summaryrefslogtreecommitdiff
path: root/isl_coalesce.c
blob: bb56261cadc338ba743c757f14048cf4f214a5ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 *
 * Use of this software is governed by the GNU LGPLv2.1 license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France 
 */

#include "isl_map_private.h"
#include "isl_seq.h"
#include "isl_tab.h"

#define STATUS_ERROR		-1
#define STATUS_REDUNDANT	 1
#define STATUS_VALID	 	 2
#define STATUS_SEPARATE	 	 3
#define STATUS_CUT	 	 4
#define STATUS_ADJ_EQ	 	 5
#define STATUS_ADJ_INEQ	 	 6

static int status_in(isl_int *ineq, struct isl_tab *tab)
{
	enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
	switch (type) {
	case isl_ineq_error:		return STATUS_ERROR;
	case isl_ineq_redundant:	return STATUS_VALID;
	case isl_ineq_separate:		return STATUS_SEPARATE;
	case isl_ineq_cut:		return STATUS_CUT;
	case isl_ineq_adj_eq:		return STATUS_ADJ_EQ;
	case isl_ineq_adj_ineq:		return STATUS_ADJ_INEQ;
	}
}

/* Compute the position of the equalities of basic map "i"
 * with respect to basic map "j".
 * The resulting array has twice as many entries as the number
 * of equalities corresponding to the two inequalties to which
 * each equality corresponds.
 */
static int *eq_status_in(struct isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int k, l;
	int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
	unsigned dim;

	dim = isl_basic_map_total_dim(map->p[i]);
	for (k = 0; k < map->p[i]->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
			eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
			if (eq[2 * k + l] == STATUS_ERROR)
				goto error;
		}
		if (eq[2 * k] == STATUS_SEPARATE ||
		    eq[2 * k + 1] == STATUS_SEPARATE)
			break;
	}

	return eq;
error:
	free(eq);
	return NULL;
}

/* Compute the position of the inequalities of basic map "i"
 * with respect to basic map "j".
 */
static int *ineq_status_in(struct isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int k;
	unsigned n_eq = map->p[i]->n_eq;
	int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
			ineq[k] = STATUS_REDUNDANT;
			continue;
		}
		ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
		if (ineq[k] == STATUS_ERROR)
			goto error;
		if (ineq[k] == STATUS_SEPARATE)
			break;
	}

	return ineq;
error:
	free(ineq);
	return NULL;
}

static int any(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			return 1;
	return 0;
}

static int count(int *con, unsigned len, int status)
{
	int i;
	int c = 0;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			c++;
	return c;
}

static int all(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i) {
		if (con[i] == STATUS_REDUNDANT)
			continue;
		if (con[i] != status)
			return 0;
	}
	return 1;
}

static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
{
	isl_basic_map_free(map->p[i]);
	isl_tab_free(tabs[i]);

	if (i != map->n - 1) {
		map->p[i] = map->p[map->n - 1];
		tabs[i] = tabs[map->n - 1];
	}
	tabs[map->n - 1] = NULL;
	map->n--;
}

/* Replace the pair of basic maps i and j by the basic map bounded
 * by the valid constraints in both basic maps and the constraint
 * in extra (if not NULL).
 */
static int fuse(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
	__isl_keep isl_mat *extra)
{
	int k, l;
	struct isl_basic_map *fused = NULL;
	struct isl_tab *fused_tab = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	unsigned extra_rows = extra ? extra->n_row : 0;

	fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
			map->p[i]->n_div,
			map->p[i]->n_eq + map->p[j]->n_eq,
			map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
	if (!fused)
		goto error;

	for (k = 0; k < map->p[i]->n_eq; ++k) {
		if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
			     eq_i[2 * k + 1] != STATUS_VALID))
			continue;
		l = isl_basic_map_alloc_equality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
	}

	for (k = 0; k < map->p[j]->n_eq; ++k) {
		if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
			     eq_j[2 * k + 1] != STATUS_VALID))
			continue;
		l = isl_basic_map_alloc_equality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
	}

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (ineq_i[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
	}

	for (k = 0; k < map->p[j]->n_ineq; ++k) {
		if (ineq_j[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
	}

	for (k = 0; k < map->p[i]->n_div; ++k) {
		int l = isl_basic_map_alloc_div(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
	}

	for (k = 0; k < extra_rows; ++k) {
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
	}

	fused = isl_basic_map_gauss(fused, NULL);
	ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
	if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
	    ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
		ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);

	fused_tab = isl_tab_from_basic_map(fused);
	if (isl_tab_detect_redundant(fused_tab) < 0)
		goto error;

	isl_basic_map_free(map->p[i]);
	map->p[i] = fused;
	isl_tab_free(tabs[i]);
	tabs[i] = fused_tab;
	drop(map, j, tabs);

	return 1;
error:
	isl_tab_free(fused_tab);
	isl_basic_map_free(fused);
	return -1;
}

/* Given a pair of basic maps i and j such that all constraints are either
 * "valid" or "cut", check if the facets corresponding to the "cut"
 * constraints of i lie entirely within basic map j.
 * If so, replace the pair by the basic map consisting of the valid
 * constraints in both basic maps.
 *
 * To see that we are not introducing any extra points, call the
 * two basic maps A and B and the resulting map U and let x
 * be an element of U \setminus ( A \cup B ).
 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
 * violates them.  Let X be the intersection of U with the opposites
 * of these constraints.  Then x \in X.
 * The facet corresponding to c_1 contains the corresponding facet of A.
 * This facet is entirely contained in B, so c_2 is valid on the facet.
 * However, since it is also (part of) a facet of X, -c_2 is also valid
 * on the facet.  This means c_2 is saturated on the facet, so c_1 and
 * c_2 must be opposites of each other, but then x could not violate
 * both of them.
 */
static int check_facets(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int k, l;
	struct isl_tab_undo *snap;
	unsigned n_eq = map->p[i]->n_eq;

	snap = isl_tab_snap(tabs[i]);

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (ineq_i[k] != STATUS_CUT)
			continue;
		tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
		for (l = 0; l < map->p[j]->n_ineq; ++l) {
			int stat;
			if (ineq_j[l] != STATUS_CUT)
				continue;
			stat = status_in(map->p[j]->ineq[l], tabs[i]);
			if (stat != STATUS_VALID)
				break;
		}
		if (isl_tab_rollback(tabs[i], snap) < 0)
			return -1;
		if (l < map->p[j]->n_ineq)
			break;
	}

	if (k < map->p[i]->n_ineq)
		/* BAD CUT PAIR */
		return 0;
	return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
}

/* Both basic maps have at least one inequality with and adjacent
 * (but opposite) inequality in the other basic map.
 * Check that there are no cut constraints and that there is only
 * a single pair of adjacent inequalities.
 * If so, we can replace the pair by a single basic map described
 * by all but the pair of adjacent inequalities.
 * Any additional points introduced lie strictly between the two
 * adjacent hyperplanes and can therefore be integral.
 *
 *        ____			  _____
 *       /    ||\		 /     \
 *      /     || \		/       \
 *      \     ||  \	=>	\        \
 *       \    ||  /		 \       /
 *        \___||_/		  \_____/
 *
 * The test for a single pair of adjancent inequalities is important
 * for avoiding the combination of two basic maps like the following
 *
 *       /|
 *      / |
 *     /__|
 *         _____
 *         |   |
 *         |   |
 *         |___|
 */
static int check_adj_ineq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int changed = 0;

	if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
		/* ADJ INEQ CUT */
		;
	else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
		 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
		changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
	/* else ADJ INEQ TOO MANY */

	return changed;
}

/* Check if basic map "i" contains the basic map represented
 * by the tableau "tab".
 */
static int contains(struct isl_map *map, int i, int *ineq_i,
	struct isl_tab *tab)
{
	int k, l;
	unsigned dim;

	dim = isl_basic_map_total_dim(map->p[i]);
	for (k = 0; k < map->p[i]->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			int stat;
			isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
			stat = status_in(map->p[i]->eq[k], tab);
			if (stat != STATUS_VALID)
				return 0;
		}
	}

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		int stat;
		if (ineq_i[k] == STATUS_REDUNDANT)
			continue;
		stat = status_in(map->p[i]->ineq[k], tab);
		if (stat != STATUS_VALID)
			return 0;
	}
	return 1;
}

/* Basic map "i" has an inequality "k" that is adjacent to some equality
 * of basic map "j".  All the other inequalities are valid for "j".
 * Check if basic map "j" forms an extension of basic map "i".
 *
 * In particular, we relax constraint "k", compute the corresponding
 * facet and check whether it is included in the other basic map.
 * If so, we know that relaxing the constraint extends the basic
 * map with exactly the other basic map (we already know that this
 * other basic map is included in the extension, because there
 * were no "cut" inequalities in "i") and we can replace the
 * two basic maps by thie extension.
 *        ____			  _____
 *       /    || 		 /     |
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 */
static int is_extension(struct isl_map *map, int i, int j, int k,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	int super;
	struct isl_tab_undo *snap, *snap2;
	unsigned n_eq = map->p[i]->n_eq;

	snap = isl_tab_snap(tabs[i]);
	tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
	snap2 = isl_tab_snap(tabs[i]);
	tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
	super = contains(map, j, ineq_j, tabs[i]);
	if (super) {
		if (isl_tab_rollback(tabs[i], snap2) < 0)
			return -1;
		map->p[i] = isl_basic_map_cow(map->p[i]);
		if (!map->p[i])
			return -1;
		isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
		ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
		drop(map, j, tabs);
		changed = 1;
	} else
		if (isl_tab_rollback(tabs[i], snap) < 0)
			return -1;

	return changed;
}

/* For each non-redundant constraint in "bmap" (as determined by "tab"),
 * wrap the constraint around "bound" such that it includes the whole
 * set "set" and append the resulting constraint to "wraps".
 * "wraps" is assumed to have been pre-allocated to the appropriate size.
 * wraps->n_row is the number of actual wrapped constraints that have
 * been added.
 * If any of the wrapping problems results in a constraint that is
 * identical to "bound", then this means that "set" is unbounded in such
 * way that no wrapping is possible.  If this happens then wraps->n_row
 * is reset to zero.
 */
static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
	struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
{
	int l;
	int w;
	unsigned total = isl_basic_map_total_dim(bmap);

	w = wraps->n_row;

	for (l = 0; l < bmap->n_ineq; ++l) {
		if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
			continue;
		if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
			continue;
		if (isl_tab_is_redundant(tab, bmap->n_eq + l))
			continue;

		isl_seq_cpy(wraps->row[w], bound, 1 + total);
		if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
			return -1;
		if (isl_seq_eq(wraps->row[w], bound, 1 + total))
			goto unbounded;
		++w;
	}
	for (l = 0; l < bmap->n_eq; ++l) {
		if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
			continue;
		if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
			continue;

		isl_seq_cpy(wraps->row[w], bound, 1 + total);
		isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
		if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
			return -1;
		if (isl_seq_eq(wraps->row[w], bound, 1 + total))
			goto unbounded;
		++w;

		isl_seq_cpy(wraps->row[w], bound, 1 + total);
		if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
			return -1;
		if (isl_seq_eq(wraps->row[w], bound, 1 + total))
			goto unbounded;
		++w;
	}

	wraps->n_row = w;
	return 0;
unbounded:
	wraps->n_row = 0;
	return 0;
}

/* Given a basic set i with a constraint k that is adjacent to either the
 * whole of basic set j or a facet of basic set j, check if we can wrap
 * both the facet corresponding to k and the facet of j (or the whole of j)
 * around their ridges to include the other set.
 * If so, replace the pair of basic sets by their union.
 *
 * All constraints of i (except k) are assumed to be valid for j.
 *
 * In the case where j has a facet adjacent to i, tab[j] is assumed
 * to have been restricted to this facet, so that the non-redundant
 * constraints in tab[j] are the ridges of the facet.
 * Note that for the purpose of wrapping, it does not matter whether
 * we wrap the ridges of i aronud the whole of j or just around
 * the facet since all the other constraints are assumed to be valid for j.
 * In practice, we wrap to include the whole of j.
 *        ____			  _____
 *       /    | 		 /     \
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 *
 */
static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	struct isl_mat *wraps = NULL;
	struct isl_set *set_i = NULL;
	struct isl_set *set_j = NULL;
	struct isl_vec *bound = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	struct isl_tab_undo *snap;

	snap = isl_tab_snap(tabs[i]);

	set_i = isl_set_from_basic_set(
		    isl_basic_map_underlying_set(isl_basic_map_copy(map->p[i])));
	set_j = isl_set_from_basic_set(
		    isl_basic_map_underlying_set(isl_basic_map_copy(map->p[j])));
	wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
					map->p[i]->n_ineq + map->p[j]->n_ineq,
					1 + total);
	bound = isl_vec_alloc(map->ctx, 1 + total);
	if (!set_i || !set_j || !wraps || !bound)
		goto error;

	isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
	isl_int_add_ui(bound->el[0], bound->el[0], 1);

	isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
	wraps->n_row = 1;

	if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
		goto error;
	if (!wraps->n_row)
		goto unbounded;

	tabs[i] = isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k);
	if (isl_tab_detect_redundant(tabs[i]) < 0)
		goto error;

	isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);

	if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
		goto error;
	if (!wraps->n_row)
		goto unbounded;

	changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);

	if (!changed) {
unbounded:
		if (isl_tab_rollback(tabs[i], snap) < 0)
			goto error;
	}

	isl_mat_free(wraps);

	isl_set_free(set_i);
	isl_set_free(set_j);

	isl_vec_free(bound);

	return changed;
error:
	isl_vec_free(bound);
	isl_mat_free(wraps);
	isl_set_free(set_i);
	isl_set_free(set_j);
	return -1;
}

/* Given two basic sets i and j such that i has exactly one cut constraint,
 * check if we can wrap the corresponding facet around its ridges to include
 * the other basic set (and nothing else).
 * If so, replace the pair by their union.
 *
 * We first check if j has a facet adjacent to the cut constraint of i.
 * If so, we try to wrap in the facet.
 *        ____			  _____
 *       / ___|_		 /     \
 *      / |    |  		/      |
 *      \ |    |   	=>	\      |
 *       \|____|		 \     |
 *        \___| 		  \____/
 */
static int can_wrap_in_set(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int changed = 0;
	int k, l;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	struct isl_tab_undo *snap;

	for (k = 0; k < map->p[i]->n_ineq; ++k)
		if (ineq_i[k] == STATUS_CUT)
			break;

	isl_assert(map->ctx, k < map->p[i]->n_ineq, return -1);

	isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
	for (l = 0; l < map->p[j]->n_ineq; ++l) {
		if (isl_tab_is_redundant(tabs[j], map->p[j]->n_eq + l))
			continue;
		if (isl_seq_eq(map->p[i]->ineq[k],
				map->p[j]->ineq[l], 1 + total))
			break;
	}
	isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);

	if (l >= map->p[j]->n_ineq)
		return 0;

	snap = isl_tab_snap(tabs[j]);
	tabs[j] = isl_tab_select_facet(tabs[j], map->p[j]->n_eq + l);
	if (isl_tab_detect_redundant(tabs[j]) < 0)
		return -1;

	changed = can_wrap_in_facet(map, i, j, k, tabs, NULL, ineq_i, NULL, ineq_j);

	if (!changed && isl_tab_rollback(tabs[j], snap) < 0)
		return -1;

	return changed;
}

/* Check if either i or j has a single cut constraint that can
 * be used to wrap in (a facet of) the other basic set.
 * if so, replace the pair by their union.
 */
static int check_wrap(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int changed = 0;

	if (count(ineq_i, map->p[i]->n_ineq, STATUS_CUT) == 1)
		changed = can_wrap_in_set(map, i, j, tabs, ineq_i, ineq_j);
	if (changed)
		return changed;

	if (count(ineq_j, map->p[j]->n_ineq, STATUS_CUT) == 1)
		changed = can_wrap_in_set(map, j, i, tabs, ineq_j, ineq_i);
	return changed;
}

/* At least one of the basic maps has an equality that is adjacent
 * to inequality.  Make sure that only one of the basic maps has
 * such an equality and that the other basic map has exactly one
 * inequality adjacent to an equality.
 * We call the basic map that has the inequality "i" and the basic
 * map that has the equality "j".
 * If "i" has any "cut" inequality, then relaxing the inequality
 * by one would not result in a basic map that contains the other
 * basic map.
 */
static int check_adj_eq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	int k;

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
	    any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return 0;

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
		return check_adj_eq(map, j, i, tabs,
					eq_j, ineq_j, eq_i, ineq_i);

	/* j has an equality adjacent to an inequality in i */

	if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
		/* ADJ EQ CUT */
		return 0;
	if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
	    count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
	    any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return 0;

	for (k = 0; k < map->p[i]->n_ineq ; ++k)
		if (ineq_i[k] == STATUS_ADJ_EQ)
			break;

	changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
	if (changed)
		return changed;

	changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);

	return changed;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return 1.
 * Otherwise, return 0;
 *
 * We first check the effect of each constraint of one basic map
 * on the other basic map.
 * The constraint may be
 *	redundant	the constraint is redundant in its own
 *			basic map and should be ignore and removed
 *			in the end
 *	valid		all (integer) points of the other basic map
 *			satisfy the constraint
 *	separate	no (integer) point of the other basic map
 *			satisfies the constraint
 *	cut		some but not all points of the other basic map
 *			satisfy the constraint
 *	adj_eq		the given constraint is adjacent (on the outside)
 *			to an equality of the other basic map
 *	adj_ineq	the given constraint is adjacent (on the outside)
 *			to an inequality of the other basic map
 *
 * We consider six cases in which we can replace the pair by a single
 * basic map.  We ignore all "redundant" constraints.
 *
 *	1. all constraints of one basic map are valid
 *		=> the other basic map is a subset and can be removed
 *
 *	2. all constraints of both basic maps are either "valid" or "cut"
 *	   and the facets corresponding to the "cut" constraints
 *	   of one of the basic maps lies entirely inside the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	3. there is a single pair of adjacent inequalities
 *	   (all other constraints are "valid")
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	4. there is a single adjacent pair of an inequality and an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, if the inequality the basic map is relaxed
 *	   and then turned into an equality, then resulting facet lies
 *	   entirely inside the other basic map
 *		=> the pair can be replaced by the basic map containing
 *		   the inequality, with the inequality relaxed.
 *
 *	5. there is a single adjacent pair of an inequality and an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, the facets corresponding to both
 *	   the inequality and the equality can be wrapped around their
 *	   ridges to include the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps together
 *		   with all wrapping constraints
 *
 *	6. one of the basic maps has a single cut constraint and
 *	   the other basic map has a constraint adjacent to this constraint.
 *	   Moreover, the facets corresponding to both constraints
 *	   can be wrapped around their ridges to include the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps together
 *		   with all wrapping constraints
 *
 * Throughout the computation, we maintain a collection of tableaus
 * corresponding to the basic maps.  When the basic maps are dropped
 * or combined, the tableaus are modified accordingly.
 */
static int coalesce_pair(struct isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int changed = 0;
	int *eq_i = NULL;
	int *eq_j = NULL;
	int *ineq_i = NULL;
	int *ineq_j = NULL;

	eq_i = eq_status_in(map, i, j, tabs);
	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
		goto done;

	eq_j = eq_status_in(map, j, i, tabs);
	if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
		goto done;

	ineq_i = ineq_status_in(map, i, j, tabs);
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
		goto done;

	ineq_j = ineq_status_in(map, j, i, tabs);
	if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
		goto done;

	if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
	    all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
		drop(map, j, tabs);
		changed = 1;
	} else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
		   all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
		drop(map, i, tabs);
		changed = 1;
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) {
		/* BAD CUT */
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
		/* ADJ EQ PAIR */
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
		changed = check_adj_eq(map, i, j, tabs,
					eq_i, ineq_i, eq_j, ineq_j);
	} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
		   any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
		/* Can't happen */
		/* BAD ADJ INEQ */
	} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
		   any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
		changed = check_adj_ineq(map, i, j, tabs, ineq_i, ineq_j);
	} else {
		changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
		if (!changed)
			changed = check_wrap(map, i, j, tabs, ineq_i, ineq_j);
	}

done:
	free(eq_i);
	free(eq_j);
	free(ineq_i);
	free(ineq_j);
	return changed;
error:
	free(eq_i);
	free(eq_j);
	free(ineq_i);
	free(ineq_j);
	return -1;
}

static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
{
	int i, j;

	for (i = 0; i < map->n - 1; ++i)
		for (j = i + 1; j < map->n; ++j) {
			int changed;
			changed = coalesce_pair(map, i, j, tabs);
			if (changed < 0)
				goto error;
			if (changed)
				return coalesce(map, tabs);
		}
	return map;
error:
	isl_map_free(map);
	return NULL;
}

/* For each pair of basic maps in the map, check if the union of the two
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and start over.
 */
struct isl_map *isl_map_coalesce(struct isl_map *map)
{
	int i;
	unsigned n;
	struct isl_tab **tabs = NULL;

	if (!map)
		return NULL;

	if (map->n <= 1)
		return map;

	map = isl_map_align_divs(map);

	tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
	if (!tabs)
		goto error;

	n = map->n;
	for (i = 0; i < map->n; ++i) {
		tabs[i] = isl_tab_from_basic_map(map->p[i]);
		if (!tabs[i])
			goto error;
		if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
			tabs[i] = isl_tab_detect_implicit_equalities(tabs[i]);
		if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
			if (isl_tab_detect_redundant(tabs[i]) < 0)
				goto error;
	}
	for (i = map->n - 1; i >= 0; --i)
		if (tabs[i]->empty)
			drop(map, i, tabs);

	map = coalesce(map, tabs);

	if (map)
		for (i = 0; i < map->n; ++i) {
			map->p[i] = isl_basic_map_update_from_tab(map->p[i],
								    tabs[i]);
			map->p[i] = isl_basic_map_finalize(map->p[i]);
			if (!map->p[i])
				goto error;
			ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
			ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
		}

	for (i = 0; i < n; ++i)
		isl_tab_free(tabs[i]);

	free(tabs);

	return map;
error:
	if (tabs)
		for (i = 0; i < n; ++i)
			isl_tab_free(tabs[i]);
	free(tabs);
	return NULL;
}

/* For each pair of basic sets in the set, check if the union of the two
 * can be represented by a single basic set.
 * If so, replace the pair by the single basic set and start over.
 */
struct isl_set *isl_set_coalesce(struct isl_set *set)
{
	return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
}