summaryrefslogtreecommitdiff
path: root/isl_coalesce.c
blob: 501d6a7b48282d7ddc1a24ee86976a693188eaaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 * Copyright 2012-2013 Ecole Normale Superieure
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France 
 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 */

#include "isl_map_private.h"
#include <isl/seq.h>
#include <isl/options.h>
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_local_space_private.h>

#define STATUS_ERROR		-1
#define STATUS_REDUNDANT	 1
#define STATUS_VALID	 	 2
#define STATUS_SEPARATE	 	 3
#define STATUS_CUT	 	 4
#define STATUS_ADJ_EQ	 	 5
#define STATUS_ADJ_INEQ	 	 6

static int status_in(isl_int *ineq, struct isl_tab *tab)
{
	enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
	switch (type) {
	default:
	case isl_ineq_error:		return STATUS_ERROR;
	case isl_ineq_redundant:	return STATUS_VALID;
	case isl_ineq_separate:		return STATUS_SEPARATE;
	case isl_ineq_cut:		return STATUS_CUT;
	case isl_ineq_adj_eq:		return STATUS_ADJ_EQ;
	case isl_ineq_adj_ineq:		return STATUS_ADJ_INEQ;
	}
}

/* Compute the position of the equalities of basic map "bmap_i"
 * with respect to the basic map represented by "tab_j".
 * The resulting array has twice as many entries as the number
 * of equalities corresponding to the two inequalties to which
 * each equality corresponds.
 */
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
	struct isl_tab *tab_j)
{
	int k, l;
	int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
	unsigned dim;

	dim = isl_basic_map_total_dim(bmap_i);
	for (k = 0; k < bmap_i->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
			eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
			if (eq[2 * k + l] == STATUS_ERROR)
				goto error;
		}
		if (eq[2 * k] == STATUS_SEPARATE ||
		    eq[2 * k + 1] == STATUS_SEPARATE)
			break;
	}

	return eq;
error:
	free(eq);
	return NULL;
}

/* Compute the position of the inequalities of basic map "bmap_i"
 * (also represented by "tab_i", if not NULL) with respect to the basic map
 * represented by "tab_j".
 */
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
	struct isl_tab *tab_i, struct isl_tab *tab_j)
{
	int k;
	unsigned n_eq = bmap_i->n_eq;
	int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);

	for (k = 0; k < bmap_i->n_ineq; ++k) {
		if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
			ineq[k] = STATUS_REDUNDANT;
			continue;
		}
		ineq[k] = status_in(bmap_i->ineq[k], tab_j);
		if (ineq[k] == STATUS_ERROR)
			goto error;
		if (ineq[k] == STATUS_SEPARATE)
			break;
	}

	return ineq;
error:
	free(ineq);
	return NULL;
}

static int any(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			return 1;
	return 0;
}

static int count(int *con, unsigned len, int status)
{
	int i;
	int c = 0;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			c++;
	return c;
}

static int all(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i) {
		if (con[i] == STATUS_REDUNDANT)
			continue;
		if (con[i] != status)
			return 0;
	}
	return 1;
}

static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
{
	isl_basic_map_free(map->p[i]);
	isl_tab_free(tabs[i]);

	if (i != map->n - 1) {
		map->p[i] = map->p[map->n - 1];
		tabs[i] = tabs[map->n - 1];
	}
	tabs[map->n - 1] = NULL;
	map->n--;
}

/* Replace the pair of basic maps i and j by the basic map bounded
 * by the valid constraints in both basic maps and the constraint
 * in extra (if not NULL).
 */
static int fuse(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
	__isl_keep isl_mat *extra)
{
	int k, l;
	struct isl_basic_map *fused = NULL;
	struct isl_tab *fused_tab = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	unsigned extra_rows = extra ? extra->n_row : 0;

	fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim),
			map->p[i]->n_div,
			map->p[i]->n_eq + map->p[j]->n_eq,
			map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
	if (!fused)
		goto error;

	for (k = 0; k < map->p[i]->n_eq; ++k) {
		if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
			     eq_i[2 * k + 1] != STATUS_VALID))
			continue;
		l = isl_basic_map_alloc_equality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
	}

	for (k = 0; k < map->p[j]->n_eq; ++k) {
		if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
			     eq_j[2 * k + 1] != STATUS_VALID))
			continue;
		l = isl_basic_map_alloc_equality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
	}

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (ineq_i[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
	}

	for (k = 0; k < map->p[j]->n_ineq; ++k) {
		if (ineq_j[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
	}

	for (k = 0; k < map->p[i]->n_div; ++k) {
		int l = isl_basic_map_alloc_div(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
	}

	for (k = 0; k < extra_rows; ++k) {
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
	}

	fused = isl_basic_map_gauss(fused, NULL);
	ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
	if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
	    ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
		ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);

	fused_tab = isl_tab_from_basic_map(fused, 0);
	if (isl_tab_detect_redundant(fused_tab) < 0)
		goto error;

	isl_basic_map_free(map->p[i]);
	map->p[i] = fused;
	isl_tab_free(tabs[i]);
	tabs[i] = fused_tab;
	drop(map, j, tabs);

	return 1;
error:
	isl_tab_free(fused_tab);
	isl_basic_map_free(fused);
	return -1;
}

/* Given a pair of basic maps i and j such that all constraints are either
 * "valid" or "cut", check if the facets corresponding to the "cut"
 * constraints of i lie entirely within basic map j.
 * If so, replace the pair by the basic map consisting of the valid
 * constraints in both basic maps.
 *
 * To see that we are not introducing any extra points, call the
 * two basic maps A and B and the resulting map U and let x
 * be an element of U \setminus ( A \cup B ).
 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
 * violates them.  Let X be the intersection of U with the opposites
 * of these constraints.  Then x \in X.
 * The facet corresponding to c_1 contains the corresponding facet of A.
 * This facet is entirely contained in B, so c_2 is valid on the facet.
 * However, since it is also (part of) a facet of X, -c_2 is also valid
 * on the facet.  This means c_2 is saturated on the facet, so c_1 and
 * c_2 must be opposites of each other, but then x could not violate
 * both of them.
 */
static int check_facets(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int k, l;
	struct isl_tab_undo *snap;
	unsigned n_eq = map->p[i]->n_eq;

	snap = isl_tab_snap(tabs[i]);

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (ineq_i[k] != STATUS_CUT)
			continue;
		if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
			return -1;
		for (l = 0; l < map->p[j]->n_ineq; ++l) {
			int stat;
			if (ineq_j[l] != STATUS_CUT)
				continue;
			stat = status_in(map->p[j]->ineq[l], tabs[i]);
			if (stat != STATUS_VALID)
				break;
		}
		if (isl_tab_rollback(tabs[i], snap) < 0)
			return -1;
		if (l < map->p[j]->n_ineq)
			break;
	}

	if (k < map->p[i]->n_ineq)
		/* BAD CUT PAIR */
		return 0;
	return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
}

/* Check if basic map "i" contains the basic map represented
 * by the tableau "tab".
 */
static int contains(struct isl_map *map, int i, int *ineq_i,
	struct isl_tab *tab)
{
	int k, l;
	unsigned dim;

	dim = isl_basic_map_total_dim(map->p[i]);
	for (k = 0; k < map->p[i]->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			int stat;
			isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
			stat = status_in(map->p[i]->eq[k], tab);
			if (stat != STATUS_VALID)
				return 0;
		}
	}

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		int stat;
		if (ineq_i[k] == STATUS_REDUNDANT)
			continue;
		stat = status_in(map->p[i]->ineq[k], tab);
		if (stat != STATUS_VALID)
			return 0;
	}
	return 1;
}

/* Basic map "i" has an inequality (say "k") that is adjacent
 * to some inequality of basic map "j".  All the other inequalities
 * are valid for "j".
 * Check if basic map "j" forms an extension of basic map "i".
 *
 * Note that this function is only called if some of the equalities or
 * inequalities of basic map "j" do cut basic map "i".  The function is
 * correct even if there are no such cut constraints, but in that case
 * the additional checks performed by this function are overkill.
 *
 * In particular, we replace constraint k, say f >= 0, by constraint
 * f <= -1, add the inequalities of "j" that are valid for "i"
 * and check if the result is a subset of basic map "j".
 * If so, then we know that this result is exactly equal to basic map "j"
 * since all its constraints are valid for basic map "j".
 * By combining the valid constraints of "i" (all equalities and all
 * inequalities except "k") and the valid constraints of "j" we therefore
 * obtain a basic map that is equal to their union.
 * In this case, there is no need to perform a rollback of the tableau
 * since it is going to be destroyed in fuse().
 *
 *
 *	|\__			|\__
 *	|   \__			|   \__
 *	|      \_	=>	|      \__
 *	|_______| _		|_________\
 *
 *
 *	|\			|\
 *	| \			| \
 *	|  \			|  \
 *	|  |			|   \
 *	|  ||\		=>      |    \
 *	|  || \			|     \
 *	|  ||  |		|      |
 *	|__||_/			|_____/
 */
static int is_adj_ineq_extension(__isl_keep isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int k;
	struct isl_tab_undo *snap;
	unsigned n_eq = map->p[i]->n_eq;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	int r;

	if (isl_tab_extend_cons(tabs[i], 1 + map->p[j]->n_ineq) < 0)
		return -1;

	for (k = 0; k < map->p[i]->n_ineq; ++k)
		if (ineq_i[k] == STATUS_ADJ_INEQ)
			break;
	if (k >= map->p[i]->n_ineq)
		isl_die(isl_map_get_ctx(map), isl_error_internal,
			"ineq_i should have exactly one STATUS_ADJ_INEQ",
			return -1);

	snap = isl_tab_snap(tabs[i]);

	if (isl_tab_unrestrict(tabs[i], n_eq + k) < 0)
		return -1;

	isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
	isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
	r = isl_tab_add_ineq(tabs[i], map->p[i]->ineq[k]);
	isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
	isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
	if (r < 0)
		return -1;

	for (k = 0; k < map->p[j]->n_ineq; ++k) {
		if (ineq_j[k] != STATUS_VALID)
			continue;
		if (isl_tab_add_ineq(tabs[i], map->p[j]->ineq[k]) < 0)
			return -1;
	}

	if (contains(map, j, ineq_j, tabs[i]))
		return fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, NULL);

	if (isl_tab_rollback(tabs[i], snap) < 0)
		return -1;

	return 0;
}


/* Both basic maps have at least one inequality with and adjacent
 * (but opposite) inequality in the other basic map.
 * Check that there are no cut constraints and that there is only
 * a single pair of adjacent inequalities.
 * If so, we can replace the pair by a single basic map described
 * by all but the pair of adjacent inequalities.
 * Any additional points introduced lie strictly between the two
 * adjacent hyperplanes and can therefore be integral.
 *
 *        ____			  _____
 *       /    ||\		 /     \
 *      /     || \		/       \
 *      \     ||  \	=>	\        \
 *       \    ||  /		 \       /
 *        \___||_/		  \_____/
 *
 * The test for a single pair of adjancent inequalities is important
 * for avoiding the combination of two basic maps like the following
 *
 *       /|
 *      / |
 *     /__|
 *         _____
 *         |   |
 *         |   |
 *         |___|
 *
 * If there are some cut constraints on one side, then we may
 * still be able to fuse the two basic maps, but we need to perform
 * some additional checks in is_adj_ineq_extension.
 */
static int check_adj_ineq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int count_i, count_j;
	int cut_i, cut_j;

	count_i = count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ);
	count_j = count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ);

	if (count_i != 1 && count_j != 1)
		return 0;

	cut_i = any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
		any(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
	cut_j = any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT) ||
		any(ineq_j, map->p[j]->n_ineq, STATUS_CUT);

	if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
		return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);

	if (count_i == 1 && !cut_i)
		return is_adj_ineq_extension(map, i, j, tabs,
						eq_i, ineq_i, eq_j, ineq_j);

	if (count_j == 1 && !cut_j)
		return is_adj_ineq_extension(map, j, i, tabs,
						eq_j, ineq_j, eq_i, ineq_i);

	return 0;
}

/* Basic map "i" has an inequality "k" that is adjacent to some equality
 * of basic map "j".  All the other inequalities are valid for "j".
 * Check if basic map "j" forms an extension of basic map "i".
 *
 * In particular, we relax constraint "k", compute the corresponding
 * facet and check whether it is included in the other basic map.
 * If so, we know that relaxing the constraint extends the basic
 * map with exactly the other basic map (we already know that this
 * other basic map is included in the extension, because there
 * were no "cut" inequalities in "i") and we can replace the
 * two basic maps by this extension.
 *        ____			  _____
 *       /    || 		 /     |
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 */
static int is_adj_eq_extension(struct isl_map *map, int i, int j, int k,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	int super;
	struct isl_tab_undo *snap, *snap2;
	unsigned n_eq = map->p[i]->n_eq;

	if (isl_tab_is_equality(tabs[i], n_eq + k))
		return 0;

	snap = isl_tab_snap(tabs[i]);
	tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
	snap2 = isl_tab_snap(tabs[i]);
	if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
		return -1;
	super = contains(map, j, ineq_j, tabs[i]);
	if (super) {
		if (isl_tab_rollback(tabs[i], snap2) < 0)
			return -1;
		map->p[i] = isl_basic_map_cow(map->p[i]);
		if (!map->p[i])
			return -1;
		isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
		ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
		drop(map, j, tabs);
		changed = 1;
	} else
		if (isl_tab_rollback(tabs[i], snap) < 0)
			return -1;

	return changed;
}

/* Data structure that keeps track of the wrapping constraints
 * and of information to bound the coefficients of those constraints.
 *
 * bound is set if we want to apply a bound on the coefficients
 * mat contains the wrapping constraints
 * max is the bound on the coefficients (if bound is set)
 */
struct isl_wraps {
	int bound;
	isl_mat *mat;
	isl_int max;
};

/* Update wraps->max to be greater than or equal to the coefficients
 * in the equalities and inequalities of bmap that can be removed if we end up
 * applying wrapping.
 */
static void wraps_update_max(struct isl_wraps *wraps,
	__isl_keep isl_basic_map *bmap, int *eq, int *ineq)
{
	int k;
	isl_int max_k;
	unsigned total = isl_basic_map_total_dim(bmap);

	isl_int_init(max_k);

	for (k = 0; k < bmap->n_eq; ++k) {
		if (eq[2 * k] == STATUS_VALID &&
		    eq[2 * k + 1] == STATUS_VALID)
			continue;
		isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k);
		if (isl_int_abs_gt(max_k, wraps->max))
			isl_int_set(wraps->max, max_k);
	}

	for (k = 0; k < bmap->n_ineq; ++k) {
		if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT)
			continue;
		isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k);
		if (isl_int_abs_gt(max_k, wraps->max))
			isl_int_set(wraps->max, max_k);
	}

	isl_int_clear(max_k);
}

/* Initialize the isl_wraps data structure.
 * If we want to bound the coefficients of the wrapping constraints,
 * we set wraps->max to the largest coefficient
 * in the equalities and inequalities that can be removed if we end up
 * applying wrapping.
 */
static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
	__isl_keep isl_map *map, int i, int j,
	int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	isl_ctx *ctx;

	wraps->bound = 0;
	wraps->mat = mat;
	if (!mat)
		return;
	ctx = isl_mat_get_ctx(mat);
	wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
	if (!wraps->bound)
		return;
	isl_int_init(wraps->max);
	isl_int_set_si(wraps->max, 0);
	wraps_update_max(wraps, map->p[i], eq_i, ineq_i);
	wraps_update_max(wraps, map->p[j], eq_j, ineq_j);
}

/* Free the contents of the isl_wraps data structure.
 */
static void wraps_free(struct isl_wraps *wraps)
{
	isl_mat_free(wraps->mat);
	if (wraps->bound)
		isl_int_clear(wraps->max);
}

/* Is the wrapping constraint in row "row" allowed?
 *
 * If wraps->bound is set, we check that none of the coefficients
 * is greater than wraps->max.
 */
static int allow_wrap(struct isl_wraps *wraps, int row)
{
	int i;

	if (!wraps->bound)
		return 1;

	for (i = 1; i < wraps->mat->n_col; ++i)
		if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
			return 0;

	return 1;
}

/* For each non-redundant constraint in "bmap" (as determined by "tab"),
 * wrap the constraint around "bound" such that it includes the whole
 * set "set" and append the resulting constraint to "wraps".
 * "wraps" is assumed to have been pre-allocated to the appropriate size.
 * wraps->n_row is the number of actual wrapped constraints that have
 * been added.
 * If any of the wrapping problems results in a constraint that is
 * identical to "bound", then this means that "set" is unbounded in such
 * way that no wrapping is possible.  If this happens then wraps->n_row
 * is reset to zero.
 * Similarly, if we want to bound the coefficients of the wrapping
 * constraints and a newly added wrapping constraint does not
 * satisfy the bound, then wraps->n_row is also reset to zero.
 */
static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap,
	struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
{
	int l;
	int w;
	unsigned total = isl_basic_map_total_dim(bmap);

	w = wraps->mat->n_row;

	for (l = 0; l < bmap->n_ineq; ++l) {
		if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
			continue;
		if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
			continue;
		if (isl_tab_is_redundant(tab, bmap->n_eq + l))
			continue;

		isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
		if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l]))
			return -1;
		if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
			goto unbounded;
		if (!allow_wrap(wraps, w))
			goto unbounded;
		++w;
	}
	for (l = 0; l < bmap->n_eq; ++l) {
		if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
			continue;
		if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
			continue;

		isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
		isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total);
		if (!isl_set_wrap_facet(set, wraps->mat->row[w],
					wraps->mat->row[w + 1]))
			return -1;
		if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
			goto unbounded;
		if (!allow_wrap(wraps, w))
			goto unbounded;
		++w;

		isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
		if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l]))
			return -1;
		if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
			goto unbounded;
		if (!allow_wrap(wraps, w))
			goto unbounded;
		++w;
	}

	wraps->mat->n_row = w;
	return 0;
unbounded:
	wraps->mat->n_row = 0;
	return 0;
}

/* Check if the constraints in "wraps" from "first" until the last
 * are all valid for the basic set represented by "tab".
 * If not, wraps->n_row is set to zero.
 */
static int check_wraps(__isl_keep isl_mat *wraps, int first,
	struct isl_tab *tab)
{
	int i;

	for (i = first; i < wraps->n_row; ++i) {
		enum isl_ineq_type type;
		type = isl_tab_ineq_type(tab, wraps->row[i]);
		if (type == isl_ineq_error)
			return -1;
		if (type == isl_ineq_redundant)
			continue;
		wraps->n_row = 0;
		return 0;
	}

	return 0;
}

/* Return a set that corresponds to the non-redudant constraints
 * (as recorded in tab) of bmap.
 *
 * It's important to remove the redundant constraints as some
 * of the other constraints may have been modified after the
 * constraints were marked redundant.
 * In particular, a constraint may have been relaxed.
 * Redundant constraints are ignored when a constraint is relaxed
 * and should therefore continue to be ignored ever after.
 * Otherwise, the relaxation might be thwarted by some of
 * these constraints.
 */
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
	struct isl_tab *tab)
{
	bmap = isl_basic_map_copy(bmap);
	bmap = isl_basic_map_cow(bmap);
	bmap = isl_basic_map_update_from_tab(bmap, tab);
	return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
}

/* Given a basic set i with a constraint k that is adjacent to either the
 * whole of basic set j or a facet of basic set j, check if we can wrap
 * both the facet corresponding to k and the facet of j (or the whole of j)
 * around their ridges to include the other set.
 * If so, replace the pair of basic sets by their union.
 *
 * All constraints of i (except k) are assumed to be valid for j.
 *
 * However, the constraints of j may not be valid for i and so
 * we have to check that the wrapping constraints for j are valid for i.
 *
 * In the case where j has a facet adjacent to i, tab[j] is assumed
 * to have been restricted to this facet, so that the non-redundant
 * constraints in tab[j] are the ridges of the facet.
 * Note that for the purpose of wrapping, it does not matter whether
 * we wrap the ridges of i around the whole of j or just around
 * the facet since all the other constraints are assumed to be valid for j.
 * In practice, we wrap to include the whole of j.
 *        ____			  _____
 *       /    | 		 /     \
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 *
 */
static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	struct isl_wraps wraps;
	isl_mat *mat;
	struct isl_set *set_i = NULL;
	struct isl_set *set_j = NULL;
	struct isl_vec *bound = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	struct isl_tab_undo *snap;
	int n;

	set_i = set_from_updated_bmap(map->p[i], tabs[i]);
	set_j = set_from_updated_bmap(map->p[j], tabs[j]);
	mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
					map->p[i]->n_ineq + map->p[j]->n_ineq,
					1 + total);
	wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
	bound = isl_vec_alloc(map->ctx, 1 + total);
	if (!set_i || !set_j || !wraps.mat || !bound)
		goto error;

	isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
	isl_int_add_ui(bound->el[0], bound->el[0], 1);

	isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
	wraps.mat->n_row = 1;

	if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
		goto error;
	if (!wraps.mat->n_row)
		goto unbounded;

	snap = isl_tab_snap(tabs[i]);

	if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
		goto error;
	if (isl_tab_detect_redundant(tabs[i]) < 0)
		goto error;

	isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);

	n = wraps.mat->n_row;
	if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
		goto error;

	if (isl_tab_rollback(tabs[i], snap) < 0)
		goto error;
	if (check_wraps(wraps.mat, n, tabs[i]) < 0)
		goto error;
	if (!wraps.mat->n_row)
		goto unbounded;

	changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);

unbounded:
	wraps_free(&wraps);

	isl_set_free(set_i);
	isl_set_free(set_j);

	isl_vec_free(bound);

	return changed;
error:
	wraps_free(&wraps);
	isl_vec_free(bound);
	isl_set_free(set_i);
	isl_set_free(set_j);
	return -1;
}

/* Set the is_redundant property of the "n" constraints in "cuts",
 * except "k" to "v".
 * This is a fairly tricky operation as it bypasses isl_tab.c.
 * The reason we want to temporarily mark some constraints redundant
 * is that we want to ignore them in add_wraps.
 *
 * Initially all cut constraints are non-redundant, but the
 * selection of a facet right before the call to this function
 * may have made some of them redundant.
 * Likewise, the same constraints are marked non-redundant
 * in the second call to this function, before they are officially
 * made non-redundant again in the subsequent rollback.
 */
static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
	int *cuts, int n, int k, int v)
{
	int l;

	for (l = 0; l < n; ++l) {
		if (l == k)
			continue;
		tab->con[n_eq + cuts[l]].is_redundant = v;
	}
}

/* Given a pair of basic maps i and j such that j sticks out
 * of i at n cut constraints, each time by at most one,
 * try to compute wrapping constraints and replace the two
 * basic maps by a single basic map.
 * The other constraints of i are assumed to be valid for j.
 *
 * The facets of i corresponding to the cut constraints are
 * wrapped around their ridges, except those ridges determined
 * by any of the other cut constraints.
 * The intersections of cut constraints need to be ignored
 * as the result of wrapping one cut constraint around another
 * would result in a constraint cutting the union.
 * In each case, the facets are wrapped to include the union
 * of the two basic maps.
 *
 * The pieces of j that lie at an offset of exactly one from
 * one of the cut constraints of i are wrapped around their edges.
 * Here, there is no need to ignore intersections because we
 * are wrapping around the union of the two basic maps.
 *
 * If any wrapping fails, i.e., if we cannot wrap to touch
 * the union, then we give up.
 * Otherwise, the pair of basic maps is replaced by their union.
 */
static int wrap_in_facets(struct isl_map *map, int i, int j,
	int *cuts, int n, struct isl_tab **tabs,
	int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	struct isl_wraps wraps;
	isl_mat *mat;
	isl_set *set = NULL;
	isl_vec *bound = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);
	int max_wrap;
	int k;
	struct isl_tab_undo *snap_i, *snap_j;

	if (isl_tab_extend_cons(tabs[j], 1) < 0)
		goto error;

	max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
		    map->p[i]->n_ineq + map->p[j]->n_ineq;
	max_wrap *= n;

	set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
			    set_from_updated_bmap(map->p[j], tabs[j]));
	mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
	wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
	bound = isl_vec_alloc(map->ctx, 1 + total);
	if (!set || !wraps.mat || !bound)
		goto error;

	snap_i = isl_tab_snap(tabs[i]);
	snap_j = isl_tab_snap(tabs[j]);

	wraps.mat->n_row = 0;

	for (k = 0; k < n; ++k) {
		if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
			goto error;
		if (isl_tab_detect_redundant(tabs[i]) < 0)
			goto error;
		set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);

		isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
		if (!tabs[i]->empty &&
		    add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0)
			goto error;

		set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
		if (isl_tab_rollback(tabs[i], snap_i) < 0)
			goto error;

		if (tabs[i]->empty)
			break;
		if (!wraps.mat->n_row)
			break;

		isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
		isl_int_add_ui(bound->el[0], bound->el[0], 1);
		if (isl_tab_add_eq(tabs[j], bound->el) < 0)
			goto error;
		if (isl_tab_detect_redundant(tabs[j]) < 0)
			goto error;

		if (!tabs[j]->empty &&
		    add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0)
			goto error;

		if (isl_tab_rollback(tabs[j], snap_j) < 0)
			goto error;

		if (!wraps.mat->n_row)
			break;
	}

	if (k == n)
		changed = fuse(map, i, j, tabs,
				eq_i, ineq_i, eq_j, ineq_j, wraps.mat);

	isl_vec_free(bound);
	wraps_free(&wraps);
	isl_set_free(set);

	return changed;
error:
	isl_vec_free(bound);
	wraps_free(&wraps);
	isl_set_free(set);
	return -1;
}

/* Given two basic sets i and j such that i has no cut equalities,
 * check if relaxing all the cut inequalities of i by one turns
 * them into valid constraint for j and check if we can wrap in
 * the bits that are sticking out.
 * If so, replace the pair by their union.
 *
 * We first check if all relaxed cut inequalities of i are valid for j
 * and then try to wrap in the intersections of the relaxed cut inequalities
 * with j.
 *
 * During this wrapping, we consider the points of j that lie at a distance
 * of exactly 1 from i.  In particular, we ignore the points that lie in
 * between this lower-dimensional space and the basic map i.
 * We can therefore only apply this to integer maps.
 *        ____			  _____
 *       / ___|_		 /     \
 *      / |    |  		/      |
 *      \ |    |   	=>	\      |
 *       \|____|		 \     |
 *        \___| 		  \____/
 *
 *	 _____			 ______
 *	| ____|_		|      \
 *	| |     |		|       |
 *	| |	|	=>	|       |
 *	|_|     |		|       |
 *	  |_____|		 \______|
 *
 *	 _______
 *	|       |
 *	|  |\   |
 *	|  | \  |
 *	|  |  \ |
 *	|  |   \|
 *	|  |    \
 *	|  |_____\
 *	|       |
 *	|_______|
 *
 * Wrapping can fail if the result of wrapping one of the facets
 * around its edges does not produce any new facet constraint.
 * In particular, this happens when we try to wrap in unbounded sets.
 *
 *	 _______________________________________________________________________
 *	|
 *	|  ___
 *	| |   |
 *	|_|   |_________________________________________________________________
 *	  |___|
 *
 * The following is not an acceptable result of coalescing the above two
 * sets as it includes extra integer points.
 *	 _______________________________________________________________________
 *	|
 *	|     
 *	|      
 *	|
 *	 \______________________________________________________________________
 */
static int can_wrap_in_set(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	int k, m;
	int n;
	int *cuts = NULL;

	if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
	    ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
		return 0;

	n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
	if (n == 0)
		return 0;

	cuts = isl_alloc_array(map->ctx, int, n);
	if (!cuts)
		return -1;

	for (k = 0, m = 0; m < n; ++k) {
		enum isl_ineq_type type;

		if (ineq_i[k] != STATUS_CUT)
			continue;

		isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
		type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
		isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
		if (type == isl_ineq_error)
			goto error;
		if (type != isl_ineq_redundant)
			break;
		cuts[m] = k;
		++m;
	}

	if (m == n)
		changed = wrap_in_facets(map, i, j, cuts, n, tabs,
					 eq_i, ineq_i, eq_j, ineq_j);

	free(cuts);

	return changed;
error:
	free(cuts);
	return -1;
}

/* Check if either i or j has a single cut constraint that can
 * be used to wrap in (a facet of) the other basic set.
 * if so, replace the pair by their union.
 */
static int check_wrap(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;

	if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
		changed = can_wrap_in_set(map, i, j, tabs,
					    eq_i, ineq_i, eq_j, ineq_j);
	if (changed)
		return changed;

	if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
		changed = can_wrap_in_set(map, j, i, tabs,
					    eq_j, ineq_j, eq_i, ineq_i);
	return changed;
}

/* At least one of the basic maps has an equality that is adjacent
 * to inequality.  Make sure that only one of the basic maps has
 * such an equality and that the other basic map has exactly one
 * inequality adjacent to an equality.
 * We call the basic map that has the inequality "i" and the basic
 * map that has the equality "j".
 * If "i" has any "cut" (in)equality, then relaxing the inequality
 * by one would not result in a basic map that contains the other
 * basic map.
 */
static int check_adj_eq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	int k;

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
	    any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return 0;

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
		return check_adj_eq(map, j, i, tabs,
					eq_j, ineq_j, eq_i, ineq_i);

	/* j has an equality adjacent to an inequality in i */

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
		return 0;
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
		/* ADJ EQ CUT */
		return 0;
	if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
	    any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return 0;

	for (k = 0; k < map->p[i]->n_ineq; ++k)
		if (ineq_i[k] == STATUS_ADJ_EQ)
			break;

	changed = is_adj_eq_extension(map, i, j, k, tabs,
					eq_i, ineq_i, eq_j, ineq_j);
	if (changed)
		return changed;

	if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1)
		return 0;

	changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);

	return changed;
}

/* The two basic maps lie on adjacent hyperplanes.  In particular,
 * basic map "i" has an equality that lies parallel to basic map "j".
 * Check if we can wrap the facets around the parallel hyperplanes
 * to include the other set.
 *
 * We perform basically the same operations as can_wrap_in_facet,
 * except that we don't need to select a facet of one of the sets.
 *				_
 *	\\			\\
 *	 \\		=>	 \\
 *	  \			  \|
 *
 * We only allow one equality of "i" to be adjacent to an equality of "j"
 * to avoid coalescing
 *
 *	[m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
 *					    x <= 10 and y <= 10;
 *		    [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
 *					    y >= 5 and y <= 15 }
 *
 * to
 *
 *	[m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
 *					4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
 *					y2 <= 1 + x + y - x2 and y2 >= y and
 *					y2 >= 1 + x + y - x2 }
 */
static int check_eq_adj_eq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int k;
	int changed = 0;
	struct isl_wraps wraps;
	isl_mat *mat;
	struct isl_set *set_i = NULL;
	struct isl_set *set_j = NULL;
	struct isl_vec *bound = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);

	if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1)
		return 0;

	for (k = 0; k < 2 * map->p[i]->n_eq ; ++k)
		if (eq_i[k] == STATUS_ADJ_EQ)
			break;

	set_i = set_from_updated_bmap(map->p[i], tabs[i]);
	set_j = set_from_updated_bmap(map->p[j], tabs[j]);
	mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
					map->p[i]->n_ineq + map->p[j]->n_ineq,
					1 + total);
	wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
	bound = isl_vec_alloc(map->ctx, 1 + total);
	if (!set_i || !set_j || !wraps.mat || !bound)
		goto error;

	if (k % 2 == 0)
		isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total);
	else
		isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total);
	isl_int_add_ui(bound->el[0], bound->el[0], 1);

	isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
	wraps.mat->n_row = 1;

	if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
		goto error;
	if (!wraps.mat->n_row)
		goto unbounded;

	isl_int_sub_ui(bound->el[0], bound->el[0], 1);
	isl_seq_neg(bound->el, bound->el, 1 + total);

	isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
	wraps.mat->n_row++;

	if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
		goto error;
	if (!wraps.mat->n_row)
		goto unbounded;

	changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);

	if (0) {
error:		changed = -1;
	}
unbounded:

	wraps_free(&wraps);
	isl_set_free(set_i);
	isl_set_free(set_j);
	isl_vec_free(bound);

	return changed;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return 1.
 * Otherwise, return 0;
 * The two basic maps are assumed to live in the same local space.
 *
 * We first check the effect of each constraint of one basic map
 * on the other basic map.
 * The constraint may be
 *	redundant	the constraint is redundant in its own
 *			basic map and should be ignore and removed
 *			in the end
 *	valid		all (integer) points of the other basic map
 *			satisfy the constraint
 *	separate	no (integer) point of the other basic map
 *			satisfies the constraint
 *	cut		some but not all points of the other basic map
 *			satisfy the constraint
 *	adj_eq		the given constraint is adjacent (on the outside)
 *			to an equality of the other basic map
 *	adj_ineq	the given constraint is adjacent (on the outside)
 *			to an inequality of the other basic map
 *
 * We consider seven cases in which we can replace the pair by a single
 * basic map.  We ignore all "redundant" constraints.
 *
 *	1. all constraints of one basic map are valid
 *		=> the other basic map is a subset and can be removed
 *
 *	2. all constraints of both basic maps are either "valid" or "cut"
 *	   and the facets corresponding to the "cut" constraints
 *	   of one of the basic maps lies entirely inside the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	3. there is a single pair of adjacent inequalities
 *	   (all other constraints are "valid")
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	4. one basic map has a single adjacent inequality, while the other
 *	   constraints are "valid".  The other basic map has some
 *	   "cut" constraints, but replacing the adjacent inequality by
 *	   its opposite and adding the valid constraints of the other
 *	   basic map results in a subset of the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	5. there is a single adjacent pair of an inequality and an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, if the inequality the basic map is relaxed
 *	   and then turned into an equality, then resulting facet lies
 *	   entirely inside the other basic map
 *		=> the pair can be replaced by the basic map containing
 *		   the inequality, with the inequality relaxed.
 *
 *	6. there is a single adjacent pair of an inequality and an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, the facets corresponding to both
 *	   the inequality and the equality can be wrapped around their
 *	   ridges to include the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps together
 *		   with all wrapping constraints
 *
 *	7. one of the basic maps extends beyond the other by at most one.
 *	   Moreover, the facets corresponding to the cut constraints and
 *	   the pieces of the other basic map at offset one from these cut
 *	   constraints can be wrapped around their ridges to include
 *	   the union of the two basic maps
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps together
 *		   with all wrapping constraints
 *
 *	8. the two basic maps live in adjacent hyperplanes.  In principle
 *	   such sets can always be combined through wrapping, but we impose
 *	   that there is only one such pair, to avoid overeager coalescing.
 *
 * Throughout the computation, we maintain a collection of tableaus
 * corresponding to the basic maps.  When the basic maps are dropped
 * or combined, the tableaus are modified accordingly.
 */
static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int changed = 0;
	int *eq_i = NULL;
	int *eq_j = NULL;
	int *ineq_i = NULL;
	int *ineq_j = NULL;

	eq_i = eq_status_in(map->p[i], tabs[j]);
	if (!eq_i)
		goto error;
	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
		goto done;

	eq_j = eq_status_in(map->p[j], tabs[i]);
	if (!eq_j)
		goto error;
	if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
		goto done;

	ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]);
	if (!ineq_i)
		goto error;
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
		goto done;

	ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]);
	if (!ineq_j)
		goto error;
	if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
		goto done;

	if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
	    all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
		drop(map, j, tabs);
		changed = 1;
	} else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
		   all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
		drop(map, i, tabs);
		changed = 1;
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) {
		changed = check_eq_adj_eq(map, i, j, tabs,
					eq_i, ineq_i, eq_j, ineq_j);
	} else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
		changed = check_eq_adj_eq(map, j, i, tabs,
					eq_j, ineq_j, eq_i, ineq_i);
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
		changed = check_adj_eq(map, i, j, tabs,
					eq_i, ineq_i, eq_j, ineq_j);
	} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
		   any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
		/* Can't happen */
		/* BAD ADJ INEQ */
	} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
		   any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
		changed = check_adj_ineq(map, i, j, tabs,
					eq_i, ineq_i, eq_j, ineq_j);
	} else {
		if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
		    !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
			changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
		if (!changed)
			changed = check_wrap(map, i, j, tabs,
						eq_i, ineq_i, eq_j, ineq_j);
	}

done:
	free(eq_i);
	free(eq_j);
	free(ineq_i);
	free(ineq_j);
	return changed;
error:
	free(eq_i);
	free(eq_j);
	free(ineq_i);
	free(ineq_j);
	return -1;
}

/* Do the two basic maps live in the same local space, i.e.,
 * do they have the same (known) divs?
 * If either basic map has any unknown divs, then we can only assume
 * that they do not live in the same local space.
 */
static int same_divs(__isl_keep isl_basic_map *bmap1,
	__isl_keep isl_basic_map *bmap2)
{
	int i;
	int known;
	int total;

	if (!bmap1 || !bmap2)
		return -1;
	if (bmap1->n_div != bmap2->n_div)
		return 0;

	if (bmap1->n_div == 0)
		return 1;

	known = isl_basic_map_divs_known(bmap1);
	if (known < 0 || !known)
		return known;
	known = isl_basic_map_divs_known(bmap2);
	if (known < 0 || !known)
		return known;

	total = isl_basic_map_total_dim(bmap1);
	for (i = 0; i < bmap1->n_div; ++i)
		if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
			return 0;

	return 1;
}

/* Given two basic maps "i" and "j", where the divs of "i" form a subset
 * of those of "j", check if basic map "j" is a subset of basic map "i"
 * and, if so, drop basic map "j".
 *
 * We first expand the divs of basic map "i" to match those of basic map "j",
 * using the divs and expansion computed by the caller.
 * Then we check if all constraints of the expanded "i" are valid for "j".
 */
static int coalesce_subset(__isl_keep isl_map *map, int i, int j,
	struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp)
{
	isl_basic_map *bmap;
	int changed = 0;
	int *eq_i = NULL;
	int *ineq_i = NULL;

	bmap = isl_basic_map_copy(map->p[i]);
	bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);

	if (!bmap)
		goto error;

	eq_i = eq_status_in(bmap, tabs[j]);
	if (!eq_i)
		goto error;
	if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
		goto done;

	ineq_i = ineq_status_in(bmap, NULL, tabs[j]);
	if (!ineq_i)
		goto error;
	if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
		goto done;

	if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
	    all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
		drop(map, j, tabs);
		changed = 1;
	}

done:
	isl_basic_map_free(bmap);
	free(eq_i);
	free(ineq_i);
	return 0;
error:
	isl_basic_map_free(bmap);
	free(eq_i);
	free(ineq_i);
	return -1;
}

/* Check if the basic map "j" is a subset of basic map "i",
 * assuming that "i" has fewer divs that "j".
 * If not, then we change the order.
 *
 * If the two basic maps have the same number of divs, then
 * they must necessarily be different.  Otherwise, we would have
 * called coalesce_local_pair.  We therefore don't try anything
 * in this case.
 *
 * We first check if the divs of "i" are all known and form a subset
 * of those of "j".  If so, we pass control over to coalesce_subset.
 */
static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int known;
	isl_mat *div_i, *div_j, *div;
	int *exp1 = NULL;
	int *exp2 = NULL;
	isl_ctx *ctx;
	int subset;

	if (map->p[i]->n_div == map->p[j]->n_div)
		return 0;
	if (map->p[j]->n_div < map->p[i]->n_div)
		return check_coalesce_subset(map, j, i, tabs);

	known = isl_basic_map_divs_known(map->p[i]);
	if (known < 0 || !known)
		return known;

	ctx = isl_map_get_ctx(map);

	div_i = isl_basic_map_get_divs(map->p[i]);
	div_j = isl_basic_map_get_divs(map->p[j]);

	if (!div_i || !div_j)
		goto error;

	exp1 = isl_alloc_array(ctx, int, div_i->n_row);
	exp2 = isl_alloc_array(ctx, int, div_j->n_row);
	if (!exp1 || !exp2)
		goto error;

	div = isl_merge_divs(div_i, div_j, exp1, exp2);
	if (!div)
		goto error;

	if (div->n_row == div_j->n_row)
		subset = coalesce_subset(map, i, j, tabs, div, exp1);
	else
		subset = 0;

	isl_mat_free(div);

	isl_mat_free(div_i);
	isl_mat_free(div_j);

	free(exp2);
	free(exp1);

	return subset;
error:
	isl_mat_free(div_i);
	isl_mat_free(div_j);
	free(exp1);
	free(exp2);
	return -1;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return 1.
 * Otherwise, return 0;
 *
 * We first check if the two basic maps live in the same local space.
 * If so, we do the complete check.  Otherwise, we check if one is
 * an obvious subset of the other.
 */
static int coalesce_pair(__isl_keep isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int same;

	same = same_divs(map->p[i], map->p[j]);
	if (same < 0)
		return -1;
	if (same)
		return coalesce_local_pair(map, i, j, tabs);

	return check_coalesce_subset(map, i, j, tabs);
}

static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
{
	int i, j;

	for (i = map->n - 2; i >= 0; --i)
restart:
		for (j = i + 1; j < map->n; ++j) {
			int changed;
			changed = coalesce_pair(map, i, j, tabs);
			if (changed < 0)
				goto error;
			if (changed)
				goto restart;
		}
	return map;
error:
	isl_map_free(map);
	return NULL;
}

/* For each pair of basic maps in the map, check if the union of the two
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and start over.
 *
 * Since we are constructing the tableaus of the basic maps anyway,
 * we exploit them to detect implicit equalities and redundant constraints.
 * This also helps the coalescing as it can ignore the redundant constraints.
 * In order to avoid confusion, we make all implicit equalities explicit
 * in the basic maps.  We don't call isl_basic_map_gauss, though,
 * as that may affect the number of constraints.
 * This means that we have to call isl_basic_map_gauss at the end
 * of the computation to ensure that the basic maps are not left
 * in an unexpected state.
 */
struct isl_map *isl_map_coalesce(struct isl_map *map)
{
	int i;
	unsigned n;
	struct isl_tab **tabs = NULL;

	map = isl_map_remove_empty_parts(map);
	if (!map)
		return NULL;

	if (map->n <= 1)
		return map;

	map = isl_map_sort_divs(map);
	map = isl_map_cow(map);

	tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
	if (!tabs)
		goto error;

	n = map->n;
	for (i = 0; i < map->n; ++i) {
		tabs[i] = isl_tab_from_basic_map(map->p[i], 0);
		if (!tabs[i])
			goto error;
		if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
			if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
				goto error;
		map->p[i] = isl_tab_make_equalities_explicit(tabs[i],
								map->p[i]);
		if (!map->p[i])
			goto error;
		if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
			if (isl_tab_detect_redundant(tabs[i]) < 0)
				goto error;
	}
	for (i = map->n - 1; i >= 0; --i)
		if (tabs[i]->empty)
			drop(map, i, tabs);

	map = coalesce(map, tabs);

	if (map)
		for (i = 0; i < map->n; ++i) {
			map->p[i] = isl_basic_map_update_from_tab(map->p[i],
								    tabs[i]);
			map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
			map->p[i] = isl_basic_map_finalize(map->p[i]);
			if (!map->p[i])
				goto error;
			ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
			ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
		}

	for (i = 0; i < n; ++i)
		isl_tab_free(tabs[i]);

	free(tabs);

	return map;
error:
	if (tabs)
		for (i = 0; i < n; ++i)
			isl_tab_free(tabs[i]);
	free(tabs);
	isl_map_free(map);
	return NULL;
}

/* For each pair of basic sets in the set, check if the union of the two
 * can be represented by a single basic set.
 * If so, replace the pair by the single basic set and start over.
 */
struct isl_set *isl_set_coalesce(struct isl_set *set)
{
	return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
}