1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
|
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
*
* Use of this software is governed by the GNU LGPLv2.1 license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
*/
#include "isl_equalities.h"
#include <isl/map.h>
#include "isl_map_private.h"
#include <isl/seq.h>
#include "isl_tab.h"
#include <isl_dim_private.h>
#include <isl_mat_private.h>
static void swap_equality(struct isl_basic_map *bmap, int a, int b)
{
isl_int *t = bmap->eq[a];
bmap->eq[a] = bmap->eq[b];
bmap->eq[b] = t;
}
static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
{
if (a != b) {
isl_int *t = bmap->ineq[a];
bmap->ineq[a] = bmap->ineq[b];
bmap->ineq[b] = t;
}
}
static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
{
swap_inequality((struct isl_basic_map *)bset, a, b);
}
static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
{
isl_seq_cpy(c, c + n, rem);
isl_seq_clr(c + rem, n);
}
/* Drop n dimensions starting at first.
*
* In principle, this frees up some extra variables as the number
* of columns remains constant, but we would have to extend
* the div array too as the number of rows in this array is assumed
* to be equal to extra.
*/
struct isl_basic_set *isl_basic_set_drop_dims(
struct isl_basic_set *bset, unsigned first, unsigned n)
{
int i;
if (!bset)
goto error;
isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
if (n == 0 && !isl_dim_get_tuple_name(bset->dim, isl_dim_set))
return bset;
bset = isl_basic_set_cow(bset);
if (!bset)
return NULL;
for (i = 0; i < bset->n_eq; ++i)
constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
(bset->dim->n_out-first-n)+bset->extra);
for (i = 0; i < bset->n_ineq; ++i)
constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
(bset->dim->n_out-first-n)+bset->extra);
for (i = 0; i < bset->n_div; ++i)
constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
(bset->dim->n_out-first-n)+bset->extra);
bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
if (!bset->dim)
goto error;
ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
bset = isl_basic_set_simplify(bset);
return isl_basic_set_finalize(bset);
error:
isl_basic_set_free(bset);
return NULL;
}
struct isl_set *isl_set_drop_dims(
struct isl_set *set, unsigned first, unsigned n)
{
int i;
if (!set)
goto error;
isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
if (n == 0 && !isl_dim_get_tuple_name(set->dim, isl_dim_set))
return set;
set = isl_set_cow(set);
if (!set)
goto error;
set->dim = isl_dim_drop_outputs(set->dim, first, n);
if (!set->dim)
goto error;
for (i = 0; i < set->n; ++i) {
set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
if (!set->p[i])
goto error;
}
ISL_F_CLR(set, ISL_SET_NORMALIZED);
return set;
error:
isl_set_free(set);
return NULL;
}
/* Move "n" divs starting at "first" to the end of the list of divs.
*/
static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
unsigned first, unsigned n)
{
isl_int **div;
int i;
if (first + n == bmap->n_div)
return bmap;
div = isl_alloc_array(bmap->ctx, isl_int *, n);
if (!div)
goto error;
for (i = 0; i < n; ++i)
div[i] = bmap->div[first + i];
for (i = 0; i < bmap->n_div - first - n; ++i)
bmap->div[first + i] = bmap->div[first + n + i];
for (i = 0; i < n; ++i)
bmap->div[bmap->n_div - n + i] = div[i];
free(div);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
/* Drop "n" dimensions of type "type" starting at "first".
*
* In principle, this frees up some extra variables as the number
* of columns remains constant, but we would have to extend
* the div array too as the number of rows in this array is assumed
* to be equal to extra.
*/
struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
unsigned dim;
unsigned offset;
unsigned left;
if (!bmap)
goto error;
dim = isl_basic_map_dim(bmap, type);
isl_assert(bmap->ctx, first + n <= dim, goto error);
if (n == 0 && !isl_dim_get_tuple_name(bmap->dim, type))
return bmap;
bmap = isl_basic_map_cow(bmap);
if (!bmap)
return NULL;
offset = isl_basic_map_offset(bmap, type) + first;
left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
for (i = 0; i < bmap->n_eq; ++i)
constraint_drop_vars(bmap->eq[i]+offset, n, left);
for (i = 0; i < bmap->n_ineq; ++i)
constraint_drop_vars(bmap->ineq[i]+offset, n, left);
for (i = 0; i < bmap->n_div; ++i)
constraint_drop_vars(bmap->div[i]+1+offset, n, left);
if (type == isl_dim_div) {
bmap = move_divs_last(bmap, first, n);
if (!bmap)
goto error;
isl_basic_map_free_div(bmap, n);
} else
bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
if (!bmap->dim)
goto error;
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
bmap = isl_basic_map_simplify(bmap);
return isl_basic_map_finalize(bmap);
error:
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n)
{
return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
type, first, n);
}
struct isl_basic_map *isl_basic_map_drop_inputs(
struct isl_basic_map *bmap, unsigned first, unsigned n)
{
return isl_basic_map_drop(bmap, isl_dim_in, first, n);
}
struct isl_map *isl_map_drop(struct isl_map *map,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
if (!map)
goto error;
isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
if (n == 0 && !isl_dim_get_tuple_name(map->dim, type))
return map;
map = isl_map_cow(map);
if (!map)
goto error;
map->dim = isl_dim_drop(map->dim, type, first, n);
if (!map->dim)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
if (!map->p[i])
goto error;
}
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
return NULL;
}
struct isl_set *isl_set_drop(struct isl_set *set,
enum isl_dim_type type, unsigned first, unsigned n)
{
return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
}
struct isl_map *isl_map_drop_inputs(
struct isl_map *map, unsigned first, unsigned n)
{
return isl_map_drop(map, isl_dim_in, first, n);
}
/*
* We don't cow, as the div is assumed to be redundant.
*/
static struct isl_basic_map *isl_basic_map_drop_div(
struct isl_basic_map *bmap, unsigned div)
{
int i;
unsigned pos;
if (!bmap)
goto error;
pos = 1 + isl_dim_total(bmap->dim) + div;
isl_assert(bmap->ctx, div < bmap->n_div, goto error);
for (i = 0; i < bmap->n_eq; ++i)
constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
for (i = 0; i < bmap->n_ineq; ++i) {
if (!isl_int_is_zero(bmap->ineq[i][pos])) {
isl_basic_map_drop_inequality(bmap, i);
--i;
continue;
}
constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
}
for (i = 0; i < bmap->n_div; ++i)
constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
if (div != bmap->n_div - 1) {
int j;
isl_int *t = bmap->div[div];
for (j = div; j < bmap->n_div - 1; ++j)
bmap->div[j] = bmap->div[j+1];
bmap->div[bmap->n_div - 1] = t;
}
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
isl_basic_map_free_div(bmap, 1);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_map *isl_basic_map_normalize_constraints(
struct isl_basic_map *bmap)
{
int i;
isl_int gcd;
unsigned total = isl_basic_map_total_dim(bmap);
if (!bmap)
return NULL;
isl_int_init(gcd);
for (i = bmap->n_eq - 1; i >= 0; --i) {
isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
if (isl_int_is_zero(gcd)) {
if (!isl_int_is_zero(bmap->eq[i][0])) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_basic_map_drop_equality(bmap, i);
continue;
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
if (isl_int_is_one(gcd))
continue;
if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
}
for (i = bmap->n_ineq - 1; i >= 0; --i) {
isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
if (isl_int_is_zero(gcd)) {
if (isl_int_is_neg(bmap->ineq[i][0])) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_basic_map_drop_inequality(bmap, i);
continue;
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
if (isl_int_is_one(gcd))
continue;
isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
}
isl_int_clear(gcd);
return bmap;
}
struct isl_basic_set *isl_basic_set_normalize_constraints(
struct isl_basic_set *bset)
{
return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
(struct isl_basic_map *)bset);
}
/* Assumes divs have been ordered if keep_divs is set.
*/
static void eliminate_var_using_equality(struct isl_basic_map *bmap,
unsigned pos, isl_int *eq, int keep_divs, int *progress)
{
unsigned total;
int k;
int last_div;
total = isl_basic_map_total_dim(bmap);
last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
bmap->n_div);
for (k = 0; k < bmap->n_eq; ++k) {
if (bmap->eq[k] == eq)
continue;
if (isl_int_is_zero(bmap->eq[k][1+pos]))
continue;
if (progress)
*progress = 1;
isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
}
for (k = 0; k < bmap->n_ineq; ++k) {
if (isl_int_is_zero(bmap->ineq[k][1+pos]))
continue;
if (progress)
*progress = 1;
isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
for (k = 0; k < bmap->n_div; ++k) {
if (isl_int_is_zero(bmap->div[k][0]))
continue;
if (isl_int_is_zero(bmap->div[k][1+1+pos]))
continue;
if (progress)
*progress = 1;
/* We need to be careful about circular definitions,
* so for now we just remove the definition of div k
* if the equality contains any divs.
* If keep_divs is set, then the divs have been ordered
* and we can keep the definition as long as the result
* is still ordered.
*/
if (last_div == -1 || (keep_divs && last_div < k))
isl_seq_elim(bmap->div[k]+1, eq,
1+pos, 1+total, &bmap->div[k][0]);
else
isl_seq_clr(bmap->div[k], 1 + total);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
}
/* Assumes divs have been ordered if keep_divs is set.
*/
static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
unsigned div, int keep_divs)
{
unsigned pos = isl_dim_total(bmap->dim) + div;
eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
isl_basic_map_drop_div(bmap, div);
}
/* Check if elimination of div "div" using equality "eq" would not
* result in a div depending on a later div.
*/
static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
unsigned div)
{
int k;
int last_div;
unsigned pos = isl_dim_total(bmap->dim) + div;
last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
bmap->n_div);
if (last_div < 0 || last_div <= div)
return 1;
for (k = 0; k <= last_div; ++k) {
if (isl_int_is_zero(bmap->div[k][0]))
return 1;
if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
return 0;
}
return 1;
}
/* Elimininate divs based on equalities
*/
static struct isl_basic_map *eliminate_divs_eq(
struct isl_basic_map *bmap, int *progress)
{
int d;
int i;
int modified = 0;
unsigned off;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
off = 1 + isl_dim_total(bmap->dim);
for (d = bmap->n_div - 1; d >= 0 ; --d) {
for (i = 0; i < bmap->n_eq; ++i) {
if (!isl_int_is_one(bmap->eq[i][off + d]) &&
!isl_int_is_negone(bmap->eq[i][off + d]))
continue;
if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
continue;
modified = 1;
*progress = 1;
eliminate_div(bmap, bmap->eq[i], d, 1);
isl_basic_map_drop_equality(bmap, i);
break;
}
}
if (modified)
return eliminate_divs_eq(bmap, progress);
return bmap;
}
/* Elimininate divs based on inequalities
*/
static struct isl_basic_map *eliminate_divs_ineq(
struct isl_basic_map *bmap, int *progress)
{
int d;
int i;
unsigned off;
struct isl_ctx *ctx;
if (!bmap)
return NULL;
ctx = bmap->ctx;
off = 1 + isl_dim_total(bmap->dim);
for (d = bmap->n_div - 1; d >= 0 ; --d) {
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][off + d]))
break;
if (i < bmap->n_eq)
continue;
for (i = 0; i < bmap->n_ineq; ++i)
if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
break;
if (i < bmap->n_ineq)
continue;
*progress = 1;
bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
break;
bmap = isl_basic_map_drop_div(bmap, d);
if (!bmap)
break;
}
return bmap;
}
struct isl_basic_map *isl_basic_map_gauss(
struct isl_basic_map *bmap, int *progress)
{
int k;
int done;
int last_var;
unsigned total_var;
unsigned total;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
total = isl_basic_map_total_dim(bmap);
total_var = total - bmap->n_div;
last_var = total - 1;
for (done = 0; done < bmap->n_eq; ++done) {
for (; last_var >= 0; --last_var) {
for (k = done; k < bmap->n_eq; ++k)
if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
break;
if (k < bmap->n_eq)
break;
}
if (last_var < 0)
break;
if (k != done)
swap_equality(bmap, k, done);
if (isl_int_is_neg(bmap->eq[done][1+last_var]))
isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
progress);
if (last_var >= total_var &&
isl_int_is_zero(bmap->div[last_var - total_var][0])) {
unsigned div = last_var - total_var;
isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
isl_int_set_si(bmap->div[div][1+1+last_var], 0);
isl_int_set(bmap->div[div][0],
bmap->eq[done][1+last_var]);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
}
if (done == bmap->n_eq)
return bmap;
for (k = done; k < bmap->n_eq; ++k) {
if (isl_int_is_zero(bmap->eq[k][0]))
continue;
return isl_basic_map_set_to_empty(bmap);
}
isl_basic_map_free_equality(bmap, bmap->n_eq-done);
return bmap;
}
struct isl_basic_set *isl_basic_set_gauss(
struct isl_basic_set *bset, int *progress)
{
return (struct isl_basic_set*)isl_basic_map_gauss(
(struct isl_basic_map *)bset, progress);
}
static unsigned int round_up(unsigned int v)
{
int old_v = v;
while (v) {
old_v = v;
v ^= v & -v;
}
return old_v << 1;
}
static int hash_index(isl_int ***index, unsigned int size, int bits,
struct isl_basic_map *bmap, int k)
{
int h;
unsigned total = isl_basic_map_total_dim(bmap);
uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
for (h = hash; index[h]; h = (h+1) % size)
if (&bmap->ineq[k] != index[h] &&
isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
break;
return h;
}
static int set_hash_index(isl_int ***index, unsigned int size, int bits,
struct isl_basic_set *bset, int k)
{
return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
}
/* If we can eliminate more than one div, then we need to make
* sure we do it from last div to first div, in order not to
* change the position of the other divs that still need to
* be removed.
*/
static struct isl_basic_map *remove_duplicate_divs(
struct isl_basic_map *bmap, int *progress)
{
unsigned int size;
int *index;
int *elim_for;
int k, l, h;
int bits;
struct isl_blk eq;
unsigned total_var;
unsigned total;
struct isl_ctx *ctx;
if (!bmap || bmap->n_div <= 1)
return bmap;
total_var = isl_dim_total(bmap->dim);
total = total_var + bmap->n_div;
ctx = bmap->ctx;
for (k = bmap->n_div - 1; k >= 0; --k)
if (!isl_int_is_zero(bmap->div[k][0]))
break;
if (k <= 0)
return bmap;
elim_for = isl_calloc_array(ctx, int, bmap->n_div);
size = round_up(4 * bmap->n_div / 3 - 1);
bits = ffs(size) - 1;
index = isl_calloc_array(ctx, int, size);
if (!index)
return bmap;
eq = isl_blk_alloc(ctx, 1+total);
if (isl_blk_is_error(eq))
goto out;
isl_seq_clr(eq.data, 1+total);
index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
for (--k; k >= 0; --k) {
uint32_t hash;
if (isl_int_is_zero(bmap->div[k][0]))
continue;
hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
for (h = hash; index[h]; h = (h+1) % size)
if (isl_seq_eq(bmap->div[k],
bmap->div[index[h]-1], 2+total))
break;
if (index[h]) {
*progress = 1;
l = index[h] - 1;
elim_for[l] = k + 1;
}
index[h] = k+1;
}
for (l = bmap->n_div - 1; l >= 0; --l) {
if (!elim_for[l])
continue;
k = elim_for[l] - 1;
isl_int_set_si(eq.data[1+total_var+k], -1);
isl_int_set_si(eq.data[1+total_var+l], 1);
eliminate_div(bmap, eq.data, l, 0);
isl_int_set_si(eq.data[1+total_var+k], 0);
isl_int_set_si(eq.data[1+total_var+l], 0);
}
isl_blk_free(ctx, eq);
out:
free(index);
free(elim_for);
return bmap;
}
static int n_pure_div_eq(struct isl_basic_map *bmap)
{
int i, j;
unsigned total;
total = isl_dim_total(bmap->dim);
for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
--j;
if (j < 0)
break;
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
return 0;
}
return i;
}
/* Normalize divs that appear in equalities.
*
* In particular, we assume that bmap contains some equalities
* of the form
*
* a x = m * e_i
*
* and we want to replace the set of e_i by a minimal set and
* such that the new e_i have a canonical representation in terms
* of the vector x.
* If any of the equalities involves more than one divs, then
* we currently simply bail out.
*
* Let us first additionally assume that all equalities involve
* a div. The equalities then express modulo constraints on the
* remaining variables and we can use "parameter compression"
* to find a minimal set of constraints. The result is a transformation
*
* x = T(x') = x_0 + G x'
*
* with G a lower-triangular matrix with all elements below the diagonal
* non-negative and smaller than the diagonal element on the same row.
* We first normalize x_0 by making the same property hold in the affine
* T matrix.
* The rows i of G with a 1 on the diagonal do not impose any modulo
* constraint and simply express x_i = x'_i.
* For each of the remaining rows i, we introduce a div and a corresponding
* equality. In particular
*
* g_ii e_j = x_i - g_i(x')
*
* where each x'_k is replaced either by x_k (if g_kk = 1) or the
* corresponding div (if g_kk != 1).
*
* If there are any equalities not involving any div, then we
* first apply a variable compression on the variables x:
*
* x = C x'' x'' = C_2 x
*
* and perform the above parameter compression on A C instead of on A.
* The resulting compression is then of the form
*
* x'' = T(x') = x_0 + G x'
*
* and in constructing the new divs and the corresponding equalities,
* we have to replace each x'', i.e., the x'_k with (g_kk = 1),
* by the corresponding row from C_2.
*/
static struct isl_basic_map *normalize_divs(
struct isl_basic_map *bmap, int *progress)
{
int i, j, k;
int total;
int div_eq;
struct isl_mat *B;
struct isl_vec *d;
struct isl_mat *T = NULL;
struct isl_mat *C = NULL;
struct isl_mat *C2 = NULL;
isl_int v;
int *pos;
int dropped, needed;
if (!bmap)
return NULL;
if (bmap->n_div == 0)
return bmap;
if (bmap->n_eq == 0)
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
return bmap;
total = isl_dim_total(bmap->dim);
div_eq = n_pure_div_eq(bmap);
if (div_eq == 0)
return bmap;
if (div_eq < bmap->n_eq) {
B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq,
bmap->n_eq - div_eq, 0, 1 + total);
C = isl_mat_variable_compression(B, &C2);
if (!C || !C2)
goto error;
if (C->n_col == 0) {
bmap = isl_basic_map_set_to_empty(bmap);
isl_mat_free(C);
isl_mat_free(C2);
goto done;
}
}
d = isl_vec_alloc(bmap->ctx, div_eq);
if (!d)
goto error;
for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
--j;
isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
}
B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
if (C) {
B = isl_mat_product(B, C);
C = NULL;
}
T = isl_mat_parameter_compression(B, d);
if (!T)
goto error;
if (T->n_col == 0) {
bmap = isl_basic_map_set_to_empty(bmap);
isl_mat_free(C2);
isl_mat_free(T);
goto done;
}
isl_int_init(v);
for (i = 0; i < T->n_row - 1; ++i) {
isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
if (isl_int_is_zero(v))
continue;
isl_mat_col_submul(T, 0, v, 1 + i);
}
isl_int_clear(v);
pos = isl_alloc_array(bmap->ctx, int, T->n_row);
if (!pos)
goto error;
/* We have to be careful because dropping equalities may reorder them */
dropped = 0;
for (j = bmap->n_div - 1; j >= 0; --j) {
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
break;
if (i < bmap->n_eq) {
bmap = isl_basic_map_drop_div(bmap, j);
isl_basic_map_drop_equality(bmap, i);
++dropped;
}
}
pos[0] = 0;
needed = 0;
for (i = 1; i < T->n_row; ++i) {
if (isl_int_is_one(T->row[i][i]))
pos[i] = i;
else
needed++;
}
if (needed > dropped) {
bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
needed, needed, 0);
if (!bmap)
goto error;
}
for (i = 1; i < T->n_row; ++i) {
if (isl_int_is_one(T->row[i][i]))
continue;
k = isl_basic_map_alloc_div(bmap);
pos[i] = 1 + total + k;
isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
isl_int_set(bmap->div[k][0], T->row[i][i]);
if (C2)
isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
else
isl_int_set_si(bmap->div[k][1 + i], 1);
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(T->row[i][j]))
continue;
if (pos[j] < T->n_row && C2)
isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
C2->row[pos[j]], 1 + total);
else
isl_int_neg(bmap->div[k][1 + pos[j]],
T->row[i][j]);
}
j = isl_basic_map_alloc_equality(bmap);
isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
}
free(pos);
isl_mat_free(C2);
isl_mat_free(T);
if (progress)
*progress = 1;
done:
ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
return bmap;
error:
isl_mat_free(C);
isl_mat_free(C2);
isl_mat_free(T);
return bmap;
}
static struct isl_basic_map *set_div_from_lower_bound(
struct isl_basic_map *bmap, int div, int ineq)
{
unsigned total = 1 + isl_dim_total(bmap->dim);
isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
isl_int_set_si(bmap->div[div][1 + total + div], 0);
return bmap;
}
/* Check whether it is ok to define a div based on an inequality.
* To avoid the introduction of circular definitions of divs, we
* do not allow such a definition if the resulting expression would refer to
* any other undefined divs or if any known div is defined in
* terms of the unknown div.
*/
static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
int div, int ineq)
{
int j;
unsigned total = 1 + isl_dim_total(bmap->dim);
/* Not defined in terms of unknown divs */
for (j = 0; j < bmap->n_div; ++j) {
if (div == j)
continue;
if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
continue;
if (isl_int_is_zero(bmap->div[j][0]))
return 0;
}
/* No other div defined in terms of this one => avoid loops */
for (j = 0; j < bmap->n_div; ++j) {
if (div == j)
continue;
if (isl_int_is_zero(bmap->div[j][0]))
continue;
if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
return 0;
}
return 1;
}
/* Given two constraints "k" and "l" that are opposite to each other,
* except for the constant term, check if we can use them
* to obtain an expression for one of the hitherto unknown divs.
* "sum" is the sum of the constant terms of the constraints.
* If this sum is strictly smaller than the coefficient of one
* of the divs, then this pair can be used define the div.
* To avoid the introduction of circular definitions of divs, we
* do not use the pair if the resulting expression would refer to
* any other undefined divs or if any known div is defined in
* terms of the unknown div.
*/
static struct isl_basic_map *check_for_div_constraints(
struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
{
int i;
unsigned total = 1 + isl_dim_total(bmap->dim);
for (i = 0; i < bmap->n_div; ++i) {
if (!isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_zero(bmap->ineq[k][total + i]))
continue;
if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
continue;
if (!ok_to_set_div_from_bound(bmap, i, k))
break;
if (isl_int_is_pos(bmap->ineq[k][total + i]))
bmap = set_div_from_lower_bound(bmap, i, k);
else
bmap = set_div_from_lower_bound(bmap, i, l);
if (progress)
*progress = 1;
break;
}
return bmap;
}
static struct isl_basic_map *remove_duplicate_constraints(
struct isl_basic_map *bmap, int *progress, int detect_divs)
{
unsigned int size;
isl_int ***index;
int k, l, h;
int bits;
unsigned total = isl_basic_map_total_dim(bmap);
isl_int sum;
if (!bmap || bmap->n_ineq <= 1)
return bmap;
size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
bits = ffs(size) - 1;
index = isl_calloc_array(ctx, isl_int **, size);
if (!index)
return bmap;
index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
for (k = 1; k < bmap->n_ineq; ++k) {
h = hash_index(index, size, bits, bmap, k);
if (!index[h]) {
index[h] = &bmap->ineq[k];
continue;
}
if (progress)
*progress = 1;
l = index[h] - &bmap->ineq[0];
if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
swap_inequality(bmap, k, l);
isl_basic_map_drop_inequality(bmap, k);
--k;
}
isl_int_init(sum);
for (k = 0; k < bmap->n_ineq-1; ++k) {
isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
h = hash_index(index, size, bits, bmap, k);
isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
if (!index[h])
continue;
l = index[h] - &bmap->ineq[0];
isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
if (isl_int_is_pos(sum)) {
if (detect_divs)
bmap = check_for_div_constraints(bmap, k, l,
sum, progress);
continue;
}
if (isl_int_is_zero(sum)) {
/* We need to break out of the loop after these
* changes since the contents of the hash
* will no longer be valid.
* Plus, we probably we want to regauss first.
*/
if (progress)
*progress = 1;
isl_basic_map_drop_inequality(bmap, l);
isl_basic_map_inequality_to_equality(bmap, k);
} else
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_int_clear(sum);
free(index);
return bmap;
}
struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
{
int progress = 1;
if (!bmap)
return NULL;
while (progress) {
progress = 0;
bmap = isl_basic_map_normalize_constraints(bmap);
bmap = remove_duplicate_divs(bmap, &progress);
bmap = eliminate_divs_eq(bmap, &progress);
bmap = eliminate_divs_ineq(bmap, &progress);
bmap = isl_basic_map_gauss(bmap, &progress);
/* requires equalities in normal form */
bmap = normalize_divs(bmap, &progress);
bmap = remove_duplicate_constraints(bmap, &progress, 1);
}
return bmap;
}
struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_simplify((struct isl_basic_map *)bset);
}
int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
isl_int *constraint, unsigned div)
{
unsigned pos;
if (!bmap)
return -1;
pos = 1 + isl_dim_total(bmap->dim) + div;
if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
int neg;
isl_int_sub(bmap->div[div][1],
bmap->div[div][1], bmap->div[div][0]);
isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
isl_int_add(bmap->div[div][1],
bmap->div[div][1], bmap->div[div][0]);
if (!neg)
return 0;
if (isl_seq_first_non_zero(constraint+pos+1,
bmap->n_div-div-1) != -1)
return 0;
} else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
return 0;
if (isl_seq_first_non_zero(constraint+pos+1,
bmap->n_div-div-1) != -1)
return 0;
} else
return 0;
return 1;
}
/* If the only constraints a div d=floor(f/m)
* appears in are its two defining constraints
*
* f - m d >=0
* -(f - (m - 1)) + m d >= 0
*
* then it can safely be removed.
*/
static int div_is_redundant(struct isl_basic_map *bmap, int div)
{
int i;
unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][pos]))
return 0;
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_zero(bmap->ineq[i][pos]))
continue;
if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
return 0;
}
for (i = 0; i < bmap->n_div; ++i)
if (!isl_int_is_zero(bmap->div[i][1+pos]))
return 0;
return 1;
}
/*
* Remove divs that don't occur in any of the constraints or other divs.
* These can arise when dropping some of the variables in a quast
* returned by piplib.
*/
static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
{
int i;
if (!bmap)
return NULL;
for (i = bmap->n_div-1; i >= 0; --i) {
if (!div_is_redundant(bmap, i))
continue;
bmap = isl_basic_map_drop_div(bmap, i);
}
return bmap;
}
struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
{
bmap = remove_redundant_divs(bmap);
if (!bmap)
return NULL;
ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
return bmap;
}
struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_finalize((struct isl_basic_map *)bset);
}
struct isl_set *isl_set_finalize(struct isl_set *set)
{
int i;
if (!set)
return NULL;
for (i = 0; i < set->n; ++i) {
set->p[i] = isl_basic_set_finalize(set->p[i]);
if (!set->p[i])
goto error;
}
return set;
error:
isl_set_free(set);
return NULL;
}
struct isl_map *isl_map_finalize(struct isl_map *map)
{
int i;
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_finalize(map->p[i]);
if (!map->p[i])
goto error;
}
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
return NULL;
}
/* Remove definition of any div that is defined in terms of the given variable.
* The div itself is not removed. Functions such as
* eliminate_divs_ineq depend on the other divs remaining in place.
*/
static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
int pos)
{
int i;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_zero(bmap->div[i][1+1+pos]))
continue;
isl_int_set_si(bmap->div[i][0], 0);
}
return bmap;
}
/* Eliminate the specified variables from the constraints using
* Fourier-Motzkin. The variables themselves are not removed.
*/
struct isl_basic_map *isl_basic_map_eliminate_vars(
struct isl_basic_map *bmap, unsigned pos, unsigned n)
{
int d;
int i, j, k;
unsigned total;
if (n == 0)
return bmap;
if (!bmap)
return NULL;
total = isl_basic_map_total_dim(bmap);
bmap = isl_basic_map_cow(bmap);
for (d = pos + n - 1; d >= 0 && d >= pos; --d)
bmap = remove_dependent_vars(bmap, d);
for (d = pos + n - 1;
d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
int n_lower, n_upper;
if (!bmap)
return NULL;
for (i = 0; i < bmap->n_eq; ++i) {
if (isl_int_is_zero(bmap->eq[i][1+d]))
continue;
eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
isl_basic_map_drop_equality(bmap, i);
break;
}
if (i < bmap->n_eq)
continue;
n_lower = 0;
n_upper = 0;
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_pos(bmap->ineq[i][1+d]))
n_lower++;
else if (isl_int_is_neg(bmap->ineq[i][1+d]))
n_upper++;
}
bmap = isl_basic_map_extend_constraints(bmap,
0, n_lower * n_upper);
if (!bmap)
goto error;
for (i = bmap->n_ineq - 1; i >= 0; --i) {
int last;
if (isl_int_is_zero(bmap->ineq[i][1+d]))
continue;
last = -1;
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(bmap->ineq[j][1+d]))
continue;
last = j;
if (isl_int_sgn(bmap->ineq[i][1+d]) ==
isl_int_sgn(bmap->ineq[j][1+d]))
continue;
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1+total);
isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1+d, 1+total, NULL);
}
isl_basic_map_drop_inequality(bmap, i);
i = last + 1;
}
if (n_lower > 0 && n_upper > 0) {
bmap = isl_basic_map_normalize_constraints(bmap);
bmap = remove_duplicate_constraints(bmap, NULL, 0);
bmap = isl_basic_map_gauss(bmap, NULL);
bmap = isl_basic_map_remove_redundancies(bmap);
if (!bmap)
goto error;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
break;
}
}
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_set *isl_basic_set_eliminate_vars(
struct isl_basic_set *bset, unsigned pos, unsigned n)
{
return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
(struct isl_basic_map *)bset, pos, n);
}
/* Don't assume equalities are in order, because align_divs
* may have changed the order of the divs.
*/
static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
{
int d, i;
unsigned total;
total = isl_dim_total(bmap->dim);
for (d = 0; d < total; ++d)
elim[d] = -1;
for (i = 0; i < bmap->n_eq; ++i) {
for (d = total - 1; d >= 0; --d) {
if (isl_int_is_zero(bmap->eq[i][1+d]))
continue;
elim[d] = i;
break;
}
}
}
static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
{
compute_elimination_index((struct isl_basic_map *)bset, elim);
}
static int reduced_using_equalities(isl_int *dst, isl_int *src,
struct isl_basic_map *bmap, int *elim)
{
int d;
int copied = 0;
unsigned total;
total = isl_dim_total(bmap->dim);
for (d = total - 1; d >= 0; --d) {
if (isl_int_is_zero(src[1+d]))
continue;
if (elim[d] == -1)
continue;
if (!copied) {
isl_seq_cpy(dst, src, 1 + total);
copied = 1;
}
isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
}
return copied;
}
static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
struct isl_basic_set *bset, int *elim)
{
return reduced_using_equalities(dst, src,
(struct isl_basic_map *)bset, elim);
}
static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
struct isl_basic_set *bset, struct isl_basic_set *context)
{
int i;
int *elim;
if (!bset || !context)
goto error;
if (context->n_eq == 0) {
isl_basic_set_free(context);
return bset;
}
bset = isl_basic_set_cow(bset);
if (!bset)
goto error;
elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
if (!elim)
goto error;
set_compute_elimination_index(context, elim);
for (i = 0; i < bset->n_eq; ++i)
set_reduced_using_equalities(bset->eq[i], bset->eq[i],
context, elim);
for (i = 0; i < bset->n_ineq; ++i)
set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
context, elim);
isl_basic_set_free(context);
free(elim);
bset = isl_basic_set_simplify(bset);
bset = isl_basic_set_finalize(bset);
return bset;
error:
isl_basic_set_free(bset);
isl_basic_set_free(context);
return NULL;
}
static struct isl_basic_set *remove_shifted_constraints(
struct isl_basic_set *bset, struct isl_basic_set *context)
{
unsigned int size;
isl_int ***index;
int bits;
int k, h, l;
if (!bset)
return NULL;
size = round_up(4 * (context->n_ineq+1) / 3 - 1);
bits = ffs(size) - 1;
index = isl_calloc_array(ctx, isl_int **, size);
if (!index)
return bset;
for (k = 0; k < context->n_ineq; ++k) {
h = set_hash_index(index, size, bits, context, k);
index[h] = &context->ineq[k];
}
for (k = 0; k < bset->n_ineq; ++k) {
h = set_hash_index(index, size, bits, bset, k);
if (!index[h])
continue;
l = index[h] - &context->ineq[0];
if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
continue;
bset = isl_basic_set_cow(bset);
if (!bset)
goto error;
isl_basic_set_drop_inequality(bset, k);
--k;
}
free(index);
return bset;
error:
free(index);
return bset;
}
/* Tighten (decrease) the constant terms of the inequalities based
* on the equalities, without removing any integer points.
* For example, if there is an equality
*
* i = 3 * j
*
* and an inequality
*
* i >= 1
*
* then we want to replace the inequality by
*
* i >= 3
*
* We do this by computing a variable compression and translating
* the constraints to the compressed space.
* If any constraint has coefficients (except the contant term)
* with a common factor "f", then we can replace the constant term "c"
* by
*
* f * floor(c/f)
*
* That is, we add
*
* f * floor(c/f) - c = -fract(c/f)
*
* and we can add the same value to the original constraint.
*
* In the example, the compressed space only contains "j",
* and the inequality translates to
*
* 3 * j - 1 >= 0
*
* We add -fract(-1/3) = -2 to the original constraint to obtain
*
* i - 3 >= 0
*/
static struct isl_basic_set *normalize_constraints_in_compressed_space(
struct isl_basic_set *bset)
{
int i;
unsigned total;
struct isl_mat *B, *C;
isl_int gcd;
if (!bset)
return NULL;
if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
return bset;
if (!bset->n_ineq)
return bset;
bset = isl_basic_set_cow(bset);
if (!bset)
return NULL;
total = isl_basic_set_total_dim(bset);
B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
C = isl_mat_variable_compression(B, NULL);
if (!C)
return bset;
if (C->n_col == 0) {
isl_mat_free(C);
return isl_basic_set_set_to_empty(bset);
}
B = isl_mat_sub_alloc(bset->ctx, bset->ineq,
0, bset->n_ineq, 0, 1 + total);
C = isl_mat_product(B, C);
if (!C)
return bset;
isl_int_init(gcd);
for (i = 0; i < bset->n_ineq; ++i) {
isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
if (isl_int_is_one(gcd))
continue;
isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
}
isl_int_clear(gcd);
isl_mat_free(C);
return bset;
}
/* Remove all information from bset that is redundant in the context
* of context. Both bset and context are assumed to be full-dimensional.
*
* We first * remove the inequalities from "bset"
* that are obviously redundant with respect to some inequality in "context".
*
* If there are any inequalities left, we construct a tableau for
* the context and then add the inequalities of "bset".
* Before adding these inequalities, we freeze all constraints such that
* they won't be considered redundant in terms of the constraints of "bset".
* Then we detect all redundant constraints (among the
* constraints that weren't frozen), first by checking for redundancy in the
* the tableau and then by checking if replacing a constraint by its negation
* would lead to an empty set. This last step is fairly expensive
* and could be optimized by more reuse of the tableau.
* Finally, we update bset according to the results.
*/
static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *context)
{
int i, k;
isl_basic_set *combined = NULL;
struct isl_tab *tab = NULL;
unsigned context_ineq;
unsigned total;
if (!bset || !context)
goto error;
if (isl_basic_set_is_universe(bset)) {
isl_basic_set_free(context);
return bset;
}
if (isl_basic_set_is_universe(context)) {
isl_basic_set_free(context);
return bset;
}
bset = remove_shifted_constraints(bset, context);
if (!bset)
goto error;
if (bset->n_ineq == 0)
goto done;
context_ineq = context->n_ineq;
combined = isl_basic_set_cow(isl_basic_set_copy(context));
combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
tab = isl_tab_from_basic_set(combined);
for (i = 0; i < context_ineq; ++i)
if (isl_tab_freeze_constraint(tab, i) < 0)
goto error;
tab = isl_tab_extend(tab, bset->n_ineq);
for (i = 0; i < bset->n_ineq; ++i)
if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
goto error;
bset = isl_basic_set_add_constraints(combined, bset, 0);
combined = NULL;
if (!bset)
goto error;
if (isl_tab_detect_redundant(tab) < 0)
goto error;
total = isl_basic_set_total_dim(bset);
for (i = context_ineq; i < bset->n_ineq; ++i) {
int is_empty;
if (tab->con[i].is_redundant)
continue;
tab->con[i].is_redundant = 1;
combined = isl_basic_set_dup(bset);
combined = isl_basic_set_update_from_tab(combined, tab);
combined = isl_basic_set_extend_constraints(combined, 0, 1);
k = isl_basic_set_alloc_inequality(combined);
if (k < 0)
goto error;
isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
is_empty = isl_basic_set_is_empty(combined);
if (is_empty < 0)
goto error;
isl_basic_set_free(combined);
combined = NULL;
if (!is_empty)
tab->con[i].is_redundant = 0;
}
for (i = 0; i < context_ineq; ++i)
tab->con[i].is_redundant = 1;
bset = isl_basic_set_update_from_tab(bset, tab);
if (bset) {
ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
}
isl_tab_free(tab);
done:
bset = isl_basic_set_simplify(bset);
bset = isl_basic_set_finalize(bset);
isl_basic_set_free(context);
return bset;
error:
isl_tab_free(tab);
isl_basic_set_free(combined);
isl_basic_set_free(context);
isl_basic_set_free(bset);
return NULL;
}
/* Remove all information from bset that is redundant in the context
* of context. In particular, equalities that are linear combinations
* of those in context are removed. Then the inequalities that are
* redundant in the context of the equalities and inequalities of
* context are removed.
*
* We first compute the integer affine hull of the intersection,
* compute the gist inside this affine hull and then add back
* those equalities that are not implied by the context.
*/
static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *context)
{
isl_mat *eq;
isl_mat *T, *T2;
isl_basic_set *aff;
isl_basic_set *aff_context;
unsigned total;
if (!bset || !context)
goto error;
bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
if (isl_basic_set_fast_is_empty(bset)) {
isl_basic_set_free(context);
return bset;
}
aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
if (!aff)
goto error;
if (isl_basic_set_fast_is_empty(aff)) {
isl_basic_set_free(aff);
isl_basic_set_free(context);
return bset;
}
if (aff->n_eq == 0) {
isl_basic_set_free(aff);
return uset_gist_full(bset, context);
}
total = isl_basic_set_total_dim(bset);
eq = isl_mat_sub_alloc(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
eq = isl_mat_cow(eq);
T = isl_mat_variable_compression(eq, &T2);
if (T && T->n_col == 0) {
isl_mat_free(T);
isl_mat_free(T2);
isl_basic_set_free(context);
isl_basic_set_free(aff);
return isl_basic_set_set_to_empty(bset);
}
aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
context = isl_basic_set_preimage(context, T);
bset = uset_gist_full(bset, context);
bset = isl_basic_set_preimage(bset, T2);
bset = isl_basic_set_intersect(bset, aff);
bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
if (bset) {
ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
}
return bset;
error:
isl_basic_set_free(bset);
isl_basic_set_free(context);
return NULL;
}
/* Normalize the divs in "bmap" in the context of the equalities in "context".
* We simply add the equalities in context to bmap and then do a regular
* div normalizations. Better results can be obtained by normalizing
* only the divs in bmap than do not also appear in context.
* We need to be careful to reduce the divs using the equalities
* so that later calls to isl_basic_map_overlying_set wouldn't introduce
* spurious constraints.
*/
static struct isl_basic_map *normalize_divs_in_context(
struct isl_basic_map *bmap, struct isl_basic_map *context)
{
int i;
unsigned total_context;
int div_eq;
div_eq = n_pure_div_eq(bmap);
if (div_eq == 0)
return bmap;
if (context->n_div > 0)
bmap = isl_basic_map_align_divs(bmap, context);
total_context = isl_basic_map_total_dim(context);
bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
for (i = 0; i < context->n_eq; ++i) {
int k;
k = isl_basic_map_alloc_equality(bmap);
isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
isl_seq_clr(bmap->eq[k] + 1 + total_context,
isl_basic_map_total_dim(bmap) - total_context);
}
bmap = isl_basic_map_gauss(bmap, NULL);
bmap = normalize_divs(bmap, NULL);
bmap = isl_basic_map_gauss(bmap, NULL);
return bmap;
}
struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
struct isl_basic_map *context)
{
struct isl_basic_set *bset;
if (!bmap || !context)
goto error;
if (isl_basic_map_is_universe(bmap)) {
isl_basic_map_free(context);
return bmap;
}
if (isl_basic_map_fast_is_empty(context)) {
struct isl_dim *dim = isl_dim_copy(bmap->dim);
isl_basic_map_free(context);
isl_basic_map_free(bmap);
return isl_basic_map_universe(dim);
}
if (isl_basic_map_fast_is_empty(bmap)) {
isl_basic_map_free(context);
return bmap;
}
bmap = isl_basic_map_remove_redundancies(bmap);
context = isl_basic_map_remove_redundancies(context);
if (context->n_eq)
bmap = normalize_divs_in_context(bmap, context);
context = isl_basic_map_align_divs(context, bmap);
bmap = isl_basic_map_align_divs(bmap, context);
bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
isl_basic_map_underlying_set(context));
return isl_basic_map_overlying_set(bset, bmap);
error:
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return NULL;
}
/*
* Assumes context has no implicit divs.
*/
__isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
__isl_take isl_basic_map *context)
{
int i;
if (!map || !context)
goto error;;
if (isl_basic_map_fast_is_empty(context)) {
struct isl_dim *dim = isl_dim_copy(map->dim);
isl_basic_map_free(context);
isl_map_free(map);
return isl_map_universe(dim);
}
context = isl_basic_map_remove_redundancies(context);
map = isl_map_cow(map);
if (!map || !context)
goto error;;
isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
map = isl_map_compute_divs(map);
for (i = 0; i < map->n; ++i)
context = isl_basic_map_align_divs(context, map->p[i]);
for (i = map->n - 1; i >= 0; --i) {
map->p[i] = isl_basic_map_gist(map->p[i],
isl_basic_map_copy(context));
if (!map->p[i])
goto error;
if (isl_basic_map_fast_is_empty(map->p[i])) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
}
}
isl_basic_map_free(context);
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
isl_basic_map_free(context);
return NULL;
}
__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
__isl_take isl_map *context)
{
context = isl_map_compute_divs(context);
return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
}
struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
struct isl_basic_set *context)
{
return (struct isl_basic_set *)isl_basic_map_gist(
(struct isl_basic_map *)bset, (struct isl_basic_map *)context);
}
__isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
__isl_take isl_basic_set *context)
{
return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
(struct isl_basic_map *)context);
}
__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
__isl_take isl_set *context)
{
return (struct isl_set *)isl_map_gist((struct isl_map *)set,
(struct isl_map *)context);
}
/* Quick check to see if two basic maps are disjoint.
* In particular, we reduce the equalities and inequalities of
* one basic map in the context of the equalities of the other
* basic map and check if we get a contradiction.
*/
int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1,
struct isl_basic_map *bmap2)
{
struct isl_vec *v = NULL;
int *elim = NULL;
unsigned total;
int i;
if (!bmap1 || !bmap2)
return -1;
isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
return -1);
if (bmap1->n_div || bmap2->n_div)
return 0;
if (!bmap1->n_eq && !bmap2->n_eq)
return 0;
total = isl_dim_total(bmap1->dim);
if (total == 0)
return 0;
v = isl_vec_alloc(bmap1->ctx, 1 + total);
if (!v)
goto error;
elim = isl_alloc_array(bmap1->ctx, int, total);
if (!elim)
goto error;
compute_elimination_index(bmap1, elim);
for (i = 0; i < bmap2->n_eq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
bmap1, elim);
if (reduced && !isl_int_is_zero(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
for (i = 0; i < bmap2->n_ineq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data,
bmap2->ineq[i], bmap1, elim);
if (reduced && isl_int_is_neg(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
compute_elimination_index(bmap2, elim);
for (i = 0; i < bmap1->n_ineq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data,
bmap1->ineq[i], bmap2, elim);
if (reduced && isl_int_is_neg(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
isl_vec_free(v);
free(elim);
return 0;
disjoint:
isl_vec_free(v);
free(elim);
return 1;
error:
isl_vec_free(v);
free(elim);
return -1;
}
int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1,
struct isl_basic_set *bset2)
{
return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1,
(struct isl_basic_map *)bset2);
}
int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2)
{
int i, j;
if (!map1 || !map2)
return -1;
if (isl_map_fast_is_equal(map1, map2))
return 0;
for (i = 0; i < map1->n; ++i) {
for (j = 0; j < map2->n; ++j) {
int d = isl_basic_map_fast_is_disjoint(map1->p[i],
map2->p[j]);
if (d != 1)
return d;
}
}
return 1;
}
int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2)
{
return isl_map_fast_is_disjoint((struct isl_map *)set1,
(struct isl_map *)set2);
}
/* Check if we can combine a given div with lower bound l and upper
* bound u with some other div and if so return that other div.
* Otherwise return -1.
*
* We first check that
* - the bounds are opposites of each other (except for the constant
* term)
* - the bounds do not reference any other div
* - no div is defined in terms of this div
*
* Let m be the size of the range allowed on the div by the bounds.
* That is, the bounds are of the form
*
* e <= a <= e + m - 1
*
* with e some expression in the other variables.
* We look for another div b such that no third div is defined in terms
* of this second div b and such that in any constraint that contains
* a (except for the given lower and upper bound), also contains b
* with a coefficient that is m times that of b.
* That is, all constraints (execpt for the lower and upper bound)
* are of the form
*
* e + f (a + m b) >= 0
*
* If so, we return b so that "a + m b" can be replaced by
* a single div "c = a + m b".
*/
static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
unsigned div, unsigned l, unsigned u)
{
int i, j;
unsigned dim;
int coalesce = -1;
if (bmap->n_div <= 1)
return -1;
dim = isl_dim_total(bmap->dim);
if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
return -1;
if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
bmap->n_div - div - 1) != -1)
return -1;
if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
dim + bmap->n_div))
return -1;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
return -1;
}
isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
if (isl_int_is_neg(bmap->ineq[l][0])) {
isl_int_sub(bmap->ineq[l][0],
bmap->ineq[l][0], bmap->ineq[u][0]);
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_map_set_to_empty(bmap);
isl_basic_map_free(bmap);
return -1;
}
isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
for (i = 0; i < bmap->n_div; ++i) {
if (i == div)
continue;
if (!pairs[i])
continue;
for (j = 0; j < bmap->n_div; ++j) {
if (isl_int_is_zero(bmap->div[j][0]))
continue;
if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
break;
}
if (j < bmap->n_div)
continue;
for (j = 0; j < bmap->n_ineq; ++j) {
int valid;
if (j == l || j == u)
continue;
if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
continue;
if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
break;
isl_int_mul(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + div],
bmap->ineq[l][0]);
valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + i]);
isl_int_divexact(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + div],
bmap->ineq[l][0]);
if (!valid)
break;
}
if (j < bmap->n_ineq)
continue;
coalesce = i;
break;
}
isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
return coalesce;
}
/* Given a lower and an upper bound on div i, construct an inequality
* that when nonnegative ensures that this pair of bounds always allows
* for an integer value of the given div.
* The lower bound is inequality l, while the upper bound is inequality u.
* The constructed inequality is stored in ineq.
* g, fl, fu are temporary scalars.
*
* Let the upper bound be
*
* -n_u a + e_u >= 0
*
* and the lower bound
*
* n_l a + e_l >= 0
*
* Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
* We have
*
* - f_u e_l <= f_u f_l g a <= f_l e_u
*
* Since all variables are integer valued, this is equivalent to
*
* - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
*
* If this interval is at least f_u f_l g, then it contains at least
* one integer value for a.
* That is, the test constraint is
*
* f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
*/
static void construct_test_ineq(struct isl_basic_map *bmap, int i,
int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
{
unsigned dim;
dim = isl_dim_total(bmap->dim);
isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
isl_int_neg(fu, fu);
isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
1 + dim + bmap->n_div);
isl_int_add(ineq[0], ineq[0], fl);
isl_int_add(ineq[0], ineq[0], fu);
isl_int_sub_ui(ineq[0], ineq[0], 1);
isl_int_mul(g, g, fl);
isl_int_mul(g, g, fu);
isl_int_sub(ineq[0], ineq[0], g);
}
/* Remove more kinds of divs that are not strictly needed.
* In particular, if all pairs of lower and upper bounds on a div
* are such that they allow at least one integer value of the div,
* the we can eliminate the div using Fourier-Motzkin without
* introducing any spurious solutions.
*/
static struct isl_basic_map *drop_more_redundant_divs(
struct isl_basic_map *bmap, int *pairs, int n)
{
struct isl_tab *tab = NULL;
struct isl_vec *vec = NULL;
unsigned dim;
int remove = -1;
isl_int g, fl, fu;
isl_int_init(g);
isl_int_init(fl);
isl_int_init(fu);
if (!bmap)
goto error;
dim = isl_dim_total(bmap->dim);
vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
if (!vec)
goto error;
tab = isl_tab_from_basic_map(bmap);
while (n > 0) {
int i, l, u;
int best = -1;
enum isl_lp_result res;
for (i = 0; i < bmap->n_div; ++i) {
if (!pairs[i])
continue;
if (best >= 0 && pairs[best] <= pairs[i])
continue;
best = i;
}
i = best;
for (l = 0; l < bmap->n_ineq; ++l) {
if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
continue;
for (u = 0; u < bmap->n_ineq; ++u) {
if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
continue;
construct_test_ineq(bmap, i, l, u,
vec->el, g, fl, fu);
res = isl_tab_min(tab, vec->el,
bmap->ctx->one, &g, NULL, 0);
if (res == isl_lp_error)
goto error;
if (res == isl_lp_empty) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
if (res != isl_lp_ok || isl_int_is_neg(g))
break;
}
if (u < bmap->n_ineq)
break;
}
if (l == bmap->n_ineq) {
remove = i;
break;
}
pairs[i] = 0;
--n;
}
isl_tab_free(tab);
isl_vec_free(vec);
isl_int_clear(g);
isl_int_clear(fl);
isl_int_clear(fu);
free(pairs);
if (remove < 0)
return bmap;
bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
return isl_basic_map_drop_redundant_divs(bmap);
error:
free(pairs);
isl_basic_map_free(bmap);
isl_tab_free(tab);
isl_vec_free(vec);
isl_int_clear(g);
isl_int_clear(fl);
isl_int_clear(fu);
return NULL;
}
/* Given a pair of divs div1 and div2 such that, expect for the lower bound l
* and the upper bound u, div1 always occurs together with div2 in the form
* (div1 + m div2), where m is the constant range on the variable div1
* allowed by l and u, replace the pair div1 and div2 by a single
* div that is equal to div1 + m div2.
*
* The new div will appear in the location that contains div2.
* We need to modify all constraints that contain
* div2 = (div - div1) / m
* (If a constraint does not contain div2, it will also not contain div1.)
* If the constraint also contains div1, then we know they appear
* as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
* i.e., the coefficient of div is f.
*
* Otherwise, we first need to introduce div1 into the constraint.
* Let the l be
*
* div1 + f >=0
*
* and u
*
* -div1 + f' >= 0
*
* A lower bound on div2
*
* n div2 + t >= 0
*
* can be replaced by
*
* (n * (m div 2 + div1) + m t + n f)/g >= 0
*
* with g = gcd(m,n).
* An upper bound
*
* -n div2 + t >= 0
*
* can be replaced by
*
* (-n * (m div2 + div1) + m t + n f')/g >= 0
*
* These constraint are those that we would obtain from eliminating
* div1 using Fourier-Motzkin.
*
* After all constraints have been modified, we drop the lower and upper
* bound and then drop div1.
*/
static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
unsigned div1, unsigned div2, unsigned l, unsigned u)
{
isl_int a;
isl_int b;
isl_int m;
unsigned dim, total;
int i;
dim = isl_dim_total(bmap->dim);
total = 1 + dim + bmap->n_div;
isl_int_init(a);
isl_int_init(b);
isl_int_init(m);
isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
isl_int_add_ui(m, m, 1);
for (i = 0; i < bmap->n_ineq; ++i) {
if (i == l || i == u)
continue;
if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
continue;
if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
isl_int_divexact(a, m, b);
isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
if (isl_int_is_pos(b)) {
isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
b, bmap->ineq[l], total);
} else {
isl_int_neg(b, b);
isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
b, bmap->ineq[u], total);
}
}
isl_int_set(bmap->ineq[i][1 + dim + div2],
bmap->ineq[i][1 + dim + div1]);
isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
}
isl_int_clear(a);
isl_int_clear(b);
isl_int_clear(m);
if (l > u) {
isl_basic_map_drop_inequality(bmap, l);
isl_basic_map_drop_inequality(bmap, u);
} else {
isl_basic_map_drop_inequality(bmap, u);
isl_basic_map_drop_inequality(bmap, l);
}
bmap = isl_basic_map_drop_div(bmap, div1);
return bmap;
}
/* First check if we can coalesce any pair of divs and
* then continue with dropping more redundant divs.
*
* We loop over all pairs of lower and upper bounds on a div
* with coefficient 1 and -1, respectively, check if there
* is any other div "c" with which we can coalesce the div
* and if so, perform the coalescing.
*/
static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
struct isl_basic_map *bmap, int *pairs, int n)
{
int i, l, u;
unsigned dim;
dim = isl_dim_total(bmap->dim);
for (i = 0; i < bmap->n_div; ++i) {
if (!pairs[i])
continue;
for (l = 0; l < bmap->n_ineq; ++l) {
if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
continue;
for (u = 0; u < bmap->n_ineq; ++u) {
int c;
if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
continue;
c = div_find_coalesce(bmap, pairs, i, l, u);
if (c < 0)
continue;
free(pairs);
bmap = coalesce_divs(bmap, i, c, l, u);
return isl_basic_map_drop_redundant_divs(bmap);
}
}
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
return bmap;
return drop_more_redundant_divs(bmap, pairs, n);
}
/* Remove divs that are not strictly needed.
* In particular, if a div only occurs positively (or negatively)
* in constraints, then it can simply be dropped.
* Also, if a div occurs only occurs in two constraints and if moreover
* those two constraints are opposite to each other, except for the constant
* term and if the sum of the constant terms is such that for any value
* of the other values, there is always at least one integer value of the
* div, i.e., if one plus this sum is greater than or equal to
* the (absolute value) of the coefficent of the div in the constraints,
* then we can also simply drop the div.
*
* If any divs are left after these simple checks then we move on
* to more complicated cases in drop_more_redundant_divs.
*/
struct isl_basic_map *isl_basic_map_drop_redundant_divs(
struct isl_basic_map *bmap)
{
int i, j;
unsigned off;
int *pairs = NULL;
int n = 0;
if (!bmap)
goto error;
off = isl_dim_total(bmap->dim);
pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
if (!pairs)
goto error;
for (i = 0; i < bmap->n_div; ++i) {
int pos, neg;
int last_pos, last_neg;
int redundant;
int defined;
defined = !isl_int_is_zero(bmap->div[i][0]);
for (j = 0; j < bmap->n_eq; ++j)
if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
break;
if (j < bmap->n_eq)
continue;
++n;
pos = neg = 0;
for (j = 0; j < bmap->n_ineq; ++j) {
if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
last_pos = j;
++pos;
}
if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
last_neg = j;
++neg;
}
}
pairs[i] = pos * neg;
if (pairs[i] == 0) {
for (j = bmap->n_ineq - 1; j >= 0; --j)
if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
isl_basic_map_drop_inequality(bmap, j);
bmap = isl_basic_map_drop_div(bmap, i);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
if (pairs[i] != 1)
continue;
if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
bmap->ineq[last_neg] + 1,
off + bmap->n_div))
continue;
isl_int_add(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
isl_int_add_ui(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], 1);
redundant = isl_int_ge(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][1+off+i]);
isl_int_sub_ui(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], 1);
isl_int_sub(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
if (!redundant) {
if (defined ||
!ok_to_set_div_from_bound(bmap, i, last_pos)) {
pairs[i] = 0;
--n;
continue;
}
bmap = set_div_from_lower_bound(bmap, i, last_pos);
bmap = isl_basic_map_simplify(bmap);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
if (last_pos > last_neg) {
isl_basic_map_drop_inequality(bmap, last_pos);
isl_basic_map_drop_inequality(bmap, last_neg);
} else {
isl_basic_map_drop_inequality(bmap, last_neg);
isl_basic_map_drop_inequality(bmap, last_pos);
}
bmap = isl_basic_map_drop_div(bmap, i);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
if (n > 0)
return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
free(pairs);
return bmap;
error:
free(pairs);
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_set *isl_basic_set_drop_redundant_divs(
struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
}
struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
{
int i;
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
if (!map->p[i])
goto error;
}
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
return NULL;
}
struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
{
return (struct isl_set *)
isl_map_drop_redundant_divs((struct isl_map *)set);
}
|