
isl_vec_free(max);
isl_basic_set_free(bset);
isl_mat_free(B);
return 0;
error:
isl_tab_free(tab);
free(snap);
isl_vec_free(min);
isl_vec_free(max);
isl_basic_set_free(bset);
isl_mat_free(B);
return -1;
}
int isl_set_scan(__isl_take isl_set *set, struct isl_scan_callback *callback)
{
int i;
if (!set || !callback)
goto error;
set = isl_set_cow(set);
set = isl_set_make_disjoint(set);
set = isl_set_compute_divs(set);
if (!set)
goto error;
for (i = 0; i < set->n; ++i)
if (isl_basic_set_scan(isl_basic_set_copy(set->p[i]),
callback) < 0)
goto error;
isl_set_free(set);
return 0;
error:
isl_set_free(set);
return -1;
}
int isl_basic_set_count_upto(__isl_keep isl_basic_set *bset,
isl_int max, isl_int *count)
{
struct isl_counter cnt = { { &increment_counter } };
if (!bset)
return -1;
isl_int_init(cnt.count);
isl_int_init(cnt.max);
isl_int_set_si(cnt.count, 0);
isl_int_set(cnt.max, max);
if (isl_basic_set_scan(isl_basic_set_copy(bset), &cnt.callback) < 0 &&
isl_int_lt(cnt.count, cnt.max))
goto error;
isl_int_set(*count, cnt.count);
isl_int_clear(cnt.max);
isl_int_clear(cnt.count);
return 0;
error:
isl_int_clear(cnt.count);
return -1;
}
int isl_set_count_upto(__isl_keep isl_set *set, isl_int max, isl_int *count)
{
struct isl_counter cnt = { { &increment_counter } };
if (!set)
return -1;
isl_int_init(cnt.count);
isl_int_init(cnt.max);
isl_int_set_si(cnt.count, 0);
isl_int_set(cnt.max, max);
if (isl_set_scan(isl_set_copy(set), &cnt.callback) < 0 &&
isl_int_lt(cnt.count, cnt.max))
goto error;
isl_int_set(*count, cnt.count);
isl_int_clear(cnt.max);
isl_int_clear(cnt.count);
return 0;
error:
isl_int_clear(cnt.count);
return -1;
}
int isl_set_count(__isl_keep isl_set *set, isl_int *count)
{
if (!set)
return -1;
return isl_set_count_upto(set, set->ctx->zero, count);
}
|