summaryrefslogtreecommitdiff
path: root/doc/user.pod
blob: 4590af8c0b4c844494aabb0f2813bf1ee25bb8bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
=head1 Introduction

C<isl> is a thread-safe C library for manipulating
sets and relations of integer points bounded by affine constraints.
The descriptions of the sets and relations may involve
both parameters and existentially quantified variables.
All computations are performed in exact integer arithmetic
using C<GMP>.
The C<isl> library offers functionality that is similar
to that offered by the C<Omega> and C<Omega+> libraries,
but the underlying algorithms are in most cases completely different.

The library is by no means complete and some fairly basic
functionality is still missing.
Still, even in its current form, the library has been successfully
used as a backend polyhedral library for the polyhedral
scanner C<CLooG> and as part of an equivalence checker of
static affine programs.
For bug reports, feature requests and questions,
visit the the discussion group at
L<http://groups.google.com/group/isl-development>.

=head2 Backward Incompatible Changes

=head3 Changes since isl-0.02

=over

=item * The old printing functions have been deprecated
and replaced by C<isl_printer> functions, see L<Input and Output>.

=item * Most functions related to dependence analysis have acquired
an extra C<must> argument.  To obtain the old behavior, this argument
should be given the value 1.  See L<Dependence Analysis>.

=back

=head3 Changes since isl-0.03

=over

=item * The function C<isl_pw_qpolynomial_fold_add> has been
renamed to C<isl_pw_qpolynomial_fold_fold>.
Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
renamed to C<isl_union_pw_qpolynomial_fold_fold>.

=back

=head3 Changes since isl-0.04

=over

=item * All header files have been renamed from C<isl_header.h>
to C<isl/header.h>.

=back

=head3 Changes since isl-0.05

=over

=item * The functions C<isl_printer_print_basic_set> and
C<isl_printer_print_basic_map> no longer print a newline.

=item * The functions C<isl_flow_get_no_source>
and C<isl_union_map_compute_flow> now return
the accesses for which no source could be found instead of
the iterations where those accesses occur.

=item * The functions C<isl_basic_map_identity> and
C<isl_map_identity> now take a B<map> space as input.  An old call
C<isl_map_identity(space)> can be rewritten to
C<isl_map_identity(isl_space_map_from_set(space))>.

=item * The function C<isl_map_power> no longer takes
a parameter position as input.  Instead, the exponent
is now expressed as the domain of the resulting relation.

=back

=head3 Changes since isl-0.06

=over

=item * The format of C<isl_printer_print_qpolynomial>'s
C<ISL_FORMAT_ISL> output has changed.
Use C<ISL_FORMAT_C> to obtain the old output.

=item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
Some of the old names have been kept for backward compatibility,
but they will be removed in the future.

=back

=head3 Changes since isl-0.07

=over

=item * The function C<isl_pw_aff_max> has been renamed to
C<isl_pw_aff_union_max>.
Similarly, the function C<isl_pw_aff_add> has been renamed to
C<isl_pw_aff_union_add>.

=item * The C<isl_dim> type has been renamed to C<isl_space>
along with the associated functions.
Some of the old names have been kept for backward compatibility,
but they will be removed in the future.

=item * Spaces of maps, sets and parameter domains are now
treated differently.  The distinction between map spaces and set spaces
has always been made on a conceptual level, but proper use of such spaces
was never checked.  Furthermore, up until isl-0.07 there was no way
of explicitly creating a parameter space.  These can now be created
directly using C<isl_space_params_alloc> or from other spaces using
C<isl_space_params>.

=item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
objects live is now a map space
instead of a set space.  This means, for example, that the dimensions
of the domain of an C<isl_aff> are now considered to be of type
C<isl_dim_in> instead of C<isl_dim_set>.  Extra functions have been
added to obtain the domain space.  Some of the constructors still
take a domain space and have therefore been renamed.

=item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
now take an C<isl_local_space> instead of an C<isl_space>.
An C<isl_local_space> can be created from an C<isl_space>
using C<isl_local_space_from_space>.

=item * The C<isl_div> type has been removed.  Functions that used
to return an C<isl_div> now return an C<isl_aff>.
Note that the space of an C<isl_aff> is that of relation.
When replacing a call to C<isl_div_get_coefficient> by a call to
C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
to be replaced by C<isl_dim_in>.
A call to C<isl_aff_from_div> can be replaced by a call
to C<isl_aff_floor>.
A call to C<isl_qpolynomial_div(div)> call be replaced by
the nested call

	isl_qpolynomial_from_aff(isl_aff_floor(div))

The function C<isl_constraint_div> has also been renamed
to C<isl_constraint_get_div>.

=item * The C<nparam> argument has been removed from
C<isl_map_read_from_str> and similar functions.
When reading input in the original PolyLib format,
the result will have no parameters.
If parameters are expected, the caller may want to perform
dimension manipulation on the result.

=back

=head3 Changes since isl-0.09

=over

=item * The C<schedule_split_parallel> option has been replaced
by the C<schedule_split_scaled> option.

=item * The first argument of C<isl_pw_aff_cond> is now
an C<isl_pw_aff> instead of an C<isl_set>.
A call C<isl_pw_aff_cond(a, b, c)> can be replaced by

	isl_pw_aff_cond(isl_set_indicator_function(a), b, c)

=back

=head3 Changes since isl-0.10

=over

=item * The functions C<isl_set_dim_has_lower_bound> and
C<isl_set_dim_has_upper_bound> have been renamed to
C<isl_set_dim_has_any_lower_bound> and
C<isl_set_dim_has_any_upper_bound>.
The new C<isl_set_dim_has_lower_bound> and
C<isl_set_dim_has_upper_bound> have slightly different meanings.

=back

=head1 License

C<isl> is released under the MIT license.

=over

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

=back

Note that C<isl> currently requires C<GMP>, which is released
under the GNU Lesser General Public License (LGPL).  This means
that code linked against C<isl> is also linked against LGPL code.

=head1 Installation

The source of C<isl> can be obtained either as a tarball
or from the git repository.  Both are available from
L<http://freshmeat.net/projects/isl/>.
The installation process depends on how you obtained
the source.

=head2 Installation from the git repository

=over

=item 1 Clone or update the repository

The first time the source is obtained, you need to clone
the repository.

	git clone git://repo.or.cz/isl.git

To obtain updates, you need to pull in the latest changes

	git pull

=item 2 Generate C<configure>

	./autogen.sh

=back

After performing the above steps, continue
with the L<Common installation instructions>.

=head2 Common installation instructions

=over

=item 1 Obtain C<GMP>

Building C<isl> requires C<GMP>, including its headers files.
Your distribution may not provide these header files by default
and you may need to install a package called C<gmp-devel> or something
similar.  Alternatively, C<GMP> can be built from
source, available from L<http://gmplib.org/>.

=item 2 Configure

C<isl> uses the standard C<autoconf> C<configure> script.
To run it, just type

	./configure

optionally followed by some configure options.
A complete list of options can be obtained by running

	./configure --help

Below we discuss some of the more common options.

C<isl> can optionally use C<piplib>, but no
C<piplib> functionality is currently used by default.
The C<--with-piplib> option can
be used to specify which C<piplib>
library to use, either an installed version (C<system>),
an externally built version (C<build>)
or no version (C<no>).  The option C<build> is mostly useful
in C<configure> scripts of larger projects that bundle both C<isl>
and C<piplib>.

=over

=item C<--prefix>

Installation prefix for C<isl>

=item C<--with-gmp-prefix>

Installation prefix for C<GMP> (architecture-independent files).

=item C<--with-gmp-exec-prefix>

Installation prefix for C<GMP> (architecture-dependent files).

=item C<--with-piplib>

Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.

=item C<--with-piplib-prefix>

Installation prefix for C<system> C<piplib> (architecture-independent files).

=item C<--with-piplib-exec-prefix>

Installation prefix for C<system> C<piplib> (architecture-dependent files).

=item C<--with-piplib-builddir>

Location where C<build> C<piplib> was built.

=back

=item 3 Compile

	make

=item 4 Install (optional)

	make install

=back

=head1 Integer Set Library

=head2 Initialization

All manipulations of integer sets and relations occur within
the context of an C<isl_ctx>.
A given C<isl_ctx> can only be used within a single thread.
All arguments of a function are required to have been allocated
within the same context.
There are currently no functions available for moving an object
from one C<isl_ctx> to another C<isl_ctx>.  This means that
there is currently no way of safely moving an object from one
thread to another, unless the whole C<isl_ctx> is moved.

An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
freed using C<isl_ctx_free>.
All objects allocated within an C<isl_ctx> should be freed
before the C<isl_ctx> itself is freed.

	isl_ctx *isl_ctx_alloc();
	void isl_ctx_free(isl_ctx *ctx);

=head2 Values

An C<isl_val> represents an integer value, a rational value
or one of three special values, infinity, negative infinity and NaN.
Some predefined values can be created using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_zero(isl_ctx *ctx);
	__isl_give isl_val *isl_val_one(isl_ctx *ctx);
	__isl_give isl_val *isl_val_nan(isl_ctx *ctx);
	__isl_give isl_val *isl_val_infty(isl_ctx *ctx);
	__isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);

Specific integer values can be created using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
		long i);
	__isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
		unsigned long u);
	__isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
		size_t n, size_t size, const void *chunks);

The function C<isl_val_int_from_chunks> constructs an C<isl_val>
from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
The least significant digit is assumed to be stored first.

Value objects can be copied and freed using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
	void *isl_val_free(__isl_take isl_val *v);

They can be inspected using the following functions.

	#include <isl/val.h>
	isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
	long isl_val_get_num_si(__isl_keep isl_val *v);
	long isl_val_get_den_si(__isl_keep isl_val *v);
	double isl_val_get_d(__isl_keep isl_val *v);
	size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
		size_t size);
	int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
		size_t size, void *chunks);

C<isl_val_n_abs_num_chunks> returns the number of I<digits>
of C<size> bytes needed to store the absolute value of the
numerator of C<v>.
C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
which is assumed to have been preallocated by the caller.
The least significant digit is stored first.
Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
and C<isl_val_get_abs_num_chunks> can only be applied to rational values.

An C<isl_val> can be modified using the following function.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
		long i);

The following unary properties are defined on C<isl_val>s.

	#include <isl/val.h>
	int isl_val_sgn(__isl_keep isl_val *v);
	int isl_val_is_zero(__isl_keep isl_val *v);
	int isl_val_is_one(__isl_keep isl_val *v);
	int isl_val_is_negone(__isl_keep isl_val *v);
	int isl_val_is_nonneg(__isl_keep isl_val *v);
	int isl_val_is_nonpos(__isl_keep isl_val *v);
	int isl_val_is_pos(__isl_keep isl_val *v);
	int isl_val_is_neg(__isl_keep isl_val *v);
	int isl_val_is_int(__isl_keep isl_val *v);
	int isl_val_is_rat(__isl_keep isl_val *v);
	int isl_val_is_nan(__isl_keep isl_val *v);
	int isl_val_is_infty(__isl_keep isl_val *v);
	int isl_val_is_neginfty(__isl_keep isl_val *v);

Note that the sign of NaN is undefined.

The following binary properties are defined on pairs of C<isl_val>s.

	#include <isl/val.h>
	int isl_val_lt(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	int isl_val_le(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	int isl_val_gt(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	int isl_val_ge(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	int isl_val_eq(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	int isl_val_ne(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);

For integer C<isl_val>s we additionally have the following binary property.

	#include <isl/val.h>
	int isl_val_is_divisible_by(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);

An C<isl_val> can also be compared to an integer using the following
function.  The result is undefined for NaN.

	#include <isl/val.h>
	int isl_val_cmp_si(__isl_keep isl_val *v, long i);

The following unary operations are available on C<isl_val>s.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);

The following binary operations are available on C<isl_val>s.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
		unsigned long v2);
	__isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
		unsigned long v2);
	__isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
		unsigned long v2);
	__isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
		__isl_take isl_val *v2);

On integer values, we additionally have the following operations.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
		__isl_take isl_val *v2, __isl_give isl_val **x,
		__isl_give isl_val **y);

The function C<isl_val_gcdext> returns the greatest common divisor g
of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
that C<*x> * C<v1> + C<*y> * C<v2> = g.

A value can be read from input using

	#include <isl/val.h>
	__isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
		const char *str);

A value can be printed using

	#include <isl/val.h>
	__isl_give isl_printer *isl_printer_print_val(
		__isl_take isl_printer *p, __isl_keep isl_val *v);

=head3 GMP specific functions

These functions are only available if C<isl> has been compiled with C<GMP>
support.

Specific integer and rational values can be created from C<GMP> values using
the following functions.

	#include <isl/val_gmp.h>
	__isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
		mpz_t z);
	__isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
		const mpz_t n, const mpz_t d);

The numerator and denominator of a rational value can be extracted as
C<GMP> values using the following functions.

	#include <isl/val_gmp.h>
	int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
	int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);

=head3 Conversion from C<isl_int>

The following functions are only temporarily available to ease
the transition from C<isl_int> to C<isl_val>.  They will be removed
in the next release.

	#include <isl/val_int.h>
	__isl_give isl_val *isl_val_int_from_isl_int(isl_ctx *ctx,
		isl_int n);
	int isl_val_get_num_isl_int(__isl_keep isl_val *v,
		isl_int *n);

=head2 Integers (obsolescent)

All operations on integers, mainly the coefficients
of the constraints describing the sets and relations,
are performed in exact integer arithmetic using C<GMP>.
However, to allow future versions of C<isl> to optionally
support fixed integer arithmetic, all calls to C<GMP>
are wrapped inside C<isl> specific macros.
The basic type is C<isl_int> and the operations below
are available on this type.
The meanings of these operations are essentially the same
as their C<GMP> C<mpz_> counterparts.
As always with C<GMP> types, C<isl_int>s need to be
initialized with C<isl_int_init> before they can be used
and they need to be released with C<isl_int_clear>
after the last use.
The user should not assume that an C<isl_int> is represented
as a C<mpz_t>, but should instead explicitly convert between
C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
C<isl_int_get_gmp> whenever a C<mpz_t> is required.

=over

=item isl_int_init(i)

=item isl_int_clear(i)

=item isl_int_set(r,i)

=item isl_int_set_si(r,i)

=item isl_int_set_gmp(r,g)

=item isl_int_get_gmp(i,g)

=item isl_int_abs(r,i)

=item isl_int_neg(r,i)

=item isl_int_swap(i,j)

=item isl_int_swap_or_set(i,j)

=item isl_int_add_ui(r,i,j)

=item isl_int_sub_ui(r,i,j)

=item isl_int_add(r,i,j)

=item isl_int_sub(r,i,j)

=item isl_int_mul(r,i,j)

=item isl_int_mul_ui(r,i,j)

=item isl_int_addmul(r,i,j)

=item isl_int_submul(r,i,j)

=item isl_int_gcd(r,i,j)

=item isl_int_lcm(r,i,j)

=item isl_int_divexact(r,i,j)

=item isl_int_cdiv_q(r,i,j)

=item isl_int_fdiv_q(r,i,j)

=item isl_int_fdiv_r(r,i,j)

=item isl_int_fdiv_q_ui(r,i,j)

=item isl_int_read(r,s)

=item isl_int_print(out,i,width)

=item isl_int_sgn(i)

=item isl_int_cmp(i,j)

=item isl_int_cmp_si(i,si)

=item isl_int_eq(i,j)

=item isl_int_ne(i,j)

=item isl_int_lt(i,j)

=item isl_int_le(i,j)

=item isl_int_gt(i,j)

=item isl_int_ge(i,j)

=item isl_int_abs_eq(i,j)

=item isl_int_abs_ne(i,j)

=item isl_int_abs_lt(i,j)

=item isl_int_abs_gt(i,j)

=item isl_int_abs_ge(i,j)

=item isl_int_is_zero(i)

=item isl_int_is_one(i)

=item isl_int_is_negone(i)

=item isl_int_is_pos(i)

=item isl_int_is_neg(i)

=item isl_int_is_nonpos(i)

=item isl_int_is_nonneg(i)

=item isl_int_is_divisible_by(i,j)

=back

=head2 Sets and Relations

C<isl> uses six types of objects for representing sets and relations,
C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
C<isl_union_set> and C<isl_union_map>.
C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
can be described as a conjunction of affine constraints, while
C<isl_set> and C<isl_map> represent unions of
C<isl_basic_set>s and C<isl_basic_map>s, respectively.
However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
to live in the same space.  C<isl_union_set>s and C<isl_union_map>s
represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
where spaces are considered different if they have a different number
of dimensions and/or different names (see L<"Spaces">).
The difference between sets and relations (maps) is that sets have
one set of variables, while relations have two sets of variables,
input variables and output variables.

=head2 Memory Management

Since a high-level operation on sets and/or relations usually involves
several substeps and since the user is usually not interested in
the intermediate results, most functions that return a new object
will also release all the objects passed as arguments.
If the user still wants to use one or more of these arguments
after the function call, she should pass along a copy of the
object rather than the object itself.
The user is then responsible for making sure that the original
object gets used somewhere else or is explicitly freed.

The arguments and return values of all documented functions are
annotated to make clear which arguments are released and which
arguments are preserved.  In particular, the following annotations
are used

=over

=item C<__isl_give>

C<__isl_give> means that a new object is returned.
The user should make sure that the returned pointer is
used exactly once as a value for an C<__isl_take> argument.
In between, it can be used as a value for as many
C<__isl_keep> arguments as the user likes.
There is one exception, and that is the case where the
pointer returned is C<NULL>.  Is this case, the user
is free to use it as an C<__isl_take> argument or not.

=item C<__isl_take>

C<__isl_take> means that the object the argument points to
is taken over by the function and may no longer be used
by the user as an argument to any other function.
The pointer value must be one returned by a function
returning an C<__isl_give> pointer.
If the user passes in a C<NULL> value, then this will
be treated as an error in the sense that the function will
not perform its usual operation.  However, it will still
make sure that all the other C<__isl_take> arguments
are released.

=item C<__isl_keep>

C<__isl_keep> means that the function will only use the object
temporarily.  After the function has finished, the user
can still use it as an argument to other functions.
A C<NULL> value will be treated in the same way as
a C<NULL> value for an C<__isl_take> argument.

=back

=head2 Error Handling

C<isl> supports different ways to react in case a runtime error is triggered.
Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
with two maps that have incompatible spaces. There are three possible ways
to react on error: to warn, to continue or to abort.

The default behavior is to warn. In this mode, C<isl> prints a warning, stores
the last error in the corresponding C<isl_ctx> and the function in which the
error was triggered returns C<NULL>. An error does not corrupt internal state,
such that isl can continue to be used. C<isl> also provides functions to
read the last error and to reset the memory that stores the last error. The
last error is only stored for information purposes. Its presence does not
change the behavior of C<isl>. Hence, resetting an error is not required to
continue to use isl, but only to observe new errors.

	#include <isl/ctx.h>
	enum isl_error isl_ctx_last_error(isl_ctx *ctx);
	void isl_ctx_reset_error(isl_ctx *ctx);

Another option is to continue on error. This is similar to warn on error mode,
except that C<isl> does not print any warning. This allows a program to
implement its own error reporting.

The last option is to directly abort the execution of the program from within
the isl library. This makes it obviously impossible to recover from an error,
but it allows to directly spot the error location. By aborting on error,
debuggers break at the location the error occurred and can provide a stack
trace. Other tools that automatically provide stack traces on abort or that do
not want to continue execution after an error was triggered may also prefer to
abort on error.

The on error behavior of isl can be specified by calling
C<isl_options_set_on_error> or by setting the command line option
C<--isl-on-error>. Valid arguments for the function call are
C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
choices for the command line option are C<warn>, C<continue> and C<abort>.
It is also possible to query the current error mode.

	#include <isl/options.h>
	int isl_options_set_on_error(isl_ctx *ctx, int val);
	int isl_options_get_on_error(isl_ctx *ctx);

=head2 Identifiers

Identifiers are used to identify both individual dimensions
and tuples of dimensions.  They consist of an optional name and an optional
user pointer.  The name and the user pointer cannot both be C<NULL>, however.
Identifiers with the same name but different pointer values
are considered to be distinct.
Similarly, identifiers with different names but the same pointer value
are also considered to be distinct.
Equal identifiers are represented using the same object.
Pairs of identifiers can therefore be tested for equality using the
C<==> operator.
Identifiers can be constructed, copied, freed, inspected and printed
using the following functions.

	#include <isl/id.h>
	__isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
		__isl_keep const char *name, void *user);
	__isl_give isl_id *isl_id_set_free_user(
		__isl_take isl_id *id,
		__isl_give void (*free_user)(void *user));
	__isl_give isl_id *isl_id_copy(isl_id *id);
	void *isl_id_free(__isl_take isl_id *id);

	isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
	void *isl_id_get_user(__isl_keep isl_id *id);
	__isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);

	__isl_give isl_printer *isl_printer_print_id(
		__isl_take isl_printer *p, __isl_keep isl_id *id);

The callback set by C<isl_id_set_free_user> is called on the user
pointer when the last reference to the C<isl_id> is freed.
Note that C<isl_id_get_name> returns a pointer to some internal
data structure, so the result can only be used while the
corresponding C<isl_id> is alive.

=head2 Spaces

Whenever a new set, relation or similiar object is created from scratch,
the space in which it lives needs to be specified using an C<isl_space>.
Each space involves zero or more parameters and zero, one or two
tuples of set or input/output dimensions.  The parameters and dimensions
are identified by an C<isl_dim_type> and a position.
The type C<isl_dim_param> refers to parameters,
the type C<isl_dim_set> refers to set dimensions (for spaces
with a single tuple of dimensions) and the types C<isl_dim_in>
and C<isl_dim_out> refer to input and output dimensions
(for spaces with two tuples of dimensions).
Local spaces (see L</"Local Spaces">) also contain dimensions
of type C<isl_dim_div>.
Note that parameters are only identified by their position within
a given object.  Across different objects, parameters are (usually)
identified by their names or identifiers.  Only unnamed parameters
are identified by their positions across objects.  The use of unnamed
parameters is discouraged.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
		unsigned nparam, unsigned n_in, unsigned n_out);
	__isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
		unsigned nparam);
	__isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
		unsigned nparam, unsigned dim);
	__isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
	void *isl_space_free(__isl_take isl_space *space);
	unsigned isl_space_dim(__isl_keep isl_space *space,
		enum isl_dim_type type);

The space used for creating a parameter domain
needs to be created using C<isl_space_params_alloc>.
For other sets, the space
needs to be created using C<isl_space_set_alloc>, while
for a relation, the space
needs to be created using C<isl_space_alloc>.
C<isl_space_dim> can be used
to find out the number of dimensions of each type in
a space, where type may be
C<isl_dim_param>, C<isl_dim_in> (only for relations),
C<isl_dim_out> (only for relations), C<isl_dim_set>
(only for sets) or C<isl_dim_all>.

To check whether a given space is that of a set or a map
or whether it is a parameter space, use these functions:

	#include <isl/space.h>
	int isl_space_is_params(__isl_keep isl_space *space);
	int isl_space_is_set(__isl_keep isl_space *space);
	int isl_space_is_map(__isl_keep isl_space *space);

Spaces can be compared using the following functions:

	#include <isl/space.h>
	int isl_space_is_equal(__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	int isl_space_is_domain(__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	int isl_space_is_range(__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);

C<isl_space_is_domain> checks whether the first argument is equal
to the domain of the second argument.  This requires in particular that
the first argument is a set space and that the second argument
is a map space.

It is often useful to create objects that live in the
same space as some other object.  This can be accomplished
by creating the new objects
(see L<Creating New Sets and Relations> or
L<Creating New (Piecewise) Quasipolynomials>) based on the space
of the original object.

	#include <isl/set.h>
	__isl_give isl_space *isl_basic_set_get_space(
		__isl_keep isl_basic_set *bset);
	__isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);

	#include <isl/union_set.h>
	__isl_give isl_space *isl_union_set_get_space(
		__isl_keep isl_union_set *uset);

	#include <isl/map.h>
	__isl_give isl_space *isl_basic_map_get_space(
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_space *isl_union_map_get_space(
		__isl_keep isl_union_map *umap);

	#include <isl/constraint.h>
	__isl_give isl_space *isl_constraint_get_space(
		__isl_keep isl_constraint *constraint);

	#include <isl/polynomial.h>
	__isl_give isl_space *isl_qpolynomial_get_domain_space(
		__isl_keep isl_qpolynomial *qp);
	__isl_give isl_space *isl_qpolynomial_get_space(
		__isl_keep isl_qpolynomial *qp);
	__isl_give isl_space *isl_qpolynomial_fold_get_space(
		__isl_keep isl_qpolynomial_fold *fold);
	__isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_give isl_space *isl_pw_qpolynomial_get_space(
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_space *isl_union_pw_qpolynomial_get_space(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);

	#include <isl/val.h>
	__isl_give isl_space *isl_multi_val_get_space(
		__isl_keep isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_space *isl_aff_get_domain_space(
		__isl_keep isl_aff *aff);
	__isl_give isl_space *isl_aff_get_space(
		__isl_keep isl_aff *aff);
	__isl_give isl_space *isl_pw_aff_get_domain_space(
		__isl_keep isl_pw_aff *pwaff);
	__isl_give isl_space *isl_pw_aff_get_space(
		__isl_keep isl_pw_aff *pwaff);
	__isl_give isl_space *isl_multi_aff_get_domain_space(
		__isl_keep isl_multi_aff *maff);
	__isl_give isl_space *isl_multi_aff_get_space(
		__isl_keep isl_multi_aff *maff);
	__isl_give isl_space *isl_pw_multi_aff_get_domain_space(
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give isl_space *isl_pw_multi_aff_get_space(
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give isl_space *isl_union_pw_multi_aff_get_space(
		__isl_keep isl_union_pw_multi_aff *upma);
	__isl_give isl_space *isl_multi_pw_aff_get_domain_space(
		__isl_keep isl_multi_pw_aff *mpa);
	__isl_give isl_space *isl_multi_pw_aff_get_space(
		__isl_keep isl_multi_pw_aff *mpa);

	#include <isl/point.h>
	__isl_give isl_space *isl_point_get_space(
		__isl_keep isl_point *pnt);

The identifiers or names of the individual dimensions may be set or read off
using the following functions.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_set_dim_id(
		__isl_take isl_space *space,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	int isl_space_has_dim_id(__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_space_get_dim_id(
		__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_space *isl_space_set_dim_name(
		__isl_take isl_space *space,
		 enum isl_dim_type type, unsigned pos,
		 __isl_keep const char *name);
	int isl_space_has_dim_name(__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);
	__isl_keep const char *isl_space_get_dim_name(
		__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);

Note that C<isl_space_get_name> returns a pointer to some internal
data structure, so the result can only be used while the
corresponding C<isl_space> is alive.
Also note that every function that operates on two sets or relations
requires that both arguments have the same parameters.  This also
means that if one of the arguments has named parameters, then the
other needs to have named parameters too and the names need to match.
Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
arguments may have different parameters (as long as they are named),
in which case the result will have as parameters the union of the parameters of
the arguments.

Given the identifier or name of a dimension (typically a parameter),
its position can be obtained from the following function.

	#include <isl/space.h>
	int isl_space_find_dim_by_id(__isl_keep isl_space *space,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_space_find_dim_by_name(__isl_keep isl_space *space,
		enum isl_dim_type type, const char *name);

The identifiers or names of entire spaces may be set or read off
using the following functions.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_set_tuple_id(
		__isl_take isl_space *space,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_space *isl_space_reset_tuple_id(
		__isl_take isl_space *space, enum isl_dim_type type);
	int isl_space_has_tuple_id(__isl_keep isl_space *space,
		enum isl_dim_type type);
	__isl_give isl_id *isl_space_get_tuple_id(
		__isl_keep isl_space *space, enum isl_dim_type type);
	__isl_give isl_space *isl_space_set_tuple_name(
		__isl_take isl_space *space,
		enum isl_dim_type type, const char *s);
	int isl_space_has_tuple_name(__isl_keep isl_space *space,
		enum isl_dim_type type);
	const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
		enum isl_dim_type type);

The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
or C<isl_dim_set>.  As with C<isl_space_get_name>,
the C<isl_space_get_tuple_name> function returns a pointer to some internal
data structure.
Binary operations require the corresponding spaces of their arguments
to have the same name.

Spaces can be nested.  In particular, the domain of a set or
the domain or range of a relation can be a nested relation.
The following functions can be used to construct and deconstruct
such nested spaces.

	#include <isl/space.h>
	int isl_space_is_wrapping(__isl_keep isl_space *space);
	__isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);

The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
be the space of a set, while that of
C<isl_space_wrap> should be the space of a relation.
Conversely, the output of C<isl_space_unwrap> is the space
of a relation, while that of C<isl_space_wrap> is the space of a set.

Spaces can be created from other spaces
using the following functions.

	__isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_range(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_params(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_set_from_params(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_join(__isl_take isl_space *left,
		__isl_take isl_space *right);
	__isl_give isl_space *isl_space_align_params(
		__isl_take isl_space *space1, __isl_take isl_space *space2)
	__isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
		enum isl_dim_type type, unsigned pos, unsigned n);
	__isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_space *isl_space_map_from_set(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_map_from_domain_and_range(
		__isl_take isl_space *domain,
		__isl_take isl_space *range);
	__isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
	__isl_give isl_space *isl_space_curry(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_uncurry(
		__isl_take isl_space *space);

Note that if dimensions are added or removed from a space, then
the name and the internal structure are lost.

=head2 Local Spaces

A local space is essentially a space with
zero or more existentially quantified variables.
The local space of a (constraint of a) basic set or relation can be obtained
using the following functions.

	#include <isl/constraint.h>
	__isl_give isl_local_space *isl_constraint_get_local_space(
		__isl_keep isl_constraint *constraint);

	#include <isl/set.h>
	__isl_give isl_local_space *isl_basic_set_get_local_space(
		__isl_keep isl_basic_set *bset);

	#include <isl/map.h>
	__isl_give isl_local_space *isl_basic_map_get_local_space(
		__isl_keep isl_basic_map *bmap);

A new local space can be created from a space using

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_from_space(
		__isl_take isl_space *space);

They can be inspected, modified, copied and freed using the following functions.

	#include <isl/local_space.h>
	isl_ctx *isl_local_space_get_ctx(
		__isl_keep isl_local_space *ls);
	int isl_local_space_is_set(__isl_keep isl_local_space *ls);
	int isl_local_space_dim(__isl_keep isl_local_space *ls,
		enum isl_dim_type type);
	int isl_local_space_has_dim_id(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_local_space_get_dim_id(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	int isl_local_space_has_dim_name(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos)
	const char *isl_local_space_get_dim_name(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_local_space *isl_local_space_set_dim_name(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos, const char *s);
	__isl_give isl_local_space *isl_local_space_set_dim_id(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_space *isl_local_space_get_space(
		__isl_keep isl_local_space *ls);
	__isl_give isl_aff *isl_local_space_get_div(
		__isl_keep isl_local_space *ls, int pos);
	__isl_give isl_local_space *isl_local_space_copy(
		__isl_keep isl_local_space *ls);
	void *isl_local_space_free(__isl_take isl_local_space *ls);

Note that C<isl_local_space_get_div> can only be used on local spaces
of sets.

Two local spaces can be compared using

	int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
		__isl_keep isl_local_space *ls2);

Local spaces can be created from other local spaces
using the following functions.

	__isl_give isl_local_space *isl_local_space_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_local_space *isl_local_space_range(
		__isl_take isl_local_space *ls);
	__isl_give isl_local_space *isl_local_space_from_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_local_space *isl_local_space_intersect(
		__isl_take isl_local_space *ls1,
		__isl_take isl_local_space *ls2);
	__isl_give isl_local_space *isl_local_space_add_dims(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_local_space *isl_local_space_insert_dims(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_local_space *isl_local_space_drop_dims(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned first, unsigned n);

=head2 Input and Output

C<isl> supports its own input/output format, which is similar
to the C<Omega> format, but also supports the C<PolyLib> format
in some cases.

=head3 C<isl> format

The C<isl> format is similar to that of C<Omega>, but has a different
syntax for describing the parameters and allows for the definition
of an existentially quantified variable as the integer division
of an affine expression.
For example, the set of integers C<i> between C<0> and C<n>
such that C<i % 10 <= 6> can be described as

	[n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
				i - 10 a <= 6) }

A set or relation can have several disjuncts, separated
by the keyword C<or>.  Each disjunct is either a conjunction
of constraints or a projection (C<exists>) of a conjunction
of constraints.  The constraints are separated by the keyword
C<and>.

=head3 C<PolyLib> format

If the represented set is a union, then the first line
contains a single number representing the number of disjuncts.
Otherwise, a line containing the number C<1> is optional.

Each disjunct is represented by a matrix of constraints.
The first line contains two numbers representing
the number of rows and columns,
where the number of rows is equal to the number of constraints
and the number of columns is equal to two plus the number of variables.
The following lines contain the actual rows of the constraint matrix.
In each row, the first column indicates whether the constraint
is an equality (C<0>) or inequality (C<1>).  The final column
corresponds to the constant term.

If the set is parametric, then the coefficients of the parameters
appear in the last columns before the constant column.
The coefficients of any existentially quantified variables appear
between those of the set variables and those of the parameters.

=head3 Extended C<PolyLib> format

The extended C<PolyLib> format is nearly identical to the
C<PolyLib> format.  The only difference is that the line
containing the number of rows and columns of a constraint matrix
also contains four additional numbers:
the number of output dimensions, the number of input dimensions,
the number of local dimensions (i.e., the number of existentially
quantified variables) and the number of parameters.
For sets, the number of ``output'' dimensions is equal
to the number of set dimensions, while the number of ``input''
dimensions is zero.

=head3 Input

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_basic_set *isl_basic_set_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
		FILE *input);
	__isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
		const char *str);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_basic_map *isl_basic_map_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_map *isl_map_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
		const char *str);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_union_set *isl_union_set_read_from_str(
		isl_ctx *ctx, const char *str);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_union_map *isl_union_map_read_from_str(
		isl_ctx *ctx, const char *str);

The input format is autodetected and may be either the C<PolyLib> format
or the C<isl> format.

=head3 Output

Before anything can be printed, an C<isl_printer> needs to
be created.

	__isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
		FILE *file);
	__isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
	void *isl_printer_free(__isl_take isl_printer *printer);
	__isl_give char *isl_printer_get_str(
		__isl_keep isl_printer *printer);

The printer can be inspected using the following functions.

	FILE *isl_printer_get_file(
		__isl_keep isl_printer *printer);
	int isl_printer_get_output_format(
		__isl_keep isl_printer *p);

The behavior of the printer can be modified in various ways

	__isl_give isl_printer *isl_printer_set_output_format(
		__isl_take isl_printer *p, int output_format);
	__isl_give isl_printer *isl_printer_set_indent(
		__isl_take isl_printer *p, int indent);
	__isl_give isl_printer *isl_printer_indent(
		__isl_take isl_printer *p, int indent);
	__isl_give isl_printer *isl_printer_set_prefix(
		__isl_take isl_printer *p, const char *prefix);
	__isl_give isl_printer *isl_printer_set_suffix(
		__isl_take isl_printer *p, const char *suffix);

The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
and defaults to C<ISL_FORMAT_ISL>.
Each line in the output is indented by C<indent> (set by
C<isl_printer_set_indent>) spaces
(default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
In the C<PolyLib> format output,
the coefficients of the existentially quantified variables
appear between those of the set variables and those
of the parameters.
The function C<isl_printer_indent> increases the indentation
by the specified amount (which may be negative).

To actually print something, use

	#include <isl/printer.h>
	__isl_give isl_printer *isl_printer_print_double(
		__isl_take isl_printer *p, double d);

	#include <isl/set.h>
	__isl_give isl_printer *isl_printer_print_basic_set(
		__isl_take isl_printer *printer,
		__isl_keep isl_basic_set *bset);
	__isl_give isl_printer *isl_printer_print_set(
		__isl_take isl_printer *printer,
		__isl_keep isl_set *set);

	#include <isl/map.h>
	__isl_give isl_printer *isl_printer_print_basic_map(
		__isl_take isl_printer *printer,
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_printer *isl_printer_print_map(
		__isl_take isl_printer *printer,
		__isl_keep isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_printer *isl_printer_print_union_set(
		__isl_take isl_printer *p,
		__isl_keep isl_union_set *uset);

	#include <isl/union_map.h>
	__isl_give isl_printer *isl_printer_print_union_map(
		__isl_take isl_printer *p,
		__isl_keep isl_union_map *umap);

When called on a file printer, the following function flushes
the file.  When called on a string printer, the buffer is cleared.

	__isl_give isl_printer *isl_printer_flush(
		__isl_take isl_printer *p);

=head2 Creating New Sets and Relations

C<isl> has functions for creating some standard sets and relations.

=over

=item * Empty sets and relations

	__isl_give isl_basic_set *isl_basic_set_empty(
		__isl_take isl_space *space);
	__isl_give isl_basic_map *isl_basic_map_empty(
		__isl_take isl_space *space);
	__isl_give isl_set *isl_set_empty(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_empty(
		__isl_take isl_space *space);
	__isl_give isl_union_set *isl_union_set_empty(
		__isl_take isl_space *space);
	__isl_give isl_union_map *isl_union_map_empty(
		__isl_take isl_space *space);

For C<isl_union_set>s and C<isl_union_map>s, the space
is only used to specify the parameters.

=item * Universe sets and relations

	__isl_give isl_basic_set *isl_basic_set_universe(
		__isl_take isl_space *space);
	__isl_give isl_basic_map *isl_basic_map_universe(
		__isl_take isl_space *space);
	__isl_give isl_set *isl_set_universe(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_universe(
		__isl_take isl_space *space);
	__isl_give isl_union_set *isl_union_set_universe(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_universe(
		__isl_take isl_union_map *umap);

The sets and relations constructed by the functions above
contain all integer values, while those constructed by the
functions below only contain non-negative values.

	__isl_give isl_basic_set *isl_basic_set_nat_universe(
		__isl_take isl_space *space);
	__isl_give isl_basic_map *isl_basic_map_nat_universe(
		__isl_take isl_space *space);
	__isl_give isl_set *isl_set_nat_universe(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_nat_universe(
		__isl_take isl_space *space);

=item * Identity relations

	__isl_give isl_basic_map *isl_basic_map_identity(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_identity(
		__isl_take isl_space *space);

The number of input and output dimensions in C<space> needs
to be the same.

=item * Lexicographic order

	__isl_give isl_map *isl_map_lex_lt(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_le(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_gt(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_ge(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_lt_first(
		__isl_take isl_space *space, unsigned n);
	__isl_give isl_map *isl_map_lex_le_first(
		__isl_take isl_space *space, unsigned n);
	__isl_give isl_map *isl_map_lex_gt_first(
		__isl_take isl_space *space, unsigned n);
	__isl_give isl_map *isl_map_lex_ge_first(
		__isl_take isl_space *space, unsigned n);

The first four functions take a space for a B<set>
and return relations that express that the elements in the domain
are lexicographically less
(C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
than the elements in the range.
The last four functions take a space for a map
and return relations that express that the first C<n> dimensions
in the domain are lexicographically less
(C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
than the first C<n> dimensions in the range.

=back

A basic set or relation can be converted to a set or relation
using the following functions.

	__isl_give isl_set *isl_set_from_basic_set(
		__isl_take isl_basic_set *bset);
	__isl_give isl_map *isl_map_from_basic_map(
		__isl_take isl_basic_map *bmap);

Sets and relations can be converted to union sets and relations
using the following functions.

	__isl_give isl_union_set *isl_union_set_from_basic_set(
		__isl_take isl_basic_set *bset);
	__isl_give isl_union_map *isl_union_map_from_basic_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_union_set *isl_union_set_from_set(
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_map_from_map(
		__isl_take isl_map *map);

The inverse conversions below can only be used if the input
union set or relation is known to contain elements in exactly one
space.

	__isl_give isl_set *isl_set_from_union_set(
		__isl_take isl_union_set *uset);
	__isl_give isl_map *isl_map_from_union_map(
		__isl_take isl_union_map *umap);

A zero-dimensional (basic) set can be constructed on a given parameter domain
using the following function.

	__isl_give isl_basic_set *isl_basic_set_from_params(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_from_params(
		__isl_take isl_set *set);

Sets and relations can be copied and freed again using the following
functions.

	__isl_give isl_basic_set *isl_basic_set_copy(
		__isl_keep isl_basic_set *bset);
	__isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
	__isl_give isl_union_set *isl_union_set_copy(
		__isl_keep isl_union_set *uset);
	__isl_give isl_basic_map *isl_basic_map_copy(
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
	__isl_give isl_union_map *isl_union_map_copy(
		__isl_keep isl_union_map *umap);
	void *isl_basic_set_free(__isl_take isl_basic_set *bset);
	void *isl_set_free(__isl_take isl_set *set);
	void *isl_union_set_free(__isl_take isl_union_set *uset);
	void *isl_basic_map_free(__isl_take isl_basic_map *bmap);
	void *isl_map_free(__isl_take isl_map *map);
	void *isl_union_map_free(__isl_take isl_union_map *umap);

Other sets and relations can be constructed by starting
from a universe set or relation, adding equality and/or
inequality constraints and then projecting out the
existentially quantified variables, if any.
Constraints can be constructed, manipulated and
added to (or removed from) (basic) sets and relations
using the following functions.

	#include <isl/constraint.h>
	__isl_give isl_constraint *isl_equality_alloc(
		__isl_take isl_local_space *ls);
	__isl_give isl_constraint *isl_inequality_alloc(
		__isl_take isl_local_space *ls);
	__isl_give isl_constraint *isl_constraint_set_constant(
		__isl_take isl_constraint *constraint, isl_int v);
	__isl_give isl_constraint *isl_constraint_set_constant_si(
		__isl_take isl_constraint *constraint, int v);
	__isl_give isl_constraint *isl_constraint_set_constant_val(
		__isl_take isl_constraint *constraint,
		__isl_take isl_val *v);
	__isl_give isl_constraint *isl_constraint_set_coefficient(
		__isl_take isl_constraint *constraint,
		enum isl_dim_type type, int pos, isl_int v);
	__isl_give isl_constraint *isl_constraint_set_coefficient_si(
		__isl_take isl_constraint *constraint,
		enum isl_dim_type type, int pos, int v);
	__isl_give isl_constraint *
	isl_constraint_set_coefficient_val(
		__isl_take isl_constraint *constraint,
		enum isl_dim_type type, int pos, isl_val *v);
	__isl_give isl_basic_map *isl_basic_map_add_constraint(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_constraint *constraint);
	__isl_give isl_basic_set *isl_basic_set_add_constraint(
		__isl_take isl_basic_set *bset,
		__isl_take isl_constraint *constraint);
	__isl_give isl_map *isl_map_add_constraint(
		__isl_take isl_map *map,
		__isl_take isl_constraint *constraint);
	__isl_give isl_set *isl_set_add_constraint(
		__isl_take isl_set *set,
		__isl_take isl_constraint *constraint);
	__isl_give isl_basic_set *isl_basic_set_drop_constraint(
		__isl_take isl_basic_set *bset,
		__isl_take isl_constraint *constraint);

For example, to create a set containing the even integers
between 10 and 42, you would use the following code.

	isl_space *space;
	isl_local_space *ls;
	isl_constraint *c;
	isl_basic_set *bset;

	space = isl_space_set_alloc(ctx, 0, 2);
	bset = isl_basic_set_universe(isl_space_copy(space));
	ls = isl_local_space_from_space(space);

	c = isl_equality_alloc(isl_local_space_copy(ls));
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
	bset = isl_basic_set_add_constraint(bset, c);

	c = isl_inequality_alloc(isl_local_space_copy(ls));
	c = isl_constraint_set_constant_si(c, -10);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
	bset = isl_basic_set_add_constraint(bset, c);

	c = isl_inequality_alloc(ls);
	c = isl_constraint_set_constant_si(c, 42);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
	bset = isl_basic_set_add_constraint(bset, c);

	bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);

Or, alternatively,

	isl_basic_set *bset;
	bset = isl_basic_set_read_from_str(ctx,
		"{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");

A basic set or relation can also be constructed from two matrices
describing the equalities and the inequalities.

	__isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
		__isl_take isl_space *space,
		__isl_take isl_mat *eq, __isl_take isl_mat *ineq,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4);
	__isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
		__isl_take isl_space *space,
		__isl_take isl_mat *eq, __isl_take isl_mat *ineq,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4, enum isl_dim_type c5);

The C<isl_dim_type> arguments indicate the order in which
different kinds of variables appear in the input matrices
and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_set> and C<isl_dim_div> for sets and
of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.

A (basic or union) set or relation can also be constructed from a
(union) (piecewise) (multiple) affine expression
or a list of affine expressions
(See L<"Piecewise Quasi Affine Expressions"> and
L<"Piecewise Multiple Quasi Affine Expressions">).

	__isl_give isl_basic_map *isl_basic_map_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_map *isl_map_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_set *isl_set_from_pw_aff(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_map *isl_map_from_pw_aff(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_basic_map *isl_basic_map_from_aff_list(
		__isl_take isl_space *domain_space,
		__isl_take isl_aff_list *list);
	__isl_give isl_basic_map *isl_basic_map_from_multi_aff(
		__isl_take isl_multi_aff *maff)
	__isl_give isl_map *isl_map_from_multi_aff(
		__isl_take isl_multi_aff *maff)
	__isl_give isl_set *isl_set_from_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_map *isl_map_from_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_map *
	isl_union_map_from_union_pw_multi_aff(
		__isl_take isl_union_pw_multi_aff *upma);

The C<domain_dim> argument describes the domain of the resulting
basic relation.  It is required because the C<list> may consist
of zero affine expressions.

=head2 Inspecting Sets and Relations

Usually, the user should not have to care about the actual constraints
of the sets and maps, but should instead apply the abstract operations
explained in the following sections.
Occasionally, however, it may be required to inspect the individual
coefficients of the constraints.  This section explains how to do so.
In these cases, it may also be useful to have C<isl> compute
an explicit representation of the existentially quantified variables.

	__isl_give isl_set *isl_set_compute_divs(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_compute_divs(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_compute_divs(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_compute_divs(
		__isl_take isl_union_map *umap);

This explicit representation defines the existentially quantified
variables as integer divisions of the other variables, possibly
including earlier existentially quantified variables.
An explicitly represented existentially quantified variable therefore
has a unique value when the values of the other variables are known.
If, furthermore, the same existentials, i.e., existentials
with the same explicit representations, should appear in the
same order in each of the disjuncts of a set or map, then the user should call
either of the following functions.

	__isl_give isl_set *isl_set_align_divs(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_align_divs(
		__isl_take isl_map *map);

Alternatively, the existentially quantified variables can be removed
using the following functions, which compute an overapproximation.

	__isl_give isl_basic_set *isl_basic_set_remove_divs(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_remove_divs(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_set_remove_divs(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_remove_divs(
		__isl_take isl_map *map);

It is also possible to only remove those divs that are defined
in terms of a given range of dimensions or only those for which
no explicit representation is known.

	__isl_give isl_basic_set *
	isl_basic_set_remove_divs_involving_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_map *
	isl_basic_map_remove_divs_involving_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *isl_set_remove_divs_involving_dims(
		__isl_take isl_set *set, enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *isl_map_remove_divs_involving_dims(
		__isl_take isl_map *map, enum isl_dim_type type,
		unsigned first, unsigned n);

	__isl_give isl_basic_set *
	isl_basic_set_remove_unknown_divs(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_remove_unknown_divs(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_remove_unknown_divs(
		__isl_take isl_map *map);

To iterate over all the sets or maps in a union set or map, use

	int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
		int (*fn)(__isl_take isl_set *set, void *user),
		void *user);
	int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
		int (*fn)(__isl_take isl_map *map, void *user),
		void *user);

The number of sets or maps in a union set or map can be obtained
from

	int isl_union_set_n_set(__isl_keep isl_union_set *uset);
	int isl_union_map_n_map(__isl_keep isl_union_map *umap);

To extract the set or map in a given space from a union, use

	__isl_give isl_set *isl_union_set_extract_set(
		__isl_keep isl_union_set *uset,
		__isl_take isl_space *space);
	__isl_give isl_map *isl_union_map_extract_map(
		__isl_keep isl_union_map *umap,
		__isl_take isl_space *space);

To iterate over all the basic sets or maps in a set or map, use

	int isl_set_foreach_basic_set(__isl_keep isl_set *set,
		int (*fn)(__isl_take isl_basic_set *bset, void *user),
		void *user);
	int isl_map_foreach_basic_map(__isl_keep isl_map *map,
		int (*fn)(__isl_take isl_basic_map *bmap, void *user),
		void *user);

The callback function C<fn> should return 0 if successful and
-1 if an error occurs.  In the latter case, or if any other error
occurs, the above functions will return -1.

It should be noted that C<isl> does not guarantee that
the basic sets or maps passed to C<fn> are disjoint.
If this is required, then the user should call one of
the following functions first.

	__isl_give isl_set *isl_set_make_disjoint(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_make_disjoint(
		__isl_take isl_map *map);

The number of basic sets in a set can be obtained
from

	int isl_set_n_basic_set(__isl_keep isl_set *set);

To iterate over the constraints of a basic set or map, use

	#include <isl/constraint.h>

	int isl_basic_set_n_constraint(
		__isl_keep isl_basic_set *bset);
	int isl_basic_set_foreach_constraint(
		__isl_keep isl_basic_set *bset,
		int (*fn)(__isl_take isl_constraint *c, void *user),
		void *user);
	int isl_basic_map_foreach_constraint(
		__isl_keep isl_basic_map *bmap,
		int (*fn)(__isl_take isl_constraint *c, void *user),
		void *user);
	void *isl_constraint_free(__isl_take isl_constraint *c);

Again, the callback function C<fn> should return 0 if successful and
-1 if an error occurs.  In the latter case, or if any other error
occurs, the above functions will return -1.
The constraint C<c> represents either an equality or an inequality.
Use the following function to find out whether a constraint
represents an equality.  If not, it represents an inequality.

	int isl_constraint_is_equality(
		__isl_keep isl_constraint *constraint);

The coefficients of the constraints can be inspected using
the following functions.

	int isl_constraint_is_lower_bound(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned pos);
	int isl_constraint_is_upper_bound(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned pos);
	void isl_constraint_get_constant(
		__isl_keep isl_constraint *constraint, isl_int *v);
	__isl_give isl_val *isl_constraint_get_constant_val(
		__isl_keep isl_constraint *constraint);
	void isl_constraint_get_coefficient(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, int pos, isl_int *v);
	__isl_give isl_val *isl_constraint_get_coefficient_val(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, int pos);
	int isl_constraint_involves_dims(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned first, unsigned n);

The explicit representations of the existentially quantified
variables can be inspected using the following function.
Note that the user is only allowed to use this function
if the inspected set or map is the result of a call
to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
The existentially quantified variable is equal to the floor
of the returned affine expression.  The affine expression
itself can be inspected using the functions in
L<"Piecewise Quasi Affine Expressions">.

	__isl_give isl_aff *isl_constraint_get_div(
		__isl_keep isl_constraint *constraint, int pos);

To obtain the constraints of a basic set or map in matrix
form, use the following functions.

	__isl_give isl_mat *isl_basic_set_equalities_matrix(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type c1, enum isl_dim_type c2,
		enum isl_dim_type c3, enum isl_dim_type c4);
	__isl_give isl_mat *isl_basic_set_inequalities_matrix(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type c1, enum isl_dim_type c2,
		enum isl_dim_type c3, enum isl_dim_type c4);
	__isl_give isl_mat *isl_basic_map_equalities_matrix(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4, enum isl_dim_type c5);
	__isl_give isl_mat *isl_basic_map_inequalities_matrix(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4, enum isl_dim_type c5);

The C<isl_dim_type> arguments dictate the order in which
different kinds of variables appear in the resulting matrix
and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.

The number of parameters, input, output or set dimensions can
be obtained using the following functions.

	unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
		enum isl_dim_type type);
	unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type);
	unsigned isl_set_dim(__isl_keep isl_set *set,
		enum isl_dim_type type);
	unsigned isl_map_dim(__isl_keep isl_map *map,
		enum isl_dim_type type);

To check whether the description of a set or relation depends
on one or more given dimensions, it is not necessary to iterate over all
constraints.  Instead the following functions can be used.

	int isl_basic_set_involves_dims(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type type, unsigned first, unsigned n);
	int isl_set_involves_dims(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned first, unsigned n);
	int isl_basic_map_involves_dims(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned first, unsigned n);
	int isl_map_involves_dims(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned first, unsigned n);

Similarly, the following functions can be used to check whether
a given dimension is involved in any lower or upper bound.

	int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);

Note that these functions return true even if there is a bound on
the dimension on only some of the basic sets of C<set>.
To check if they have a bound for all of the basic sets in C<set>,
use the following functions instead.

	int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);

The identifiers or names of the domain and range spaces of a set
or relation can be read off or set using the following functions.

	__isl_give isl_set *isl_set_set_tuple_id(
		__isl_take isl_set *set, __isl_take isl_id *id);
	__isl_give isl_set *isl_set_reset_tuple_id(
		__isl_take isl_set *set);
	int isl_set_has_tuple_id(__isl_keep isl_set *set);
	__isl_give isl_id *isl_set_get_tuple_id(
		__isl_keep isl_set *set);
	__isl_give isl_map *isl_map_set_tuple_id(
		__isl_take isl_map *map, enum isl_dim_type type,
		__isl_take isl_id *id);
	__isl_give isl_map *isl_map_reset_tuple_id(
		__isl_take isl_map *map, enum isl_dim_type type);
	int isl_map_has_tuple_id(__isl_keep isl_map *map,
		enum isl_dim_type type);
	__isl_give isl_id *isl_map_get_tuple_id(
		__isl_keep isl_map *map, enum isl_dim_type type);

	const char *isl_basic_set_get_tuple_name(
		__isl_keep isl_basic_set *bset);
	__isl_give isl_basic_set *isl_basic_set_set_tuple_name(
		__isl_take isl_basic_set *set, const char *s);
	int isl_set_has_tuple_name(__isl_keep isl_set *set);
	const char *isl_set_get_tuple_name(
		__isl_keep isl_set *set);
	const char *isl_basic_map_get_tuple_name(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type);
	__isl_give isl_basic_map *isl_basic_map_set_tuple_name(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, const char *s);
	int isl_map_has_tuple_name(__isl_keep isl_map *map,
		enum isl_dim_type type);
	const char *isl_map_get_tuple_name(
		__isl_keep isl_map *map,
		enum isl_dim_type type);

As with C<isl_space_get_tuple_name>, the value returned points to
an internal data structure.
The identifiers, positions or names of individual dimensions can be
read off using the following functions.

	__isl_give isl_id *isl_basic_set_get_dim_id(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_set *isl_set_set_dim_id(
		__isl_take isl_set *set, enum isl_dim_type type,
		unsigned pos, __isl_take isl_id *id);
	int isl_set_has_dim_id(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_set_get_dim_id(
		__isl_keep isl_set *set, enum isl_dim_type type,
		unsigned pos);
	int isl_basic_map_has_dim_id(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_map *isl_map_set_dim_id(
		__isl_take isl_map *map, enum isl_dim_type type,
		unsigned pos, __isl_take isl_id *id);
	int isl_map_has_dim_id(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_map_get_dim_id(
		__isl_keep isl_map *map, enum isl_dim_type type,
		unsigned pos);

	int isl_set_find_dim_by_id(__isl_keep isl_set *set,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_map_find_dim_by_id(__isl_keep isl_map *map,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_set_find_dim_by_name(__isl_keep isl_set *set,
		enum isl_dim_type type, const char *name);
	int isl_map_find_dim_by_name(__isl_keep isl_map *map,
		enum isl_dim_type type, const char *name);

	const char *isl_constraint_get_dim_name(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned pos);
	const char *isl_basic_set_get_dim_name(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos);
	int isl_set_has_dim_name(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	const char *isl_set_get_dim_name(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	const char *isl_basic_map_get_dim_name(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos);
	int isl_map_has_dim_name(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);
	const char *isl_map_get_dim_name(
		__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);

These functions are mostly useful to obtain the identifiers, positions
or names of the parameters.  Identifiers of individual dimensions are
essentially only useful for printing.  They are ignored by all other
operations and may not be preserved across those operations.

=head2 Properties

=head3 Unary Properties

=over

=item * Emptiness

The following functions test whether the given set or relation
contains any integer points.  The ``plain'' variants do not perform
any computations, but simply check if the given set or relation
is already known to be empty.

	int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
	int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
	int isl_set_plain_is_empty(__isl_keep isl_set *set);
	int isl_set_is_empty(__isl_keep isl_set *set);
	int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
	int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
	int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
	int isl_map_plain_is_empty(__isl_keep isl_map *map);
	int isl_map_is_empty(__isl_keep isl_map *map);
	int isl_union_map_is_empty(__isl_keep isl_union_map *umap);

=item * Universality

	int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
	int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
	int isl_set_plain_is_universe(__isl_keep isl_set *set);

=item * Single-valuedness

	int isl_basic_map_is_single_valued(
		__isl_keep isl_basic_map *bmap);
	int isl_map_plain_is_single_valued(
		__isl_keep isl_map *map);
	int isl_map_is_single_valued(__isl_keep isl_map *map);
	int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);

=item * Injectivity

	int isl_map_plain_is_injective(__isl_keep isl_map *map);
	int isl_map_is_injective(__isl_keep isl_map *map);
	int isl_union_map_plain_is_injective(
		__isl_keep isl_union_map *umap);
	int isl_union_map_is_injective(
		__isl_keep isl_union_map *umap);

=item * Bijectivity

	int isl_map_is_bijective(__isl_keep isl_map *map);
	int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);

=item * Position

	int isl_basic_map_plain_is_fixed(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos,
		isl_int *val);
	int isl_set_plain_is_fixed(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos,
		isl_int *val);
	int isl_map_plain_is_fixed(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos,
		isl_int *val);

Check if the relation obviously lies on a hyperplane where the given dimension
has a fixed value and if so, return that value in C<*val>.

	__isl_give isl_val *
	isl_basic_map_plain_get_val_if_fixed(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_val *isl_set_plain_get_val_if_fixed(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_val *isl_map_plain_get_val_if_fixed(
		__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);

If the set or relation obviously lies on a hyperplane where the given dimension
has a fixed value, then return that value.
Otherwise return NaN.

=item * Stride

	int isl_set_dim_residue_class_val(
		__isl_keep isl_set *set,
		int pos, __isl_give isl_val **modulo,
		__isl_give isl_val **residue);

Check if the values of the given set dimension are equal to a fixed
value modulo some integer value.  If so, assign the modulo to C<*modulo>
and the fixed value to C<*residue>.  If the given dimension attains only
a single value, then assign C<0> to C<*modulo> and the fixed value to
C<*residue>.
If the dimension does not attain only a single value and if no modulo
can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.

=item * Space

To check whether a set is a parameter domain, use this function:

	int isl_set_is_params(__isl_keep isl_set *set);
	int isl_union_set_is_params(
		__isl_keep isl_union_set *uset);

=item * Wrapping

The following functions check whether the domain of the given
(basic) set is a wrapped relation.

	int isl_basic_set_is_wrapping(
		__isl_keep isl_basic_set *bset);
	int isl_set_is_wrapping(__isl_keep isl_set *set);

=item * Internal Product

	int isl_basic_map_can_zip(
		__isl_keep isl_basic_map *bmap);
	int isl_map_can_zip(__isl_keep isl_map *map);

Check whether the product of domain and range of the given relation
can be computed,
i.e., whether both domain and range are nested relations.

=item * Currying

	int isl_basic_map_can_curry(
		__isl_keep isl_basic_map *bmap);
	int isl_map_can_curry(__isl_keep isl_map *map);

Check whether the domain of the (basic) relation is a wrapped relation.

	int isl_basic_map_can_uncurry(
		__isl_keep isl_basic_map *bmap);
	int isl_map_can_uncurry(__isl_keep isl_map *map);

Check whether the range of the (basic) relation is a wrapped relation.

=back

=head3 Binary Properties

=over

=item * Equality

	int isl_set_plain_is_equal(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	int isl_set_is_equal(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	int isl_union_set_is_equal(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);
	int isl_basic_map_is_equal(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	int isl_map_is_equal(__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	int isl_map_plain_is_equal(__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	int isl_union_map_is_equal(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);

=item * Disjointness

	int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	int isl_set_is_disjoint(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	int isl_map_is_disjoint(__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);

=item * Subset

	int isl_basic_set_is_subset(
		__isl_keep isl_basic_set *bset1,
		__isl_keep isl_basic_set *bset2);
	int isl_set_is_subset(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	int isl_set_is_strict_subset(
		__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	int isl_union_set_is_subset(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);
	int isl_union_set_is_strict_subset(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);
	int isl_basic_map_is_subset(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	int isl_basic_map_is_strict_subset(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	int isl_map_is_subset(
		__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	int isl_map_is_strict_subset(
		__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	int isl_union_map_is_subset(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);
	int isl_union_map_is_strict_subset(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);

Check whether the first argument is a (strict) subset of the
second argument.

=item * Order

	int isl_set_plain_cmp(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);

This function is useful for sorting C<isl_set>s.
The order depends on the internal representation of the inputs.
The order is fixed over different calls to the function (assuming
the internal representation of the inputs has not changed), but may
change over different versions of C<isl>.

=back

=head2 Unary Operations

=over

=item * Complement

	__isl_give isl_set *isl_set_complement(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_complement(
		__isl_take isl_map *map);

=item * Inverse map

	__isl_give isl_basic_map *isl_basic_map_reverse(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_reverse(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_reverse(
		__isl_take isl_union_map *umap);

=item * Projection

	__isl_give isl_basic_set *isl_basic_set_project_out(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_basic_map *isl_basic_map_project_out(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_basic_set *isl_basic_set_params(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_basic_map_domain(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_set *isl_basic_map_range(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_set_params(__isl_take isl_set *set);
	__isl_give isl_set *isl_map_params(__isl_take isl_map *map);
	__isl_give isl_set *isl_map_domain(
		__isl_take isl_map *bmap);
	__isl_give isl_set *isl_map_range(
		__isl_take isl_map *map);
	__isl_give isl_set *isl_union_set_params(
		__isl_take isl_union_set *uset);
	__isl_give isl_set *isl_union_map_params(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_set *isl_union_map_domain(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_set *isl_union_map_range(
		__isl_take isl_union_map *umap);

	__isl_give isl_basic_map *isl_basic_map_domain_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_basic_map_range_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
	__isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_domain_map(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_range_map(
		__isl_take isl_union_map *umap);

The functions above construct a (basic, regular or union) relation
that maps (a wrapped version of) the input relation to its domain or range.

=item * Elimination

	__isl_give isl_basic_set *isl_basic_set_eliminate(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *isl_set_eliminate(
		__isl_take isl_set *set, enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_map *isl_basic_map_eliminate(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *isl_map_eliminate(
		__isl_take isl_map *map, enum isl_dim_type type,
		unsigned first, unsigned n);

Eliminate the coefficients for the given dimensions from the constraints,
without removing the dimensions.

=item * Slicing

	__isl_give isl_basic_set *isl_basic_set_fix(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		isl_int value);
	__isl_give isl_basic_set *isl_basic_set_fix_si(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_basic_set *isl_basic_set_fix_val(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);
	__isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		isl_int value);
	__isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_fix_val(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);
	__isl_give isl_basic_map *isl_basic_map_fix_si(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_basic_map *isl_basic_map_fix_val(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);
	__isl_give isl_map *isl_map_fix(__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos,
		isl_int value);
	__isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_map *isl_map_fix_val(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);

Intersect the set or relation with the hyperplane where the given
dimension has the fixed given value.

	__isl_give isl_basic_map *isl_basic_map_lower_bound_si(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_basic_map *isl_basic_map_upper_bound_si(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_lower_bound(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		isl_int value);
	__isl_give isl_set *isl_set_lower_bound_si(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_lower_bound_val(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *value);
	__isl_give isl_map *isl_map_lower_bound_si(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_upper_bound(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		isl_int value);
	__isl_give isl_set *isl_set_upper_bound_si(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_upper_bound_val(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *value);
	__isl_give isl_map *isl_map_upper_bound_si(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, int value);

Intersect the set or relation with the half-space where the given
dimension has a value bounded by the fixed given integer value.

	__isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_basic_map *isl_basic_map_equate(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);

Intersect the set or relation with the hyperplane where the given
dimensions are equal to each other.

	__isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);

Intersect the relation with the hyperplane where the given
dimensions have opposite values.

	__isl_give isl_basic_map *isl_basic_map_order_ge(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_basic_map *isl_basic_map_order_gt(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);

Intersect the relation with the half-space where the given
dimensions satisfy the given ordering.

=item * Identity

	__isl_give isl_map *isl_set_identity(
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_set_identity(
		__isl_take isl_union_set *uset);

Construct an identity relation on the given (union) set.

=item * Deltas

	__isl_give isl_basic_set *isl_basic_map_deltas(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_map_deltas(
		__isl_take isl_union_map *umap);

These functions return a (basic) set containing the differences
between image elements and corresponding domain elements in the input.

	__isl_give isl_basic_map *isl_basic_map_deltas_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_deltas_map(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_deltas_map(
		__isl_take isl_union_map *umap);

The functions above construct a (basic, regular or union) relation
that maps (a wrapped version of) the input relation to its delta set.

=item * Coalescing

Simplify the representation of a set or relation by trying
to combine pairs of basic sets or relations into a single
basic set or relation.

	__isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
	__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_coalesce(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_coalesce(
		__isl_take isl_union_map *umap);

One of the methods for combining pairs of basic sets or relations
can result in coefficients that are much larger than those that appear
in the constraints of the input.  By default, the coefficients are
not allowed to grow larger, but this can be changed by unsetting
the following option.

	int isl_options_set_coalesce_bounded_wrapping(
		isl_ctx *ctx, int val);
	int isl_options_get_coalesce_bounded_wrapping(
		isl_ctx *ctx);

=item * Detecting equalities

	__isl_give isl_basic_set *isl_basic_set_detect_equalities(
                __isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_detect_equalities(
                __isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_set_detect_equalities(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_detect_equalities(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_detect_equalities(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_detect_equalities(
		__isl_take isl_union_map *umap);

Simplify the representation of a set or relation by detecting implicit
equalities.

=item * Removing redundant constraints

	__isl_give isl_basic_set *isl_basic_set_remove_redundancies(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_remove_redundancies(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_basic_map_remove_redundancies(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_remove_redundancies(
		__isl_take isl_map *map);

=item * Convex hull

	__isl_give isl_basic_set *isl_set_convex_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_map_convex_hull(
		__isl_take isl_map *map);

If the input set or relation has any existentially quantified
variables, then the result of these operations is currently undefined.

=item * Simple hull

	__isl_give isl_basic_set *
	isl_set_unshifted_simple_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *
	isl_map_unshifted_simple_hull(
		__isl_take isl_map *map);
	__isl_give isl_basic_set *isl_set_simple_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_map_simple_hull(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_simple_hull(
		__isl_take isl_union_map *umap);

These functions compute a single basic set or relation
that contains the whole input set or relation.
In particular, the output is described by translates
of the constraints describing the basic sets or relations in the input.
In case of C<isl_set_unshifted_simple_hull>, only the original
constraints are used, without any translation.

=begin latex

(See \autoref{s:simple hull}.)

=end latex

=item * Affine hull

	__isl_give isl_basic_set *isl_basic_set_affine_hull(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_affine_hull(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_affine_hull(
		__isl_take isl_union_set *uset);
	__isl_give isl_basic_map *isl_basic_map_affine_hull(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_map_affine_hull(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_affine_hull(
		__isl_take isl_union_map *umap);

In case of union sets and relations, the affine hull is computed
per space.

=item * Polyhedral hull

	__isl_give isl_basic_set *isl_set_polyhedral_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_map_polyhedral_hull(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_polyhedral_hull(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_polyhedral_hull(
		__isl_take isl_union_map *umap);

These functions compute a single basic set or relation
not involving any existentially quantified variables
that contains the whole input set or relation.
In case of union sets and relations, the polyhedral hull is computed
per space.

=item * Other approximations

	__isl_give isl_basic_set *
	isl_basic_set_drop_constraints_involving_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_map *
	isl_basic_map_drop_constraints_involving_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_set *
	isl_basic_set_drop_constraints_not_involving_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *
	isl_set_drop_constraints_involving_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *
	isl_map_drop_constraints_involving_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type,
		unsigned first, unsigned n);

These functions drop any constraints (not) involving the specified dimensions.
Note that the result depends on the representation of the input.

=item * Feasibility

	__isl_give isl_basic_set *isl_basic_set_sample(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_sample(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_basic_map_sample(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_map_sample(
		__isl_take isl_map *map);

If the input (basic) set or relation is non-empty, then return
a singleton subset of the input.  Otherwise, return an empty set.

=item * Optimization

	#include <isl/ilp.h>
	enum isl_lp_result isl_basic_set_max(
		__isl_keep isl_basic_set *bset,
		__isl_keep isl_aff *obj, isl_int *opt)
	__isl_give isl_val *isl_basic_set_max_val(
		__isl_keep isl_basic_set *bset,
		__isl_keep isl_aff *obj);
	enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
		__isl_keep isl_aff *obj, isl_int *opt);
	__isl_give isl_val *isl_set_min_val(
		__isl_keep isl_set *set,
		__isl_keep isl_aff *obj);
	enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
		__isl_keep isl_aff *obj, isl_int *opt);
	__isl_give isl_val *isl_set_max_val(
		__isl_keep isl_set *set,
		__isl_keep isl_aff *obj);

Compute the minimum or maximum of the integer affine expression C<obj>
over the points in C<set>, returning the result in C<opt>.
The return value may be one of C<isl_lp_error>,
C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>, in case of
an C<isl_lp_result>.  If the result is an C<isl_val> then
the result is C<NULL> in case of an error, the optimal value in case
there is one, negative infinity or infinity if the problem is unbounded and
NaN if the problem is empty.

=item * Parametric optimization

	__isl_give isl_pw_aff *isl_set_dim_min(
		__isl_take isl_set *set, int pos);
	__isl_give isl_pw_aff *isl_set_dim_max(
		__isl_take isl_set *set, int pos);
	__isl_give isl_pw_aff *isl_map_dim_max(
		__isl_take isl_map *map, int pos);

Compute the minimum or maximum of the given set or output dimension
as a function of the parameters (and input dimensions), but independently
of the other set or output dimensions.
For lexicographic optimization, see L<"Lexicographic Optimization">.

=item * Dual

The following functions compute either the set of (rational) coefficient
values of valid constraints for the given set or the set of (rational)
values satisfying the constraints with coefficients from the given set.
Internally, these two sets of functions perform essentially the
same operations, except that the set of coefficients is assumed to
be a cone, while the set of values may be any polyhedron.
The current implementation is based on the Farkas lemma and
Fourier-Motzkin elimination, but this may change or be made optional
in future.  In particular, future implementations may use different
dualization algorithms or skip the elimination step.

	__isl_give isl_basic_set *isl_basic_set_coefficients(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_coefficients(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_coefficients(
		__isl_take isl_union_set *bset);
	__isl_give isl_basic_set *isl_basic_set_solutions(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_solutions(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_solutions(
		__isl_take isl_union_set *bset);

=item * Power

	__isl_give isl_map *isl_map_fixed_power(
		__isl_take isl_map *map, isl_int exp);
	__isl_give isl_map *isl_map_fixed_power_val(
		__isl_take isl_map *map,
		__isl_take isl_val *exp);
	__isl_give isl_union_map *isl_union_map_fixed_power(
		__isl_take isl_union_map *umap, isl_int exp);
	__isl_give isl_union_map *
	isl_union_map_fixed_power_val(
		__isl_take isl_union_map *umap,
		__isl_take isl_val *exp);

Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
of C<map> is computed.

	__isl_give isl_map *isl_map_power(__isl_take isl_map *map,
		int *exact);
	__isl_give isl_union_map *isl_union_map_power(
		__isl_take isl_union_map *umap, int *exact);

Compute a parametric representation for all positive powers I<k> of C<map>.
The result maps I<k> to a nested relation corresponding to the
I<k>th power of C<map>.
The result may be an overapproximation.  If the result is known to be exact,
then C<*exact> is set to C<1>.

=item * Transitive closure

	__isl_give isl_map *isl_map_transitive_closure(
		__isl_take isl_map *map, int *exact);
	__isl_give isl_union_map *isl_union_map_transitive_closure(
		__isl_take isl_union_map *umap, int *exact);

Compute the transitive closure of C<map>.
The result may be an overapproximation.  If the result is known to be exact,
then C<*exact> is set to C<1>.

=item * Reaching path lengths

	__isl_give isl_map *isl_map_reaching_path_lengths(
		__isl_take isl_map *map, int *exact);

Compute a relation that maps each element in the range of C<map>
to the lengths of all paths composed of edges in C<map> that
end up in the given element.
The result may be an overapproximation.  If the result is known to be exact,
then C<*exact> is set to C<1>.
To compute the I<maximal> path length, the resulting relation
should be postprocessed by C<isl_map_lexmax>.
In particular, if the input relation is a dependence relation
(mapping sources to sinks), then the maximal path length corresponds
to the free schedule.
Note, however, that C<isl_map_lexmax> expects the maximum to be
finite, so if the path lengths are unbounded (possibly due to
the overapproximation), then you will get an error message.

=item * Wrapping

	__isl_give isl_basic_set *isl_basic_map_wrap(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_map_wrap(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_map_wrap(
		__isl_take isl_union_map *umap);
	__isl_give isl_basic_map *isl_basic_set_unwrap(
		__isl_take isl_basic_set *bset);
	__isl_give isl_map *isl_set_unwrap(
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_set_unwrap(
		__isl_take isl_union_set *uset);

=item * Flattening

Remove any internal structure of domain (and range) of the given
set or relation.  If there is any such internal structure in the input,
then the name of the space is also removed.

	__isl_give isl_basic_set *isl_basic_set_flatten(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_flatten(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_basic_map_flatten_domain(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_basic_map_flatten_range(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_flatten_range(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_flatten_domain(
		__isl_take isl_map *map);
	__isl_give isl_basic_map *isl_basic_map_flatten(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_flatten(
		__isl_take isl_map *map);

	__isl_give isl_map *isl_set_flatten_map(
		__isl_take isl_set *set);

The function above constructs a relation
that maps the input set to a flattened version of the set.

=item * Lifting

Lift the input set to a space with extra dimensions corresponding
to the existentially quantified variables in the input.
In particular, the result lives in a wrapped map where the domain
is the original space and the range corresponds to the original
existentially quantified variables.

	__isl_give isl_basic_set *isl_basic_set_lift(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_lift(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_lift(
		__isl_take isl_union_set *uset);

Given a local space that contains the existentially quantified
variables of a set, a basic relation that, when applied to
a basic set, has essentially the same effect as C<isl_basic_set_lift>,
can be constructed using the following function.

	#include <isl/local_space.h>
	__isl_give isl_basic_map *isl_local_space_lifting(
		__isl_take isl_local_space *ls);

=item * Internal Product

	__isl_give isl_basic_map *isl_basic_map_zip(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_zip(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_zip(
		__isl_take isl_union_map *umap);

Given a relation with nested relations for domain and range,
interchange the range of the domain with the domain of the range.

=item * Currying

	__isl_give isl_basic_map *isl_basic_map_curry(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_basic_map_uncurry(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_curry(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_uncurry(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_curry(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_uncurry(
		__isl_take isl_union_map *umap);

Given a relation with a nested relation for domain,
the C<curry> functions
move the range of the nested relation out of the domain
and use it as the domain of a nested relation in the range,
with the original range as range of this nested relation.
The C<uncurry> functions perform the inverse operation.

=item * Aligning parameters

	__isl_give isl_basic_set *isl_basic_set_align_params(
		__isl_take isl_basic_set *bset,
		__isl_take isl_space *model);
	__isl_give isl_set *isl_set_align_params(
		__isl_take isl_set *set,
		__isl_take isl_space *model);
	__isl_give isl_basic_map *isl_basic_map_align_params(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_space *model);
	__isl_give isl_map *isl_map_align_params(
		__isl_take isl_map *map,
		__isl_take isl_space *model);

Change the order of the parameters of the given set or relation
such that the first parameters match those of C<model>.
This may involve the introduction of extra parameters.
All parameters need to be named.

=item * Dimension manipulation

	__isl_give isl_basic_set *isl_basic_set_add_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_set *isl_set_add_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_map *isl_map_add_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_basic_set *isl_basic_set_insert_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		unsigned n);
	__isl_give isl_basic_map *isl_basic_map_insert_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos,
		unsigned n);
	__isl_give isl_set *isl_set_insert_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, unsigned n);
	__isl_give isl_map *isl_map_insert_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, unsigned n);
	__isl_give isl_basic_set *isl_basic_set_move_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_basic_map *isl_basic_map_move_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_set *isl_set_move_dims(
		__isl_take isl_set *set,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_map *isl_map_move_dims(
		__isl_take isl_map *map,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);

It is usually not advisable to directly change the (input or output)
space of a set or a relation as this removes the name and the internal
structure of the space.  However, the above functions can be useful
to add new parameters, assuming
C<isl_set_align_params> and C<isl_map_align_params>
are not sufficient.

=back

=head2 Binary Operations

The two arguments of a binary operation not only need to live
in the same C<isl_ctx>, they currently also need to have
the same (number of) parameters.

=head3 Basic Operations

=over

=item * Intersection

	__isl_give isl_basic_set *isl_basic_set_intersect_params(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_basic_set *isl_basic_set_intersect(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_set *isl_set_intersect_params(
		__isl_take isl_set *set,
		__isl_take isl_set *params);
	__isl_give isl_set *isl_set_intersect(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	__isl_give isl_union_set *isl_union_set_intersect_params(
		__isl_take isl_union_set *uset,
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_map_intersect_params(
		__isl_take isl_union_map *umap,
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_intersect(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);
	__isl_give isl_basic_map *isl_basic_map_intersect_domain(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_intersect_range(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_intersect(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_intersect_params(
		__isl_take isl_map *map,
		__isl_take isl_set *params);
	__isl_give isl_map *isl_map_intersect_domain(
		__isl_take isl_map *map,
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_intersect_range(
		__isl_take isl_map *map,
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_intersect(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_map *isl_union_map_intersect_domain(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_intersect_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_intersect(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

The second argument to the C<_params> functions needs to be
a parametric (basic) set.  For the other functions, a parametric set
for either argument is only allowed if the other argument is
a parametric set as well.

=item * Union

	__isl_give isl_set *isl_basic_set_union(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_map *isl_basic_map_union(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_set *isl_set_union(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	__isl_give isl_map *isl_map_union(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_set *isl_union_set_union(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);
	__isl_give isl_union_map *isl_union_map_union(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

=item * Set difference

	__isl_give isl_set *isl_set_subtract(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	__isl_give isl_map *isl_map_subtract(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_subtract_domain(
		__isl_take isl_map *map,
		__isl_take isl_set *dom);
	__isl_give isl_map *isl_map_subtract_range(
		__isl_take isl_map *map,
		__isl_take isl_set *dom);
	__isl_give isl_union_set *isl_union_set_subtract(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);
	__isl_give isl_union_map *isl_union_map_subtract(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *isl_union_map_subtract_domain(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *dom);
	__isl_give isl_union_map *isl_union_map_subtract_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *dom);

=item * Application

	__isl_give isl_basic_set *isl_basic_set_apply(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_set_apply(
		__isl_take isl_set *set,
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_apply(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_map *umap);
	__isl_give isl_basic_map *isl_basic_map_apply_domain(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_apply_range(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_apply_domain(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_map *isl_union_map_apply_domain(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_map *isl_map_apply_range(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_map *isl_union_map_apply_range(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

=item * Preimage

	__isl_give isl_basic_set *
	isl_basic_set_preimage_multi_aff(
		__isl_take isl_basic_set *bset,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_set *isl_set_preimage_multi_aff(
		__isl_take isl_set *set,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_set *isl_set_preimage_pw_multi_aff(
		__isl_take isl_set *set,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_map *isl_map_preimage_domain_multi_aff(
		__isl_take isl_map *map,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_union_map *
	isl_union_map_preimage_domain_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_multi_aff *ma);

These functions compute the preimage of the given set or map domain under
the given function.  In other words, the expression is plugged
into the set description or into the domain of the map.
Objects of types C<isl_multi_aff> and C<isl_pw_multi_aff> are described in
L</"Piecewise Multiple Quasi Affine Expressions">.

=item * Cartesian Product

	__isl_give isl_set *isl_set_product(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	__isl_give isl_union_set *isl_union_set_product(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);
	__isl_give isl_basic_map *isl_basic_map_domain_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_range_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_domain_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_range_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_map *isl_union_map_domain_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *isl_union_map_range_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_map *isl_map_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_map *isl_union_map_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

The above functions compute the cross product of the given
sets or relations.  The domains and ranges of the results
are wrapped maps between domains and ranges of the inputs.
To obtain a ``flat'' product, use the following functions
instead.

	__isl_give isl_basic_set *isl_basic_set_flat_product(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_set *isl_set_flat_product(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	__isl_give isl_basic_map *isl_basic_map_flat_range_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_flat_domain_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_flat_range_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_union_map *isl_union_map_flat_range_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_basic_map *isl_basic_map_flat_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_flat_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);

=item * Simplification

	__isl_give isl_basic_set *isl_basic_set_gist(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *context);
	__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
		__isl_take isl_set *context);
	__isl_give isl_set *isl_set_gist_params(
		__isl_take isl_set *set,
		__isl_take isl_set *context);
	__isl_give isl_union_set *isl_union_set_gist(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_set *context);
	__isl_give isl_union_set *isl_union_set_gist_params(
		__isl_take isl_union_set *uset,
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_basic_map_gist(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_map *context);
	__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
		__isl_take isl_map *context);
	__isl_give isl_map *isl_map_gist_params(
		__isl_take isl_map *map,
		__isl_take isl_set *context);
	__isl_give isl_map *isl_map_gist_domain(
		__isl_take isl_map *map,
		__isl_take isl_set *context);
	__isl_give isl_map *isl_map_gist_range(
		__isl_take isl_map *map,
		__isl_take isl_set *context);
	__isl_give isl_union_map *isl_union_map_gist(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_map *context);
	__isl_give isl_union_map *isl_union_map_gist_params(
		__isl_take isl_union_map *umap,
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_map_gist_domain(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_gist_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);

The gist operation returns a set or relation that has the
same intersection with the context as the input set or relation.
Any implicit equality in the intersection is made explicit in the result,
while all inequalities that are redundant with respect to the intersection
are removed.
In case of union sets and relations, the gist operation is performed
per space.

=back

=head3 Lexicographic Optimization

Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
the following functions
compute a set that contains the lexicographic minimum or maximum
of the elements in C<set> (or C<bset>) for those values of the parameters
that satisfy C<dom>.
If C<empty> is not C<NULL>, then C<*empty> is assigned a set
that contains the parameter values in C<dom> for which C<set> (or C<bset>)
has no elements.
In other words, the union of the parameter values
for which the result is non-empty and of C<*empty>
is equal to C<dom>.

	__isl_give isl_set *isl_basic_set_partial_lexmin(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_set *isl_basic_set_partial_lexmax(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_set *isl_set_partial_lexmin(
		__isl_take isl_set *set, __isl_take isl_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_set *isl_set_partial_lexmax(
		__isl_take isl_set *set, __isl_take isl_set *dom,
		__isl_give isl_set **empty);

Given a (basic) set C<set> (or C<bset>), the following functions simply
return a set containing the lexicographic minimum or maximum
of the elements in C<set> (or C<bset>).
In case of union sets, the optimum is computed per space.

	__isl_give isl_set *isl_basic_set_lexmin(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_basic_set_lexmax(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_lexmin(
		__isl_take isl_set *set);
	__isl_give isl_set *isl_set_lexmax(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_lexmin(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_set *isl_union_set_lexmax(
		__isl_take isl_union_set *uset);

Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
the following functions
compute a relation that maps each element of C<dom>
to the single lexicographic minimum or maximum
of the elements that are associated to that same
element in C<map> (or C<bmap>).
If C<empty> is not C<NULL>, then C<*empty> is assigned a set
that contains the elements in C<dom> that do not map
to any elements in C<map> (or C<bmap>).
In other words, the union of the domain of the result and of C<*empty>
is equal to C<dom>.

	__isl_give isl_map *isl_basic_map_partial_lexmax(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_map *isl_basic_map_partial_lexmin(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_map *isl_map_partial_lexmax(
		__isl_take isl_map *map, __isl_take isl_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_map *isl_map_partial_lexmin(
		__isl_take isl_map *map, __isl_take isl_set *dom,
		__isl_give isl_set **empty);

Given a (basic) map C<map> (or C<bmap>), the following functions simply
return a map mapping each element in the domain of
C<map> (or C<bmap>) to the lexicographic minimum or maximum
of all elements associated to that element.
In case of union relations, the optimum is computed per space.

	__isl_give isl_map *isl_basic_map_lexmin(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_basic_map_lexmax(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_lexmin(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_lexmax(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_lexmin(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_lexmax(
		__isl_take isl_union_map *umap);

The following functions return their result in the form of
a piecewise multi-affine expression
(See L<"Piecewise Multiple Quasi Affine Expressions">),
but are otherwise equivalent to the corresponding functions
returning a basic set or relation.

	__isl_give isl_pw_multi_aff *
	isl_basic_map_lexmin_pw_multi_aff(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_pw_multi_aff *
	isl_basic_set_partial_lexmin_pw_multi_aff(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *
	isl_basic_set_partial_lexmax_pw_multi_aff(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *
	isl_basic_map_partial_lexmin_pw_multi_aff(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *
	isl_basic_map_partial_lexmax_pw_multi_aff(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
		__isl_take isl_map *map);
	__isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
		__isl_take isl_map *map);

=head2 Lists

Lists are defined over several element types, including
C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_constraint>,
C<isl_basic_set>, C<isl_set>, C<isl_ast_expr> and C<isl_ast_node>.
Here we take lists of C<isl_set>s as an example.
Lists can be created, copied, modified and freed using the following functions.

	#include <isl/list.h>
	__isl_give isl_set_list *isl_set_list_from_set(
		__isl_take isl_set *el);
	__isl_give isl_set_list *isl_set_list_alloc(
		isl_ctx *ctx, int n);
	__isl_give isl_set_list *isl_set_list_copy(
		__isl_keep isl_set_list *list);
	__isl_give isl_set_list *isl_set_list_insert(
		__isl_take isl_set_list *list, unsigned pos,
		__isl_take isl_set *el);
	__isl_give isl_set_list *isl_set_list_add(
		__isl_take isl_set_list *list,
		__isl_take isl_set *el);
	__isl_give isl_set_list *isl_set_list_drop(
		__isl_take isl_set_list *list,
		unsigned first, unsigned n);
	__isl_give isl_set_list *isl_set_list_set_set(
		__isl_take isl_set_list *list, int index,
		__isl_take isl_set *set);
	__isl_give isl_set_list *isl_set_list_concat(
		__isl_take isl_set_list *list1,
		__isl_take isl_set_list *list2);
	__isl_give isl_set_list *isl_set_list_sort(
		__isl_take isl_set_list *list,
		int (*cmp)(__isl_keep isl_set *a,
			__isl_keep isl_set *b, void *user),
		void *user);
	void *isl_set_list_free(__isl_take isl_set_list *list);

C<isl_set_list_alloc> creates an empty list with a capacity for
C<n> elements.  C<isl_set_list_from_set> creates a list with a single
element.

Lists can be inspected using the following functions.

	#include <isl/list.h>
	isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
	int isl_set_list_n_set(__isl_keep isl_set_list *list);
	__isl_give isl_set *isl_set_list_get_set(
		__isl_keep isl_set_list *list, int index);
	int isl_set_list_foreach(__isl_keep isl_set_list *list,
		int (*fn)(__isl_take isl_set *el, void *user),
		void *user);
	int isl_set_list_foreach_scc(__isl_keep isl_set_list *list,
		int (*follows)(__isl_keep isl_set *a,
			__isl_keep isl_set *b, void *user),
		void *follows_user
		int (*fn)(__isl_take isl_set *el, void *user),
		void *fn_user);

The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
strongly connected components of the graph with as vertices the elements
of C<list> and a directed edge from vertex C<b> to vertex C<a>
iff C<follows(a, b)> returns C<1>.  The callbacks C<follows> and C<fn>
should return C<-1> on error.

Lists can be printed using

	#include <isl/list.h>
	__isl_give isl_printer *isl_printer_print_set_list(
		__isl_take isl_printer *p,
		__isl_keep isl_set_list *list);

=head2 Multiple Values

An C<isl_multi_val> object represents a sequence of zero or more values,
living in a set space.

An C<isl_multi_val> can be constructed from an C<isl_val_list>
using the following function

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_from_val_list(
		__isl_take isl_space *space,
		__isl_take isl_val_list *list);

The zero multiple value (with value zero for each set dimension)
can be created using the following function.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_zero(
		__isl_take isl_space *space);

Multiple values can be copied and freed using

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_copy(
		__isl_keep isl_multi_val *mv);
	void *isl_multi_val_free(__isl_take isl_multi_val *mv);

They can be inspected using

	#include <isl/val.h>
	isl_ctx *isl_multi_val_get_ctx(
		__isl_keep isl_multi_val *mv);
	unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
		enum isl_dim_type type);
	__isl_give isl_val *isl_multi_val_get_val(
		__isl_keep isl_multi_val *mv, int pos);
	const char *isl_multi_val_get_tuple_name(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type);

They can be modified using

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_set_val(
		__isl_take isl_multi_val *mv, int pos,
		__isl_take isl_val *val);
	__isl_give isl_multi_val *isl_multi_val_set_dim_name(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned pos, const char *s);
	__isl_give isl_multi_val *isl_multi_val_set_tuple_name(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, const char *s);
	__isl_give isl_multi_val *isl_multi_val_set_tuple_id(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, __isl_take isl_id *id);

	__isl_give isl_multi_val *isl_multi_val_insert_dims(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_val *isl_multi_val_add_dims(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_multi_val *isl_multi_val_drop_dims(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned first, unsigned n);

Operations include

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_align_params(
		__isl_take isl_multi_val *mv,
		__isl_take isl_space *model);
	__isl_give isl_multi_val *isl_multi_val_range_splice(
		__isl_take isl_multi_val *mv1, unsigned pos,
		__isl_take isl_multi_val *mv2);
	__isl_give isl_multi_val *isl_multi_val_range_product(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);
	__isl_give isl_multi_val *isl_multi_val_flat_range_product(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_aff *mv2);
	__isl_give isl_multi_val *isl_multi_val_add_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);
	__isl_give isl_multi_val *isl_multi_val_mod_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);
	__isl_give isl_multi_val *isl_multi_val_scale_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);
	__isl_give isl_multi_val *isl_multi_val_scale_multi_val(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);

=head2 Vectors

Vectors can be created, copied and freed using the following functions.

	#include <isl/vec.h>
	__isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
		unsigned size);
	__isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
	void *isl_vec_free(__isl_take isl_vec *vec);

Note that the elements of a newly created vector may have arbitrary values.
The elements can be changed and inspected using the following functions.

	isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
	int isl_vec_size(__isl_keep isl_vec *vec);
	int isl_vec_get_element(__isl_keep isl_vec *vec,
		int pos, isl_int *v);
	__isl_give isl_val *isl_vec_get_element_val(
		__isl_keep isl_vec *vec, int pos);
	__isl_give isl_vec *isl_vec_set_element(
		__isl_take isl_vec *vec, int pos, isl_int v);
	__isl_give isl_vec *isl_vec_set_element_si(
		__isl_take isl_vec *vec, int pos, int v);
	__isl_give isl_vec *isl_vec_set_element_val(
		__isl_take isl_vec *vec, int pos,
		__isl_take isl_val *v);
	__isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
		isl_int v);
	__isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
		int v);
	__isl_give isl_vec *isl_vec_set_val(
		__isl_take isl_vec *vec, __isl_take isl_val *v);
	int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
		__isl_keep isl_vec *vec2, int pos);
	__isl_give isl_vec *isl_vec_fdiv_r(__isl_take isl_vec *vec,
		isl_int m);

C<isl_vec_get_element> will return a negative value if anything went wrong.
In that case, the value of C<*v> is undefined.

The following function can be used to concatenate two vectors.

	__isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
		__isl_take isl_vec *vec2);

=head2 Matrices

Matrices can be created, copied and freed using the following functions.

	#include <isl/mat.h>
	__isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
		unsigned n_row, unsigned n_col);
	__isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
	void *isl_mat_free(__isl_take isl_mat *mat);

Note that the elements of a newly created matrix may have arbitrary values.
The elements can be changed and inspected using the following functions.

	isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
	int isl_mat_rows(__isl_keep isl_mat *mat);
	int isl_mat_cols(__isl_keep isl_mat *mat);
	int isl_mat_get_element(__isl_keep isl_mat *mat,
		int row, int col, isl_int *v);
	__isl_give isl_val *isl_mat_get_element_val(
		__isl_keep isl_mat *mat, int row, int col);
	__isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
		int row, int col, isl_int v);
	__isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
		int row, int col, int v);
	__isl_give isl_mat *isl_mat_set_element_val(
		__isl_take isl_mat *mat, int row, int col,
		__isl_take isl_val *v);

C<isl_mat_get_element> will return a negative value if anything went wrong.
In that case, the value of C<*v> is undefined.

The following function can be used to compute the (right) inverse
of a matrix, i.e., a matrix such that the product of the original
and the inverse (in that order) is a multiple of the identity matrix.
The input matrix is assumed to be of full row-rank.

	__isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);

The following function can be used to compute the (right) kernel
(or null space) of a matrix, i.e., a matrix such that the product of
the original and the kernel (in that order) is the zero matrix.

	__isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);

=head2 Piecewise Quasi Affine Expressions

The zero quasi affine expression or the quasi affine expression
that is equal to a specified dimension on a given domain can be created using

	__isl_give isl_aff *isl_aff_zero_on_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_aff *isl_aff_var_on_domain(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);

Note that the space in which the resulting objects live is a map space
with the given space as domain and a one-dimensional range.

An empty piecewise quasi affine expression (one with no cells)
or a piecewise quasi affine expression with a single cell can
be created using the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_empty(
		__isl_take isl_space *space);
	__isl_give isl_pw_aff *isl_pw_aff_alloc(
		__isl_take isl_set *set, __isl_take isl_aff *aff);
	__isl_give isl_pw_aff *isl_pw_aff_from_aff(
		__isl_take isl_aff *aff);

A piecewise quasi affine expression that is equal to 1 on a set
and 0 outside the set can be created using the following function.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_set_indicator_function(
		__isl_take isl_set *set);

Quasi affine expressions can be copied and freed using

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
	void *isl_aff_free(__isl_take isl_aff *aff);

	__isl_give isl_pw_aff *isl_pw_aff_copy(
		__isl_keep isl_pw_aff *pwaff);
	void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);

A (rational) bound on a dimension can be extracted from an C<isl_constraint>
using the following function.  The constraint is required to have
a non-zero coefficient for the specified dimension.

	#include <isl/constraint.h>
	__isl_give isl_aff *isl_constraint_get_bound(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, int pos);

The entire affine expression of the constraint can also be extracted
using the following function.

	#include <isl/constraint.h>
	__isl_give isl_aff *isl_constraint_get_aff(
		__isl_keep isl_constraint *constraint);

Conversely, an equality constraint equating
the affine expression to zero or an inequality constraint enforcing
the affine expression to be non-negative, can be constructed using

	__isl_give isl_constraint *isl_equality_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_constraint *isl_inequality_from_aff(
		__isl_take isl_aff *aff);

The expression can be inspected using

	#include <isl/aff.h>
	isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
	int isl_aff_dim(__isl_keep isl_aff *aff,
		enum isl_dim_type type);
	__isl_give isl_local_space *isl_aff_get_domain_local_space(
		__isl_keep isl_aff *aff);
	__isl_give isl_local_space *isl_aff_get_local_space(
		__isl_keep isl_aff *aff);
	const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
		enum isl_dim_type type, unsigned pos);
	const char *isl_pw_aff_get_dim_name(
		__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, unsigned pos);
	int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_pw_aff_get_dim_id(
		__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_pw_aff_get_tuple_id(
		__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type);
	int isl_aff_get_constant(__isl_keep isl_aff *aff,
		isl_int *v);
	__isl_give isl_val *isl_aff_get_constant_val(
		__isl_keep isl_aff *aff);
	int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
		enum isl_dim_type type, int pos, isl_int *v);
	__isl_give isl_val *isl_aff_get_coefficient_val(
		__isl_keep isl_aff *aff,
		enum isl_dim_type type, int pos);
	int isl_aff_get_denominator(__isl_keep isl_aff *aff,
		isl_int *v);
	__isl_give isl_val *isl_aff_get_denominator_val(
		__isl_keep isl_aff *aff);
	__isl_give isl_aff *isl_aff_get_div(
		__isl_keep isl_aff *aff, int pos);

	int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
	int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
		int (*fn)(__isl_take isl_set *set,
			  __isl_take isl_aff *aff,
			  void *user), void *user);

	int isl_aff_is_cst(__isl_keep isl_aff *aff);
	int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);

	int isl_aff_involves_dims(__isl_keep isl_aff *aff,
		enum isl_dim_type type, unsigned first, unsigned n);
	int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned first, unsigned n);

	isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
	unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
		enum isl_dim_type type);
	int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);

It can be modified using

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_aff *isl_aff_set_dim_name(
		__isl_take isl_aff *aff, enum isl_dim_type type,
		unsigned pos, const char *s);
	__isl_give isl_aff *isl_aff_set_dim_id(
		__isl_take isl_aff *aff, enum isl_dim_type type,
		unsigned pos, __isl_take isl_id *id);
	__isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
		__isl_take isl_pw_aff *pma,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_aff *isl_aff_set_constant(
		__isl_take isl_aff *aff, isl_int v);
	__isl_give isl_aff *isl_aff_set_constant_si(
		__isl_take isl_aff *aff, int v);
	__isl_give isl_aff *isl_aff_set_constant_val(
		__isl_take isl_aff *aff, __isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_set_coefficient(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos, isl_int v);
	__isl_give isl_aff *isl_aff_set_coefficient_si(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos, int v);
	__isl_give isl_aff *isl_aff_set_coefficient_val(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_set_denominator(
		__isl_take isl_aff *aff, isl_int v);

	__isl_give isl_aff *isl_aff_add_constant(
		__isl_take isl_aff *aff, isl_int v);
	__isl_give isl_aff *isl_aff_add_constant_si(
		__isl_take isl_aff *aff, int v);
	__isl_give isl_aff *isl_aff_add_constant_val(
		__isl_take isl_aff *aff, __isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_add_constant_num(
		__isl_take isl_aff *aff, isl_int v);
	__isl_give isl_aff *isl_aff_add_constant_num_si(
		__isl_take isl_aff *aff, int v);
	__isl_give isl_aff *isl_aff_add_coefficient(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos, isl_int v);
	__isl_give isl_aff *isl_aff_add_coefficient_si(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos, int v);
	__isl_give isl_aff *isl_aff_add_coefficient_val(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);

	__isl_give isl_aff *isl_aff_insert_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_insert_dims(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_aff *isl_aff_add_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_add_dims(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_aff *isl_aff_drop_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_drop_dims(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned first, unsigned n);

Note that C<isl_aff_set_constant>, C<isl_aff_set_constant_si>,
C<isl_aff_set_coefficient> and C<isl_aff_set_coefficient_si>
set the I<numerator> of the constant or coefficient, while
C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
the constant or coefficient as a whole.
The C<add_constant> and C<add_coefficient> functions add an integer
or rational value to
the possibly rational constant or coefficient.
The C<add_constant_num> functions add an integer value to
the numerator.

To check whether an affine expressions is obviously zero
or obviously equal to some other affine expression, use

	#include <isl/aff.h>
	int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
	int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
		__isl_keep isl_aff *aff2);
	int isl_pw_aff_plain_is_equal(
		__isl_keep isl_pw_aff *pwaff1,
		__isl_keep isl_pw_aff *pwaff2);

Operations include

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_pw_aff *isl_pw_aff_add(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_min(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_max(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_pw_aff *isl_pw_aff_sub(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
	__isl_give isl_pw_aff *isl_pw_aff_neg(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
	__isl_give isl_pw_aff *isl_pw_aff_ceil(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
	__isl_give isl_pw_aff *isl_pw_aff_floor(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
		isl_int mod);
	__isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
		__isl_take isl_val *mod);
	__isl_give isl_pw_aff *isl_pw_aff_mod(
		__isl_take isl_pw_aff *pwaff, isl_int mod);
	__isl_give isl_pw_aff *isl_pw_aff_mod_val(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_val *mod);
	__isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
		isl_int f);
	__isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
		__isl_take isl_val *v);
	__isl_give isl_pw_aff *isl_pw_aff_scale(
		__isl_take isl_pw_aff *pwaff, isl_int f);
	__isl_give isl_pw_aff *isl_pw_aff_scale_val(
		__isl_take isl_pw_aff *pa, __isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
		isl_int f);
	__isl_give isl_aff *isl_aff_scale_down_ui(
		__isl_take isl_aff *aff, unsigned f);
	__isl_give isl_aff *isl_aff_scale_down_val(
		__isl_take isl_aff *aff, __isl_take isl_val *v);
	__isl_give isl_pw_aff *isl_pw_aff_scale_down(
		__isl_take isl_pw_aff *pwaff, isl_int f);
	__isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_val *f);

	__isl_give isl_pw_aff *isl_pw_aff_list_min(
		__isl_take isl_pw_aff_list *list);
	__isl_give isl_pw_aff *isl_pw_aff_list_max(
		__isl_take isl_pw_aff_list *list);

	__isl_give isl_pw_aff *isl_pw_aff_coalesce(
		__isl_take isl_pw_aff *pwqp);

	__isl_give isl_aff *isl_aff_align_params(
		__isl_take isl_aff *aff,
		__isl_take isl_space *model);
	__isl_give isl_pw_aff *isl_pw_aff_align_params(
		__isl_take isl_pw_aff *pwaff,
		__isl_take isl_space *model);

	__isl_give isl_aff *isl_aff_project_domain_on_params(
		__isl_take isl_aff *aff);

	__isl_give isl_aff *isl_aff_gist_params(
		__isl_take isl_aff *aff,
		__isl_take isl_set *context);
	__isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
		__isl_take isl_set *context);
	__isl_give isl_pw_aff *isl_pw_aff_gist_params(
		__isl_take isl_pw_aff *pwaff,
		__isl_take isl_set *context);
	__isl_give isl_pw_aff *isl_pw_aff_gist(
		__isl_take isl_pw_aff *pwaff,
		__isl_take isl_set *context);

	__isl_give isl_set *isl_pw_aff_domain(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_set *set);
	__isl_give isl_pw_aff *isl_pw_aff_intersect_params(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_set *set);

	__isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_pw_aff *isl_pw_aff_mul(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_div(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);
	__isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);
	__isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);

When multiplying two affine expressions, at least one of the two needs
to be a constant.  Similarly, when dividing an affine expression by another,
the second expression needs to be a constant.
C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
rounding towards zero.  C<isl_pw_aff_tdiv_r> computes the corresponding
remainder.

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_pullback_multi_aff(
		__isl_take isl_aff *aff,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_pw_multi_aff *pma);

These functions precompose the input expression by the given
C<isl_multi_aff> or C<isl_pw_multi_aff>.  In other words,
the C<isl_multi_aff> or C<isl_pw_multi_aff> is plugged
into the (piecewise) affine expression.
Objects of type C<isl_multi_aff> are described in
L</"Piecewise Multiple Quasi Affine Expressions">.

	#include <isl/aff.h>
	__isl_give isl_basic_set *isl_aff_zero_basic_set(
		__isl_take isl_aff *aff);
	__isl_give isl_basic_set *isl_aff_neg_basic_set(
		__isl_take isl_aff *aff);
	__isl_give isl_basic_set *isl_aff_le_basic_set(
		__isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
	__isl_give isl_basic_set *isl_aff_ge_basic_set(
		__isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
	__isl_give isl_set *isl_pw_aff_eq_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_ne_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_le_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_lt_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_ge_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_gt_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);

	__isl_give isl_set *isl_pw_aff_list_eq_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_ne_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_le_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_lt_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_ge_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_gt_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);

The function C<isl_aff_neg_basic_set> returns a basic set
containing those elements in the domain space
of C<aff> where C<aff> is negative.
The function C<isl_aff_ge_basic_set> returns a basic set
containing those elements in the shared space
of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
The function C<isl_pw_aff_ge_set> returns a set
containing those elements in the shared domain
of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
The functions operating on C<isl_pw_aff_list> apply the corresponding
C<isl_pw_aff> function to each pair of elements in the two lists.

	#include <isl/aff.h>
	__isl_give isl_set *isl_pw_aff_nonneg_set(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_set *isl_pw_aff_zero_set(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_set *isl_pw_aff_non_zero_set(
		__isl_take isl_pw_aff *pwaff);

The function C<isl_pw_aff_nonneg_set> returns a set
containing those elements in the domain
of C<pwaff> where C<pwaff> is non-negative.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_cond(
		__isl_take isl_pw_aff *cond,
		__isl_take isl_pw_aff *pwaff_true,
		__isl_take isl_pw_aff *pwaff_false);

The function C<isl_pw_aff_cond> performs a conditional operator
and returns an expression that is equal to C<pwaff_true>
for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
where C<cond> is zero.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_union_min(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_union_max(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_union_add(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);

The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
expression with a domain that is the union of those of C<pwaff1> and
C<pwaff2> and such that on each cell, the quasi-affine expression is
the maximum of those of C<pwaff1> and C<pwaff2>.  If only one of
C<pwaff1> or C<pwaff2> is defined on a given cell, then the
associated expression is the defined one.

An expression can be read from input using

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_pw_aff *isl_pw_aff_read_from_str(
		isl_ctx *ctx, const char *str);

An expression can be printed using

	#include <isl/aff.h>
	__isl_give isl_printer *isl_printer_print_aff(
		__isl_take isl_printer *p, __isl_keep isl_aff *aff);

	__isl_give isl_printer *isl_printer_print_pw_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_aff *pwaff);

=head2 Piecewise Multiple Quasi Affine Expressions

An C<isl_multi_aff> object represents a sequence of
zero or more affine expressions, all defined on the same domain space.
Similarly, an C<isl_multi_pw_aff> object represents a sequence of
zero or more piecewise affine expressions.

An C<isl_multi_aff> can be constructed from a single
C<isl_aff> or an C<isl_aff_list> using the
following functions.  Similarly for C<isl_multi_pw_aff>.

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
		__isl_take isl_space *space,
		__isl_take isl_aff_list *list);

An empty piecewise multiple quasi affine expression (one with no cells),
the zero piecewise multiple quasi affine expression (with value zero
for each output dimension),
a piecewise multiple quasi affine expression with a single cell (with
either a universe or a specified domain) or
a zero-dimensional piecewise multiple quasi affine expression
on a given domain
can be created using the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
		__isl_take isl_space *space);
	__isl_give isl_multi_aff *isl_multi_aff_zero(
		__isl_take isl_space *space);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
		__isl_take isl_space *space);
	__isl_give isl_multi_aff *isl_multi_aff_identity(
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
		__isl_take isl_space *space);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_from_multi_aff(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
		__isl_take isl_set *set,
		__isl_take isl_multi_aff *maff);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
		__isl_take isl_set *set);

	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_empty(
		__isl_take isl_space *space);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_add_pw_multi_aff(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_domain(
		__isl_take isl_union_set *uset);

A piecewise multiple quasi affine expression can also be initialized
from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
and the C<isl_map> is single-valued.
In case of a conversion from an C<isl_union_set> or an C<isl_union_map>
to an C<isl_union_pw_multi_aff>, these properties need to hold in each space.

	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
		__isl_take isl_map *map);

	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_union_set(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_union_map(
		__isl_take isl_union_map *umap);

Multiple quasi affine expressions can be copied and freed using

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_copy(
		__isl_keep isl_multi_aff *maff);
	void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);

	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
		__isl_keep isl_pw_multi_aff *pma);
	void *isl_pw_multi_aff_free(
		__isl_take isl_pw_multi_aff *pma);

	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_copy(
		__isl_keep isl_union_pw_multi_aff *upma);
	void *isl_union_pw_multi_aff_free(
		__isl_take isl_union_pw_multi_aff *upma);

	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
		__isl_keep isl_multi_pw_aff *mpa);
	void *isl_multi_pw_aff_free(
		__isl_take isl_multi_pw_aff *mpa);

The expression can be inspected using

	#include <isl/aff.h>
	isl_ctx *isl_multi_aff_get_ctx(
		__isl_keep isl_multi_aff *maff);
	isl_ctx *isl_pw_multi_aff_get_ctx(
		__isl_keep isl_pw_multi_aff *pma);
	isl_ctx *isl_union_pw_multi_aff_get_ctx(
		__isl_keep isl_union_pw_multi_aff *upma);
	isl_ctx *isl_multi_pw_aff_get_ctx(
		__isl_keep isl_multi_pw_aff *mpa);
	unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
		enum isl_dim_type type);
	unsigned isl_pw_multi_aff_dim(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	unsigned isl_multi_pw_aff_dim(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type);
	__isl_give isl_aff *isl_multi_aff_get_aff(
		__isl_keep isl_multi_aff *multi, int pos);
	__isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
		__isl_keep isl_pw_multi_aff *pma, int pos);
	__isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
		__isl_keep isl_multi_pw_aff *mpa, int pos);
	const char *isl_pw_multi_aff_get_dim_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_pw_multi_aff_get_dim_id(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned pos);
	const char *isl_multi_aff_get_tuple_name(
		__isl_keep isl_multi_aff *multi,
		enum isl_dim_type type);
	int isl_pw_multi_aff_has_tuple_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	const char *isl_pw_multi_aff_get_tuple_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	int isl_pw_multi_aff_has_tuple_id(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	__isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);

	int isl_pw_multi_aff_foreach_piece(
		__isl_keep isl_pw_multi_aff *pma,
		int (*fn)(__isl_take isl_set *set,
			    __isl_take isl_multi_aff *maff,
			    void *user), void *user);

	int isl_union_pw_multi_aff_foreach_pw_multi_aff(
		__isl_keep isl_union_pw_multi_aff *upma,
		int (*fn)(__isl_take isl_pw_multi_aff *pma,
			    void *user), void *user);

It can be modified using

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_set_aff(
		__isl_take isl_multi_aff *multi, int pos,
		__isl_take isl_aff *aff);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
		__isl_take isl_pw_multi_aff *pma, unsigned pos,
		__isl_take isl_pw_aff *pa);
	__isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, unsigned pos, const char *s);
	__isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, const char *s);
	__isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
		__isl_take isl_pw_multi_aff *pma,
		enum isl_dim_type type, __isl_take isl_id *id);

	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_set_dim_name(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned pos, const char *s);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_set_tuple_name(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, const char *s);

	__isl_give isl_multi_aff *isl_multi_aff_insert_dims(
		__isl_take isl_multi_aff *ma,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_aff *isl_multi_aff_add_dims(
		__isl_take isl_multi_aff *ma,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_multi_aff *isl_multi_aff_drop_dims(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
		__isl_take isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned first, unsigned n);

	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned n);

To check whether two multiple affine expressions are
obviously equal to each other, use

	int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
		__isl_keep isl_multi_aff *maff2);
	int isl_pw_multi_aff_plain_is_equal(
		__isl_keep isl_pw_multi_aff *pma1,
		__isl_keep isl_pw_multi_aff *pma2);

Operations include

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_multi_aff *isl_multi_aff_add(
		__isl_take isl_multi_aff *maff1,
		__isl_take isl_multi_aff *maff2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_multi_aff *isl_multi_aff_sub(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);

C<isl_multi_aff_sub> subtracts the second argument from the first.

	__isl_give isl_multi_aff *isl_multi_aff_scale(
		__isl_take isl_multi_aff *maff,
		isl_int f);
	__isl_give isl_multi_aff *isl_multi_aff_scale_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_val *v);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_val *v);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_val *v);
	__isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_scale_multi_val(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_scale_multi_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_multi_val *mv);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_scale_multi_val(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_aff *isl_multi_aff_scale_vec(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_vec *v);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_vec(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_vec *v);
	__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_vec(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_vec *v);

C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
by the corresponding elements of C<mv>.
C<isl_multi_aff_scale_vec> scales the first elements of C<ma>
by the corresponding elements of C<v>.

	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_intersect_domain(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_union_set *uset);
	__isl_give isl_multi_aff *isl_multi_aff_lift(
		__isl_take isl_multi_aff *maff,
		__isl_give isl_local_space **ls);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_multi_aff *isl_multi_aff_align_params(
		__isl_take isl_multi_aff *multi,
		__isl_take isl_space *model);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_space *model);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_project_domain_on_params(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_multi_aff *isl_multi_aff_gist_params(
		__isl_take isl_multi_aff *maff,
		__isl_take isl_set *context);
	__isl_give isl_multi_aff *isl_multi_aff_gist(
		__isl_take isl_multi_aff *maff,
		__isl_take isl_set *context);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_set *isl_pw_multi_aff_domain(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_set *isl_union_pw_multi_aff_domain(
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_multi_aff *isl_multi_aff_range_splice(
		__isl_take isl_multi_aff *ma1, unsigned pos,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_aff *isl_multi_aff_splice(
		__isl_take isl_multi_aff *ma1,
		unsigned in_pos, unsigned out_pos,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_aff *isl_multi_aff_range_product(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_aff *isl_multi_aff_product(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_range_product(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_flat_range_product(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_flat_range_product(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_range_splice(
		__isl_take isl_multi_pw_aff *mpa1, unsigned pos,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
		__isl_take isl_multi_pw_aff *mpa1,
		unsigned in_pos, unsigned out_pos,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_range_product(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_flat_range_product(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);

If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
then it is assigned the local space that lies at the basis of
the lifting applied.

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_pullback_multi_aff(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_pullback_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);

The function C<isl_multi_aff_pullback_multi_aff> precomposes C<ma1> by C<ma2>.
In other words, C<ma2> is plugged
into C<ma1>.

	__isl_give isl_set *isl_multi_aff_lex_le_set(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_set *isl_multi_aff_lex_ge_set(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);

The function C<isl_multi_aff_lex_le_set> returns a set
containing those elements in the shared domain space
where C<ma1> is lexicographically smaller than or
equal to C<ma2>.

An expression can be read from input using

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_read_from_str(
		isl_ctx *ctx, const char *str);

An expression can be printed using

	#include <isl/aff.h>
	__isl_give isl_printer *isl_printer_print_multi_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_multi_aff *maff);
	__isl_give isl_printer *isl_printer_print_pw_multi_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_multi_aff *upma);
	__isl_give isl_printer *isl_printer_print_multi_pw_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_multi_pw_aff *mpa);

=head2 Points

Points are elements of a set.  They can be used to construct
simple sets (boxes) or they can be used to represent the
individual elements of a set.
The zero point (the origin) can be created using

	__isl_give isl_point *isl_point_zero(__isl_take isl_space *space);

The coordinates of a point can be inspected, set and changed
using

	int isl_point_get_coordinate(__isl_keep isl_point *pnt,
		enum isl_dim_type type, int pos, isl_int *v);
	__isl_give isl_val *isl_point_get_coordinate_val(
		__isl_keep isl_point *pnt,
		enum isl_dim_type type, int pos);
	__isl_give isl_point *isl_point_set_coordinate(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos, isl_int v);
	__isl_give isl_point *isl_point_set_coordinate_val(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);

	__isl_give isl_point *isl_point_add_ui(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos, unsigned val);
	__isl_give isl_point *isl_point_sub_ui(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos, unsigned val);

Other properties can be obtained using

	isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);

Points can be copied or freed using

	__isl_give isl_point *isl_point_copy(
		__isl_keep isl_point *pnt);
	void isl_point_free(__isl_take isl_point *pnt);

A singleton set can be created from a point using

	__isl_give isl_basic_set *isl_basic_set_from_point(
		__isl_take isl_point *pnt);
	__isl_give isl_set *isl_set_from_point(
		__isl_take isl_point *pnt);

and a box can be created from two opposite extremal points using

	__isl_give isl_basic_set *isl_basic_set_box_from_points(
		__isl_take isl_point *pnt1,
		__isl_take isl_point *pnt2);
	__isl_give isl_set *isl_set_box_from_points(
		__isl_take isl_point *pnt1,
		__isl_take isl_point *pnt2);

All elements of a B<bounded> (union) set can be enumerated using
the following functions.

	int isl_set_foreach_point(__isl_keep isl_set *set,
		int (*fn)(__isl_take isl_point *pnt, void *user),
		void *user);
	int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
		int (*fn)(__isl_take isl_point *pnt, void *user),
		void *user);

The function C<fn> is called for each integer point in
C<set> with as second argument the last argument of
the C<isl_set_foreach_point> call.  The function C<fn>
should return C<0> on success and C<-1> on failure.
In the latter case, C<isl_set_foreach_point> will stop
enumerating and return C<-1> as well.
If the enumeration is performed successfully and to completion,
then C<isl_set_foreach_point> returns C<0>.

To obtain a single point of a (basic) set, use

	__isl_give isl_point *isl_basic_set_sample_point(
		__isl_take isl_basic_set *bset);
	__isl_give isl_point *isl_set_sample_point(
		__isl_take isl_set *set);

If C<set> does not contain any (integer) points, then the
resulting point will be ``void'', a property that can be
tested using

	int isl_point_is_void(__isl_keep isl_point *pnt);

=head2 Piecewise Quasipolynomials

A piecewise quasipolynomial is a particular kind of function that maps
a parametric point to a rational value.
More specifically, a quasipolynomial is a polynomial expression in greatest
integer parts of affine expressions of parameters and variables.
A piecewise quasipolynomial is a subdivision of a given parametric
domain into disjoint cells with a quasipolynomial associated to
each cell.  The value of the piecewise quasipolynomial at a given
point is the value of the quasipolynomial associated to the cell
that contains the point.  Outside of the union of cells,
the value is assumed to be zero.
For example, the piecewise quasipolynomial

	[n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }

maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
A given piecewise quasipolynomial has a fixed domain dimension.
Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
defined over different domains.
Piecewise quasipolynomials are mainly used by the C<barvinok>
library for representing the number of elements in a parametric set or map.
For example, the piecewise quasipolynomial above represents
the number of points in the map

	[n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }

=head3 Input and Output

Piecewise quasipolynomials can be read from input using

	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_read_from_str(
		isl_ctx *ctx, const char *str);

Quasipolynomials and piecewise quasipolynomials can be printed
using the following functions.

	__isl_give isl_printer *isl_printer_print_qpolynomial(
		__isl_take isl_printer *p,
		__isl_keep isl_qpolynomial *qp);

	__isl_give isl_printer *isl_printer_print_pw_qpolynomial(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_qpolynomial *pwqp);

	__isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_qpolynomial *upwqp);

The output format of the printer
needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
is supported.
In case of printing in C<ISL_FORMAT_C>, the user may want
to set the names of all dimensions

	__isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
		__isl_take isl_qpolynomial *qp,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_set_dim_name(
		__isl_take isl_pw_qpolynomial *pwqp,
		enum isl_dim_type type, unsigned pos,
		const char *s);

=head3 Creating New (Piecewise) Quasipolynomials

Some simple quasipolynomials can be created using the following functions.
More complicated quasipolynomials can be created by applying
operations such as addition and multiplication
on the resulting quasipolynomials

	__isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
		__isl_take isl_space *domain,
		const isl_int n, const isl_int d);
	__isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
		__isl_take isl_space *domain,
		__isl_take isl_val *val);
	__isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
		__isl_take isl_space *domain,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
		__isl_take isl_aff *aff);

Note that the space in which a quasipolynomial lives is a map space
with a one-dimensional range.  The C<domain> argument in some of
the functions above corresponds to the domain of this map space.

The zero piecewise quasipolynomial or a piecewise quasipolynomial
with a single cell can be created using the following functions.
Multiple of these single cell piecewise quasipolynomials can
be combined to create more complicated piecewise quasipolynomials.

	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
		__isl_take isl_space *space);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
		__isl_take isl_set *set,
		__isl_take isl_qpolynomial *qp);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
		__isl_take isl_qpolynomial *qp);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
		__isl_take isl_pw_aff *pwaff);

	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
		__isl_take isl_space *space);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_pw_qpolynomial *pwqp);

Quasipolynomials can be copied and freed again using the following
functions.

	__isl_give isl_qpolynomial *isl_qpolynomial_copy(
		__isl_keep isl_qpolynomial *qp);
	void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);

	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
		__isl_keep isl_pw_qpolynomial *pwqp);
	void *isl_pw_qpolynomial_free(
		__isl_take isl_pw_qpolynomial *pwqp);

	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	void *isl_union_pw_qpolynomial_free(
		__isl_take isl_union_pw_qpolynomial *upwqp);

=head3 Inspecting (Piecewise) Quasipolynomials

To iterate over all piecewise quasipolynomials in a union
piecewise quasipolynomial, use the following function

	int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
		__isl_keep isl_union_pw_qpolynomial *upwqp,
		int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
		void *user);

To extract the piecewise quasipolynomial in a given space from a union, use

	__isl_give isl_pw_qpolynomial *
	isl_union_pw_qpolynomial_extract_pw_qpolynomial(
		__isl_keep isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_space *space);

To iterate over the cells in a piecewise quasipolynomial,
use either of the following two functions

	int isl_pw_qpolynomial_foreach_piece(
		__isl_keep isl_pw_qpolynomial *pwqp,
		int (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial *qp,
			  void *user), void *user);
	int isl_pw_qpolynomial_foreach_lifted_piece(
		__isl_keep isl_pw_qpolynomial *pwqp,
		int (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial *qp,
			  void *user), void *user);

As usual, the function C<fn> should return C<0> on success
and C<-1> on failure.  The difference between
C<isl_pw_qpolynomial_foreach_piece> and
C<isl_pw_qpolynomial_foreach_lifted_piece> is that
C<isl_pw_qpolynomial_foreach_lifted_piece> will first
compute unique representations for all existentially quantified
variables and then turn these existentially quantified variables
into extra set variables, adapting the associated quasipolynomial
accordingly.  This means that the C<set> passed to C<fn>
will not have any existentially quantified variables, but that
the dimensions of the sets may be different for different
invocations of C<fn>.

The constant term of a quasipolynomial can be extracted using

	__isl_give isl_val *isl_qpolynomial_get_constant_val(
		__isl_keep isl_qpolynomial *qp);

To iterate over all terms in a quasipolynomial,
use

	int isl_qpolynomial_foreach_term(
		__isl_keep isl_qpolynomial *qp,
		int (*fn)(__isl_take isl_term *term,
			  void *user), void *user);

The terms themselves can be inspected and freed using
these functions

	unsigned isl_term_dim(__isl_keep isl_term *term,
		enum isl_dim_type type);
	void isl_term_get_num(__isl_keep isl_term *term,
		isl_int *n);
	void isl_term_get_den(__isl_keep isl_term *term,
		isl_int *d);
	__isl_give isl_val *isl_term_get_coefficient_val(
		__isl_keep isl_term *term);
	int isl_term_get_exp(__isl_keep isl_term *term,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_aff *isl_term_get_div(
		__isl_keep isl_term *term, unsigned pos);
	void isl_term_free(__isl_take isl_term *term);

Each term is a product of parameters, set variables and
integer divisions.  The function C<isl_term_get_exp>
returns the exponent of a given dimensions in the given term.
The C<isl_int>s in the arguments of C<isl_term_get_num>
and C<isl_term_get_den> need to have been initialized
using C<isl_int_init> before calling these functions.

=head3 Properties of (Piecewise) Quasipolynomials

To check whether a quasipolynomial is actually a constant,
use the following function.

	int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
		isl_int *n, isl_int *d);

If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
then the numerator and denominator of the constant
are returned in C<*n> and C<*d>, respectively.

To check whether two union piecewise quasipolynomials are
obviously equal, use

	int isl_union_pw_qpolynomial_plain_is_equal(
		__isl_keep isl_union_pw_qpolynomial *upwqp1,
		__isl_keep isl_union_pw_qpolynomial *upwqp2);

=head3 Operations on (Piecewise) Quasipolynomials

	__isl_give isl_qpolynomial *isl_qpolynomial_scale(
		__isl_take isl_qpolynomial *qp, isl_int v);
	__isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_val *v);
	__isl_give isl_qpolynomial *isl_qpolynomial_neg(
		__isl_take isl_qpolynomial *qp);
	__isl_give isl_qpolynomial *isl_qpolynomial_add(
		__isl_take isl_qpolynomial *qp1,
		__isl_take isl_qpolynomial *qp2);
	__isl_give isl_qpolynomial *isl_qpolynomial_sub(
		__isl_take isl_qpolynomial *qp1,
		__isl_take isl_qpolynomial *qp2);
	__isl_give isl_qpolynomial *isl_qpolynomial_mul(
		__isl_take isl_qpolynomial *qp1,
		__isl_take isl_qpolynomial *qp2);
	__isl_give isl_qpolynomial *isl_qpolynomial_pow(
		__isl_take isl_qpolynomial *qp, unsigned exponent);

	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
		__isl_take isl_pw_qpolynomial *pwqp,
		enum isl_dim_type type, unsigned n,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_scale_val(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
		__isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);

	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_scale_val(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
		__isl_take isl_union_pw_qpolynomial *upwqp1,
		__isl_take isl_union_pw_qpolynomial *upwqp2);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
		__isl_take isl_union_pw_qpolynomial *upwqp1,
		__isl_take isl_union_pw_qpolynomial *upwqp2);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
		__isl_take isl_union_pw_qpolynomial *upwqp1,
		__isl_take isl_union_pw_qpolynomial *upwqp2);

	__isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_point *pnt);

	__isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_point *pnt);

	__isl_give isl_set *isl_pw_qpolynomial_domain(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
		__isl_take isl_pw_qpolynomial *pwpq,
		__isl_take isl_set *set);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
		__isl_take isl_pw_qpolynomial *pwpq,
		__isl_take isl_set *set);

	__isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
		__isl_take isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
		__isl_take isl_union_pw_qpolynomial *upwpq,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_intersect_params(
		__isl_take isl_union_pw_qpolynomial *upwpq,
		__isl_take isl_set *set);

	__isl_give isl_qpolynomial *isl_qpolynomial_align_params(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_space *model);

	__isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
		__isl_take isl_qpolynomial *qp);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
		__isl_take isl_pw_qpolynomial *pwqp);

	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
		__isl_take isl_union_pw_qpolynomial *upwqp);

	__isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_set *context);
	__isl_give isl_qpolynomial *isl_qpolynomial_gist(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_set *context);

	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_set *context);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_set *context);

	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_gist_params(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_set *context);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_union_set *context);

The gist operation applies the gist operation to each of
the cells in the domain of the input piecewise quasipolynomial.
The context is also exploited
to simplify the quasipolynomials associated to each cell.

	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
		__isl_take isl_pw_qpolynomial *pwqp, int sign);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_to_polynomial(
		__isl_take isl_union_pw_qpolynomial *upwqp, int sign);

Approximate each quasipolynomial by a polynomial.  If C<sign> is positive,
the polynomial will be an overapproximation.  If C<sign> is negative,
it will be an underapproximation.  If C<sign> is zero, the approximation
will lie somewhere in between.

=head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions

A piecewise quasipolynomial reduction is a piecewise
reduction (or fold) of quasipolynomials.
In particular, the reduction can be maximum or a minimum.
The objects are mainly used to represent the result of
an upper or lower bound on a quasipolynomial over its domain,
i.e., as the result of the following function.

	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
		__isl_take isl_pw_qpolynomial *pwqp,
		enum isl_fold type, int *tight);

	__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		enum isl_fold type, int *tight);

The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
is the returned bound is known be tight, i.e., for each value
of the parameters there is at least
one element in the domain that reaches the bound.
If the domain of C<pwqp> is not wrapping, then the bound is computed
over all elements in that domain and the result has a purely parametric
domain.  If the domain of C<pwqp> is wrapping, then the bound is
computed over the range of the wrapped relation.  The domain of the
wrapped relation becomes the domain of the result.

A (piecewise) quasipolynomial reduction can be copied or freed using the
following functions.

	__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
		__isl_keep isl_qpolynomial_fold *fold);
	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);
	void isl_qpolynomial_fold_free(
		__isl_take isl_qpolynomial_fold *fold);
	void *isl_pw_qpolynomial_fold_free(
		__isl_take isl_pw_qpolynomial_fold *pwf);
	void *isl_union_pw_qpolynomial_fold_free(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);

=head3 Printing Piecewise Quasipolynomial Reductions

Piecewise quasipolynomial reductions can be printed
using the following function.

	__isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);

For C<isl_printer_print_pw_qpolynomial_fold>,
output format of the printer
needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
For C<isl_printer_print_union_pw_qpolynomial_fold>,
output format of the printer
needs to be set to C<ISL_FORMAT_ISL>.
In case of printing in C<ISL_FORMAT_C>, the user may want
to set the names of all dimensions

	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_set_dim_name(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		enum isl_dim_type type, unsigned pos,
		const char *s);

=head3 Inspecting (Piecewise) Quasipolynomial Reductions

To iterate over all piecewise quasipolynomial reductions in a union
piecewise quasipolynomial reduction, use the following function

	int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf,
		int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
			    void *user), void *user);

To iterate over the cells in a piecewise quasipolynomial reduction,
use either of the following two functions

	int isl_pw_qpolynomial_fold_foreach_piece(
		__isl_keep isl_pw_qpolynomial_fold *pwf,
		int (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial_fold *fold,
			  void *user), void *user);
	int isl_pw_qpolynomial_fold_foreach_lifted_piece(
		__isl_keep isl_pw_qpolynomial_fold *pwf,
		int (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial_fold *fold,
			  void *user), void *user);

See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
of the difference between these two functions.

To iterate over all quasipolynomials in a reduction, use

	int isl_qpolynomial_fold_foreach_qpolynomial(
		__isl_keep isl_qpolynomial_fold *fold,
		int (*fn)(__isl_take isl_qpolynomial *qp,
			  void *user), void *user);

=head3 Properties of Piecewise Quasipolynomial Reductions

To check whether two union piecewise quasipolynomial reductions are
obviously equal, use

	int isl_union_pw_qpolynomial_fold_plain_is_equal(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf1,
		__isl_keep isl_union_pw_qpolynomial_fold *upwf2);

=head3 Operations on Piecewise Quasipolynomial Reductions

	__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
		__isl_take isl_qpolynomial_fold *fold, isl_int v);
	__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_scale_val(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_scale_val(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_val *v);

	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
		__isl_take isl_pw_qpolynomial_fold *pwf1,
		__isl_take isl_pw_qpolynomial_fold *pwf2);

	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
		__isl_take isl_pw_qpolynomial_fold *pwf1,
		__isl_take isl_pw_qpolynomial_fold *pwf2);

	__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
		__isl_take isl_union_pw_qpolynomial_fold *upwf1,
		__isl_take isl_union_pw_qpolynomial_fold *upwf2);

	__isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_point *pnt);

	__isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_point *pnt);

	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_intersect_params(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *set);

	__isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);
	__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_intersect_params(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_set *set);

	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
		__isl_take isl_pw_qpolynomial_fold *pwf);

	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
		__isl_take isl_pw_qpolynomial_fold *pwf);

	__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);

	__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_set *context);
	__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_set *context);

	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *context);
	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *context);

	__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_union_set *context);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_gist_params(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_set *context);

The gist operation applies the gist operation to each of
the cells in the domain of the input piecewise quasipolynomial reduction.
In future, the operation will also exploit the context
to simplify the quasipolynomial reductions associated to each cell.

	__isl_give isl_pw_qpolynomial_fold *
	isl_set_apply_pw_qpolynomial_fold(
		__isl_take isl_set *set,
		__isl_take isl_pw_qpolynomial_fold *pwf,
		int *tight);
	__isl_give isl_pw_qpolynomial_fold *
	isl_map_apply_pw_qpolynomial_fold(
		__isl_take isl_map *map,
		__isl_take isl_pw_qpolynomial_fold *pwf,
		int *tight);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_set_apply_union_pw_qpolynomial_fold(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		int *tight);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_map_apply_union_pw_qpolynomial_fold(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		int *tight);

The functions taking a map
compose the given map with the given piecewise quasipolynomial reduction.
That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
over all elements in the intersection of the range of the map
and the domain of the piecewise quasipolynomial reduction
as a function of an element in the domain of the map.
The functions taking a set compute a bound over all elements in the
intersection of the set and the domain of the
piecewise quasipolynomial reduction.

=head2 Parametric Vertex Enumeration

The parametric vertex enumeration described in this section
is mainly intended to be used internally and by the C<barvinok>
library.

	#include <isl/vertices.h>
	__isl_give isl_vertices *isl_basic_set_compute_vertices(
		__isl_keep isl_basic_set *bset);

The function C<isl_basic_set_compute_vertices> performs the
actual computation of the parametric vertices and the chamber
decomposition and store the result in an C<isl_vertices> object.
This information can be queried by either iterating over all
the vertices or iterating over all the chambers or cells
and then iterating over all vertices that are active on the chamber.

	int isl_vertices_foreach_vertex(
		__isl_keep isl_vertices *vertices,
		int (*fn)(__isl_take isl_vertex *vertex, void *user),
		void *user);

	int isl_vertices_foreach_cell(
		__isl_keep isl_vertices *vertices,
		int (*fn)(__isl_take isl_cell *cell, void *user),
		void *user);
	int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
		int (*fn)(__isl_take isl_vertex *vertex, void *user),
		void *user);

Other operations that can be performed on an C<isl_vertices> object are
the following.

	isl_ctx *isl_vertices_get_ctx(
		__isl_keep isl_vertices *vertices);
	int isl_vertices_get_n_vertices(
		__isl_keep isl_vertices *vertices);
	void isl_vertices_free(__isl_take isl_vertices *vertices);

Vertices can be inspected and destroyed using the following functions.

	isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
	int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
	__isl_give isl_basic_set *isl_vertex_get_domain(
		__isl_keep isl_vertex *vertex);
	__isl_give isl_basic_set *isl_vertex_get_expr(
		__isl_keep isl_vertex *vertex);
	void isl_vertex_free(__isl_take isl_vertex *vertex);

C<isl_vertex_get_expr> returns a singleton parametric set describing
the vertex, while C<isl_vertex_get_domain> returns the activity domain
of the vertex.
Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
B<rational> basic sets, so they should mainly be used for inspection
and should not be mixed with integer sets.

Chambers can be inspected and destroyed using the following functions.

	isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
	__isl_give isl_basic_set *isl_cell_get_domain(
		__isl_keep isl_cell *cell);
	void isl_cell_free(__isl_take isl_cell *cell);

=head1 Polyhedral Compilation Library

This section collects functionality in C<isl> that has been specifically
designed for use during polyhedral compilation.

=head2 Dependence Analysis

C<isl> contains specialized functionality for performing
array dataflow analysis.  That is, given a I<sink> access relation
and a collection of possible I<source> access relations,
C<isl> can compute relations that describe
for each iteration of the sink access, which iteration
of which of the source access relations was the last
to access the same data element before the given iteration
of the sink access.
The resulting dependence relations map source iterations
to the corresponding sink iterations.
To compute standard flow dependences, the sink should be
a read, while the sources should be writes.
If any of the source accesses are marked as being I<may>
accesses, then there will be a dependence from the last
I<must> access B<and> from any I<may> access that follows
this last I<must> access.
In particular, if I<all> sources are I<may> accesses,
then memory based dependence analysis is performed.
If, on the other hand, all sources are I<must> accesses,
then value based dependence analysis is performed.

	#include <isl/flow.h>

	typedef int (*isl_access_level_before)(void *first, void *second);

	__isl_give isl_access_info *isl_access_info_alloc(
		__isl_take isl_map *sink,
		void *sink_user, isl_access_level_before fn,
		int max_source);
	__isl_give isl_access_info *isl_access_info_add_source(
		__isl_take isl_access_info *acc,
		__isl_take isl_map *source, int must,
		void *source_user);
	void *isl_access_info_free(__isl_take isl_access_info *acc);

	__isl_give isl_flow *isl_access_info_compute_flow(
		__isl_take isl_access_info *acc);

	int isl_flow_foreach(__isl_keep isl_flow *deps,
		int (*fn)(__isl_take isl_map *dep, int must,
			  void *dep_user, void *user),
		void *user);
	__isl_give isl_map *isl_flow_get_no_source(
		__isl_keep isl_flow *deps, int must);
	void isl_flow_free(__isl_take isl_flow *deps);

The function C<isl_access_info_compute_flow> performs the actual
dependence analysis.  The other functions are used to construct
the input for this function or to read off the output.

The input is collected in an C<isl_access_info>, which can
be created through a call to C<isl_access_info_alloc>.
The arguments to this functions are the sink access relation
C<sink>, a token C<sink_user> used to identify the sink
access to the user, a callback function for specifying the
relative order of source and sink accesses, and the number
of source access relations that will be added.
The callback function has type C<int (*)(void *first, void *second)>.
The function is called with two user supplied tokens identifying
either a source or the sink and it should return the shared nesting
level and the relative order of the two accesses.
In particular, let I<n> be the number of loops shared by
the two accesses.  If C<first> precedes C<second> textually,
then the function should return I<2 * n + 1>; otherwise,
it should return I<2 * n>.
The sources can be added to the C<isl_access_info> by performing
(at most) C<max_source> calls to C<isl_access_info_add_source>.
C<must> indicates whether the source is a I<must> access
or a I<may> access.  Note that a multi-valued access relation
should only be marked I<must> if every iteration in the domain
of the relation accesses I<all> elements in its image.
The C<source_user> token is again used to identify
the source access.  The range of the source access relation
C<source> should have the same dimension as the range
of the sink access relation.
The C<isl_access_info_free> function should usually not be
called explicitly, because it is called implicitly by
C<isl_access_info_compute_flow>.

The result of the dependence analysis is collected in an
C<isl_flow>.  There may be elements of
the sink access for which no preceding source access could be
found or for which all preceding sources are I<may> accesses.
The relations containing these elements can be obtained through
calls to C<isl_flow_get_no_source>, the first with C<must> set
and the second with C<must> unset.
In the case of standard flow dependence analysis,
with the sink a read and the sources I<must> writes,
the first relation corresponds to the reads from uninitialized
array elements and the second relation is empty.
The actual flow dependences can be extracted using
C<isl_flow_foreach>.  This function will call the user-specified
callback function C<fn> for each B<non-empty> dependence between
a source and the sink.  The callback function is called
with four arguments, the actual flow dependence relation
mapping source iterations to sink iterations, a boolean that
indicates whether it is a I<must> or I<may> dependence, a token
identifying the source and an additional C<void *> with value
equal to the third argument of the C<isl_flow_foreach> call.
A dependence is marked I<must> if it originates from a I<must>
source and if it is not followed by any I<may> sources.

After finishing with an C<isl_flow>, the user should call
C<isl_flow_free> to free all associated memory.

A higher-level interface to dependence analysis is provided
by the following function.

	#include <isl/flow.h>

	int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
		__isl_take isl_union_map *must_source,
		__isl_take isl_union_map *may_source,
		__isl_take isl_union_map *schedule,
		__isl_give isl_union_map **must_dep,
		__isl_give isl_union_map **may_dep,
		__isl_give isl_union_map **must_no_source,
		__isl_give isl_union_map **may_no_source);

The arrays are identified by the tuple names of the ranges
of the accesses.  The iteration domains by the tuple names
of the domains of the accesses and of the schedule.
The relative order of the iteration domains is given by the
schedule.  The relations returned through C<must_no_source>
and C<may_no_source> are subsets of C<sink>.
Any of C<must_dep>, C<may_dep>, C<must_no_source>
or C<may_no_source> may be C<NULL>, but a C<NULL> value for
any of the other arguments is treated as an error.

=head3 Interaction with Dependence Analysis

During the dependence analysis, we frequently need to perform
the following operation.  Given a relation between sink iterations
and potential source iterations from a particular source domain,
what is the last potential source iteration corresponding to each
sink iteration.  It can sometimes be convenient to adjust
the set of potential source iterations before or after each such operation.
The prototypical example is fuzzy array dataflow analysis,
where we need to analyze if, based on data-dependent constraints,
the sink iteration can ever be executed without one or more of
the corresponding potential source iterations being executed.
If so, we can introduce extra parameters and select an unknown
but fixed source iteration from the potential source iterations.
To be able to perform such manipulations, C<isl> provides the following
function.

	#include <isl/flow.h>

	typedef __isl_give isl_restriction *(*isl_access_restrict)(
		__isl_keep isl_map *source_map,
		__isl_keep isl_set *sink, void *source_user,
		void *user);
	__isl_give isl_access_info *isl_access_info_set_restrict(
		__isl_take isl_access_info *acc,
		isl_access_restrict fn, void *user);

The function C<isl_access_info_set_restrict> should be called
before calling C<isl_access_info_compute_flow> and registers a callback function
that will be called any time C<isl> is about to compute the last
potential source.  The first argument is the (reverse) proto-dependence,
mapping sink iterations to potential source iterations.
The second argument represents the sink iterations for which
we want to compute the last source iteration.
The third argument is the token corresponding to the source
and the final argument is the token passed to C<isl_access_info_set_restrict>.
The callback is expected to return a restriction on either the input or
the output of the operation computing the last potential source.
If the input needs to be restricted then restrictions are needed
for both the source and the sink iterations.  The sink iterations
and the potential source iterations will be intersected with these sets.
If the output needs to be restricted then only a restriction on the source
iterations is required.
If any error occurs, the callback should return C<NULL>.
An C<isl_restriction> object can be created, freed and inspected
using the following functions.

	#include <isl/flow.h>

	__isl_give isl_restriction *isl_restriction_input(
		__isl_take isl_set *source_restr,
		__isl_take isl_set *sink_restr);
	__isl_give isl_restriction *isl_restriction_output(
		__isl_take isl_set *source_restr);
	__isl_give isl_restriction *isl_restriction_none(
		__isl_take isl_map *source_map);
	__isl_give isl_restriction *isl_restriction_empty(
		__isl_take isl_map *source_map);
	void *isl_restriction_free(
		__isl_take isl_restriction *restr);
	isl_ctx *isl_restriction_get_ctx(
		__isl_keep isl_restriction *restr);

C<isl_restriction_none> and C<isl_restriction_empty> are special
cases of C<isl_restriction_input>.  C<isl_restriction_none>
is essentially equivalent to

	isl_restriction_input(isl_set_universe(
	    isl_space_range(isl_map_get_space(source_map))),
			    isl_set_universe(
	    isl_space_domain(isl_map_get_space(source_map))));

whereas C<isl_restriction_empty> is essentially equivalent to

	isl_restriction_input(isl_set_empty(
	    isl_space_range(isl_map_get_space(source_map))),
			    isl_set_universe(
	    isl_space_domain(isl_map_get_space(source_map))));

=head2 Scheduling

B<The functionality described in this section is fairly new
and may be subject to change.>

The following function can be used to compute a schedule
for a union of domains.
By default, the algorithm used to construct the schedule is similar
to that of C<Pluto>.
Alternatively, Feautrier's multi-dimensional scheduling algorithm can
be selected.
The generated schedule respects all C<validity> dependences.
That is, all dependence distances over these dependences in the
scheduled space are lexicographically positive.
The default algorithm tries to minimize the dependence distances over
C<proximity> dependences.
Moreover, it tries to obtain sequences (bands) of schedule dimensions
for groups of domains where the dependence distances have only
non-negative values.
When using Feautrier's algorithm, the C<proximity> dependence
distances are only minimized during the extension to a
full-dimensional schedule.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_union_set_compute_schedule(
		__isl_take isl_union_set *domain,
		__isl_take isl_union_map *validity,
		__isl_take isl_union_map *proximity);
	void *isl_schedule_free(__isl_take isl_schedule *sched);

A mapping from the domains to the scheduled space can be obtained
from an C<isl_schedule> using the following function.

	__isl_give isl_union_map *isl_schedule_get_map(
		__isl_keep isl_schedule *sched);

A representation of the schedule can be printed using
	 
	__isl_give isl_printer *isl_printer_print_schedule(
		__isl_take isl_printer *p,
		__isl_keep isl_schedule *schedule);

A representation of the schedule as a forest of bands can be obtained
using the following function.

	__isl_give isl_band_list *isl_schedule_get_band_forest(
		__isl_keep isl_schedule *schedule);

The individual bands can be visited in depth-first post-order
using the following function.

	#include <isl/schedule.h>
	int isl_schedule_foreach_band(
		__isl_keep isl_schedule *sched,
		int (*fn)(__isl_keep isl_band *band, void *user),
		void *user);

The list can be manipulated as explained in L<"Lists">.
The bands inside the list can be copied and freed using the following
functions.

	#include <isl/band.h>
	__isl_give isl_band *isl_band_copy(
		__isl_keep isl_band *band);
	void *isl_band_free(__isl_take isl_band *band);

Each band contains zero or more scheduling dimensions.
These are referred to as the members of the band.
The section of the schedule that corresponds to the band is
referred to as the partial schedule of the band.
For those nodes that participate in a band, the outer scheduling
dimensions form the prefix schedule, while the inner scheduling
dimensions form the suffix schedule.
That is, if we take a cut of the band forest, then the union of
the concatenations of the prefix, partial and suffix schedules of
each band in the cut is equal to the entire schedule (modulo
some possible padding at the end with zero scheduling dimensions).
The properties of a band can be inspected using the following functions.

	#include <isl/band.h>
	isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);

	int isl_band_has_children(__isl_keep isl_band *band);
	__isl_give isl_band_list *isl_band_get_children(
		__isl_keep isl_band *band);

	__isl_give isl_union_map *isl_band_get_prefix_schedule(
		__isl_keep isl_band *band);
	__isl_give isl_union_map *isl_band_get_partial_schedule(
		__isl_keep isl_band *band);
	__isl_give isl_union_map *isl_band_get_suffix_schedule(
		__isl_keep isl_band *band);

	int isl_band_n_member(__isl_keep isl_band *band);
	int isl_band_member_is_zero_distance(
		__isl_keep isl_band *band, int pos);

	int isl_band_list_foreach_band(
		__isl_keep isl_band_list *list,
		int (*fn)(__isl_keep isl_band *band, void *user),
		void *user);

Note that a scheduling dimension is considered to be ``zero
distance'' if it does not carry any proximity dependences
within its band.
That is, if the dependence distances of the proximity
dependences are all zero in that direction (for fixed
iterations of outer bands).
Like C<isl_schedule_foreach_band>,
the function C<isl_band_list_foreach_band> calls C<fn> on the bands
in depth-first post-order.

A band can be tiled using the following function.

	#include <isl/band.h>
	int isl_band_tile(__isl_keep isl_band *band,
		__isl_take isl_vec *sizes);

	int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
		int val);
	int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
	int isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
		int val);
	int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);

The C<isl_band_tile> function tiles the band using the given tile sizes
inside its schedule.
A new child band is created to represent the point loops and it is
inserted between the modified band and its children.
The C<tile_scale_tile_loops> option specifies whether the tile
loops iterators should be scaled by the tile sizes.
If the C<tile_shift_point_loops> option is set, then the point loops
are shifted to start at zero.

A band can be split into two nested bands using the following function.

	int isl_band_split(__isl_keep isl_band *band, int pos);

The resulting outer band contains the first C<pos> dimensions of C<band>
while the inner band contains the remaining dimensions.

A representation of the band can be printed using

	#include <isl/band.h>
	__isl_give isl_printer *isl_printer_print_band(
		__isl_take isl_printer *p,
		__isl_keep isl_band *band);

=head3 Options

	#include <isl/schedule.h>
	int isl_options_set_schedule_max_coefficient(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_max_coefficient(
		isl_ctx *ctx);
	int isl_options_set_schedule_max_constant_term(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_max_constant_term(
		isl_ctx *ctx);
	int isl_options_set_schedule_fuse(isl_ctx *ctx, int val);
	int isl_options_get_schedule_fuse(isl_ctx *ctx);
	int isl_options_set_schedule_maximize_band_depth(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_maximize_band_depth(
		isl_ctx *ctx);
	int isl_options_set_schedule_outer_zero_distance(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_outer_zero_distance(
		isl_ctx *ctx);
	int isl_options_set_schedule_split_scaled(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_split_scaled(
		isl_ctx *ctx);
	int isl_options_set_schedule_algorithm(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_algorithm(
		isl_ctx *ctx);
	int isl_options_set_schedule_separate_components(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_separate_components(
		isl_ctx *ctx);

=over

=item * schedule_max_coefficient

This option enforces that the coefficients for variable and parameter
dimensions in the calculated schedule are not larger than the specified value.
This option can significantly increase the speed of the scheduling calculation
and may also prevent fusing of unrelated dimensions. A value of -1 means that
this option does not introduce bounds on the variable or parameter
coefficients.

=item * schedule_max_constant_term

This option enforces that the constant coefficients in the calculated schedule
are not larger than the maximal constant term. This option can significantly
increase the speed of the scheduling calculation and may also prevent fusing of
unrelated dimensions. A value of -1 means that this option does not introduce
bounds on the constant coefficients.

=item * schedule_fuse

This option controls the level of fusion.
If this option is set to C<ISL_SCHEDULE_FUSE_MIN>, then loops in the
resulting schedule will be distributed as much as possible.
If this option is set to C<ISL_SCHEDULE_FUSE_MAX>, then C<isl> will
try to fuse loops in the resulting schedule.

=item * schedule_maximize_band_depth

If this option is set, we do not split bands at the point
where we detect splitting is necessary. Instead, we
backtrack and split bands as early as possible. This
reduces the number of splits and maximizes the width of
the bands. Wider bands give more possibilities for tiling.
Note that if the C<schedule_fuse> option is set to C<ISL_SCHEDULE_FUSE_MIN>,
then bands will be split as early as possible, even if there is no need.
The C<schedule_maximize_band_depth> option therefore has no effect in this case.

=item * schedule_outer_zero_distance

If this option is set, then we try to construct schedules
where the outermost scheduling dimension in each band
results in a zero dependence distance over the proximity
dependences.

=item * schedule_split_scaled

If this option is set, then we try to construct schedules in which the
constant term is split off from the linear part if the linear parts of
the scheduling rows for all nodes in the graphs have a common non-trivial
divisor.
The constant term is then placed in a separate band and the linear
part is reduced.

=item * schedule_algorithm

Selects the scheduling algorithm to be used.
Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.

=item * schedule_separate_components

If at any point the dependence graph contains any (weakly connected) components,
then these components are scheduled separately.
If this option is not set, then some iterations of the domains
in these components may be scheduled together.
If this option is set, then the components are given consecutive
schedules.

=back

=head2 AST Generation

This section describes the C<isl> functionality for generating
ASTs that visit all the elements
in a domain in an order specified by a schedule.
In particular, given a C<isl_union_map>, an AST is generated
that visits all the elements in the domain of the C<isl_union_map>
according to the lexicographic order of the corresponding image
element(s).  If the range of the C<isl_union_map> consists of
elements in more than one space, then each of these spaces is handled
separately in an arbitrary order.
It should be noted that the image elements only specify the I<order>
in which the corresponding domain elements should be visited.
No direct relation between the image elements and the loop iterators
in the generated AST should be assumed.

Each AST is generated within a build.  The initial build
simply specifies the constraints on the parameters (if any)
and can be created, inspected, copied and freed using the following functions.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *isl_ast_build_from_context(
		__isl_take isl_set *set);
	isl_ctx *isl_ast_build_get_ctx(
		__isl_keep isl_ast_build *build);
	__isl_give isl_ast_build *isl_ast_build_copy(
		__isl_keep isl_ast_build *build);
	void *isl_ast_build_free(
		__isl_take isl_ast_build *build);

The C<set> argument is usually a parameter set with zero or more parameters.
More C<isl_ast_build> functions are described in L</"Nested AST Generation">
and L</"Fine-grained Control over AST Generation">.
Finally, the AST itself can be constructed using the following
function.

	#include <isl/ast_build.h>
	__isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
		__isl_keep isl_ast_build *build,
		__isl_take isl_union_map *schedule);

=head3 Inspecting the AST

The basic properties of an AST node can be obtained as follows.

	#include <isl/ast.h>
	isl_ctx *isl_ast_node_get_ctx(
		__isl_keep isl_ast_node *node);
	enum isl_ast_node_type isl_ast_node_get_type(
		__isl_keep isl_ast_node *node);

The type of an AST node is one of
C<isl_ast_node_for>,
C<isl_ast_node_if>,
C<isl_ast_node_block> or
C<isl_ast_node_user>.
An C<isl_ast_node_for> represents a for node.
An C<isl_ast_node_if> represents an if node.
An C<isl_ast_node_block> represents a compound node.
An C<isl_ast_node_user> represents an expression statement.
An expression statement typically corresponds to a domain element, i.e.,
one of the elements that is visited by the AST.

Each type of node has its own additional properties.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_expr *isl_ast_node_for_get_init(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_expr *isl_ast_node_for_get_cond(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_expr *isl_ast_node_for_get_inc(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_for_get_body(
		__isl_keep isl_ast_node *node);
	int isl_ast_node_for_is_degenerate(
		__isl_keep isl_ast_node *node);

An C<isl_ast_for> is considered degenerate if it is known to execute
exactly once.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_node_if_get_cond(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_if_get_then(
		__isl_keep isl_ast_node *node);
	int isl_ast_node_if_has_else(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_if_get_else(
		__isl_keep isl_ast_node *node);

	__isl_give isl_ast_node_list *
	isl_ast_node_block_get_children(
		__isl_keep isl_ast_node *node);

	__isl_give isl_ast_expr *isl_ast_node_user_get_expr(
		__isl_keep isl_ast_node *node);

Each of the returned C<isl_ast_expr>s can in turn be inspected using
the following functions.

	#include <isl/ast.h>
	isl_ctx *isl_ast_expr_get_ctx(
		__isl_keep isl_ast_expr *expr);
	enum isl_ast_expr_type isl_ast_expr_get_type(
		__isl_keep isl_ast_expr *expr);

The type of an AST expression is one of
C<isl_ast_expr_op>,
C<isl_ast_expr_id> or
C<isl_ast_expr_int>.
An C<isl_ast_expr_op> represents the result of an operation.
An C<isl_ast_expr_id> represents an identifier.
An C<isl_ast_expr_int> represents an integer value.

Each type of expression has its own additional properties.

	#include <isl/ast.h>
	enum isl_ast_op_type isl_ast_expr_get_op_type(
		__isl_keep isl_ast_expr *expr);
	int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
	__isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
		__isl_keep isl_ast_expr *expr, int pos);
	int isl_ast_node_foreach_ast_op_type(
		__isl_keep isl_ast_node *node,
		int (*fn)(enum isl_ast_op_type type, void *user),
		void *user);

C<isl_ast_expr_get_op_type> returns the type of the operation
performed.  C<isl_ast_expr_get_op_n_arg> returns the number of
arguments.  C<isl_ast_expr_get_op_arg> returns the specified
argument.
C<isl_ast_node_foreach_ast_op_type> calls C<fn> for each distinct
C<isl_ast_op_type> that appears in C<node>.
The operation type is one of the following.

=over

=item C<isl_ast_op_and>

Logical I<and> of two arguments.
Both arguments can be evaluated.

=item C<isl_ast_op_and_then>

Logical I<and> of two arguments.
The second argument can only be evaluated if the first evaluates to true.

=item C<isl_ast_op_or>

Logical I<or> of two arguments.
Both arguments can be evaluated.

=item C<isl_ast_op_or_else>

Logical I<or> of two arguments.
The second argument can only be evaluated if the first evaluates to false.

=item C<isl_ast_op_max>

Maximum of two or more arguments.

=item C<isl_ast_op_min>

Minimum of two or more arguments.

=item C<isl_ast_op_minus>

Change sign.

=item C<isl_ast_op_add>

Sum of two arguments.

=item C<isl_ast_op_sub>

Difference of two arguments.

=item C<isl_ast_op_mul>

Product of two arguments.

=item C<isl_ast_op_div>

Exact division.  That is, the result is known to be an integer.

=item C<isl_ast_op_fdiv_q>

Result of integer division, rounded towards negative
infinity.

=item C<isl_ast_op_pdiv_q>

Result of integer division, where dividend is known to be non-negative.

=item C<isl_ast_op_pdiv_r>

Remainder of integer division, where dividend is known to be non-negative.

=item C<isl_ast_op_cond>

Conditional operator defined on three arguments.
If the first argument evaluates to true, then the result
is equal to the second argument.  Otherwise, the result
is equal to the third argument.
The second and third argument may only be evaluated if
the first argument evaluates to true and false, respectively.
Corresponds to C<a ? b : c> in C.

=item C<isl_ast_op_select>

Conditional operator defined on three arguments.
If the first argument evaluates to true, then the result
is equal to the second argument.  Otherwise, the result
is equal to the third argument.
The second and third argument may be evaluated independently
of the value of the first argument.
Corresponds to C<a * b + (1 - a) * c> in C.

=item C<isl_ast_op_eq>

Equality relation.

=item C<isl_ast_op_le>

Less than or equal relation.

=item C<isl_ast_op_lt>

Less than relation.

=item C<isl_ast_op_ge>

Greater than or equal relation.

=item C<isl_ast_op_gt>

Greater than relation.

=item C<isl_ast_op_call>

A function call.
The number of arguments of the C<isl_ast_expr> is one more than
the number of arguments in the function call, the first argument
representing the function being called.

=back

	#include <isl/ast.h>
	__isl_give isl_id *isl_ast_expr_get_id(
		__isl_keep isl_ast_expr *expr);

Return the identifier represented by the AST expression.

	#include <isl/ast.h>
	int isl_ast_expr_get_int(__isl_keep isl_ast_expr *expr,
		isl_int *v);
	__isl_give isl_val *isl_ast_expr_get_val(
		__isl_keep isl_ast_expr *expr);

Return the integer represented by the AST expression.
Note that the integer is returned by C<isl_ast_expr_get_int>
through the C<v> argument.
The return value of this function itself indicates whether the
operation was performed successfully.

=head3 Manipulating and printing the AST

AST nodes can be copied and freed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_node *isl_ast_node_copy(
		__isl_keep isl_ast_node *node);
	void *isl_ast_node_free(__isl_take isl_ast_node *node);

AST expressions can be copied and freed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_expr_copy(
		__isl_keep isl_ast_expr *expr);
	void *isl_ast_expr_free(__isl_take isl_ast_expr *expr);

New AST expressions can be created either directly or within
the context of an C<isl_ast_build>.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_expr_from_val(
		__isl_take isl_val *v);
	__isl_give isl_ast_expr *isl_ast_expr_from_id(
		__isl_take isl_id *id);
	__isl_give isl_ast_expr *isl_ast_expr_neg(
		__isl_take isl_ast_expr *expr);
	__isl_give isl_ast_expr *isl_ast_expr_add(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_sub(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_mul(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_div(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_and(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2)
	__isl_give isl_ast_expr *isl_ast_expr_or(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2)

	#include <isl/ast_build.h>
	__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_pw_aff *pa);
	__isl_give isl_ast_expr *
	isl_ast_build_call_from_pw_multi_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_pw_multi_aff *pma);

The domains of C<pa> and C<pma> should correspond
to the schedule space of C<build>.
The tuple id of C<pma> is used as the function being called.

User specified data can be attached to an C<isl_ast_node> and obtained
from the same C<isl_ast_node> using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_node *isl_ast_node_set_annotation(
		__isl_take isl_ast_node *node,
		__isl_take isl_id *annotation);
	__isl_give isl_id *isl_ast_node_get_annotation(
		__isl_keep isl_ast_node *node);

Basic printing can be performed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_printer *isl_printer_print_ast_expr(
		__isl_take isl_printer *p,
		__isl_keep isl_ast_expr *expr);
	__isl_give isl_printer *isl_printer_print_ast_node(
		__isl_take isl_printer *p,
		__isl_keep isl_ast_node *node);

More advanced printing can be performed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_printer *isl_ast_op_type_print_macro(
		enum isl_ast_op_type type,
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_ast_node_print_macros(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_ast_node_print(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p,
		__isl_take isl_ast_print_options *options);
	__isl_give isl_printer *isl_ast_node_for_print(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p,
		__isl_take isl_ast_print_options *options);
	__isl_give isl_printer *isl_ast_node_if_print(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p,
		__isl_take isl_ast_print_options *options);

While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
C<isl> may print out an AST that makes use of macros such
as C<floord>, C<min> and C<max>.
C<isl_ast_op_type_print_macro> prints out the macro
corresponding to a specific C<isl_ast_op_type>.
C<isl_ast_node_print_macros> scans the C<isl_ast_node>
for expressions where these macros would be used and prints
out the required macro definitions.
Essentially, C<isl_ast_node_print_macros> calls
C<isl_ast_node_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
as function argument.
C<isl_ast_node_print>, C<isl_ast_node_for_print> and
C<isl_ast_node_if_print> print an C<isl_ast_node>
in C<ISL_FORMAT_C>, but allow for some extra control
through an C<isl_ast_print_options> object.
This object can be created using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_print_options *
	isl_ast_print_options_alloc(isl_ctx *ctx);
	__isl_give isl_ast_print_options *
	isl_ast_print_options_copy(
		__isl_keep isl_ast_print_options *options);
	void *isl_ast_print_options_free(
		__isl_take isl_ast_print_options *options);

	__isl_give isl_ast_print_options *
	isl_ast_print_options_set_print_user(
		__isl_take isl_ast_print_options *options,
		__isl_give isl_printer *(*print_user)(
			__isl_take isl_printer *p,
			__isl_take isl_ast_print_options *options,
			__isl_keep isl_ast_node *node, void *user),
		void *user);
	__isl_give isl_ast_print_options *
	isl_ast_print_options_set_print_for(
		__isl_take isl_ast_print_options *options,
		__isl_give isl_printer *(*print_for)(
			__isl_take isl_printer *p,
			__isl_take isl_ast_print_options *options,
			__isl_keep isl_ast_node *node, void *user),
		void *user);

The callback set by C<isl_ast_print_options_set_print_user>
is called whenever a node of type C<isl_ast_node_user> needs to
be printed.
The callback set by C<isl_ast_print_options_set_print_for>
is called whenever a node of type C<isl_ast_node_for> needs to
be printed.
Note that C<isl_ast_node_for_print> will I<not> call the
callback set by C<isl_ast_print_options_set_print_for> on the node
on which C<isl_ast_node_for_print> is called, but only on nested
nodes of type C<isl_ast_node_for>.  It is therefore safe to
call C<isl_ast_node_for_print> from within the callback set by
C<isl_ast_print_options_set_print_for>.

The following option determines the type to be used for iterators
while printing the AST.

	int isl_options_set_ast_iterator_type(
		isl_ctx *ctx, const char *val);
	const char *isl_options_get_ast_iterator_type(
		isl_ctx *ctx);

=head3 Options

	#include <isl/ast_build.h>
	int isl_options_set_ast_build_atomic_upper_bound(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_atomic_upper_bound(
		isl_ctx *ctx);
	int isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
	int isl_options_set_ast_build_exploit_nested_bounds(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_exploit_nested_bounds(
		isl_ctx *ctx);
	int isl_options_set_ast_build_group_coscheduled(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_group_coscheduled(
		isl_ctx *ctx);
	int isl_options_set_ast_build_scale_strides(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_scale_strides(
		isl_ctx *ctx);
	int isl_options_set_ast_build_allow_else(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
	int isl_options_set_ast_build_allow_or(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_build_allow_or(isl_ctx *ctx);

=over

=item * ast_build_atomic_upper_bound

Generate loop upper bounds that consist of the current loop iterator,
an operator and an expression not involving the iterator.
If this option is not set, then the current loop iterator may appear
several times in the upper bound.
For example, when this option is turned off, AST generation
for the schedule

	[n] -> { A[i] -> [i] : 0 <= i <= 100, n }

produces

	for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
	  A(c0);

When the option is turned on, the following AST is generated

	for (int c0 = 0; c0 <= min(100, n); c0 += 1)
	  A(c0);

=item * ast_build_prefer_pdiv

If this option is turned off, then the AST generation will
produce ASTs that may only contain C<isl_ast_op_fdiv_q>
operators, but no C<isl_ast_op_pdiv_q> or
C<isl_ast_op_pdiv_r> operators.
If this options is turned on, then C<isl> will try to convert
some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.

=item * ast_build_exploit_nested_bounds

Simplify conditions based on bounds of nested for loops.
In particular, remove conditions that are implied by the fact
that one or more nested loops have at least one iteration,
meaning that the upper bound is at least as large as the lower bound.
For example, when this option is turned off, AST generation
for the schedule

	[N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
					0 <= j <= M }

produces

	if (M >= 0)
	  for (int c0 = 0; c0 <= N; c0 += 1)
	    for (int c1 = 0; c1 <= M; c1 += 1)
	      A(c0, c1);

When the option is turned on, the following AST is generated

	for (int c0 = 0; c0 <= N; c0 += 1)
	  for (int c1 = 0; c1 <= M; c1 += 1)
	    A(c0, c1);

=item * ast_build_group_coscheduled

If two domain elements are assigned the same schedule point, then
they may be executed in any order and they may even appear in different
loops.  If this options is set, then the AST generator will make
sure that coscheduled domain elements do not appear in separate parts
of the AST.  This is useful in case of nested AST generation
if the outer AST generation is given only part of a schedule
and the inner AST generation should handle the domains that are
coscheduled by this initial part of the schedule together.
For example if an AST is generated for a schedule

	{ A[i] -> [0]; B[i] -> [0] }

then the C<isl_ast_build_set_create_leaf> callback described
below may get called twice, once for each domain.
Setting this option ensures that the callback is only called once
on both domains together.

=item * ast_build_separation_bounds

This option specifies which bounds to use during separation.
If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
then all (possibly implicit) bounds on the current dimension will
be used during separation.
If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
then only those bounds that are explicitly available will
be used during separation.

=item * ast_build_scale_strides

This option specifies whether the AST generator is allowed
to scale down iterators of strided loops.

=item * ast_build_allow_else

This option specifies whether the AST generator is allowed
to construct if statements with else branches.

=item * ast_build_allow_or

This option specifies whether the AST generator is allowed
to construct if conditions with disjunctions.

=back

=head3 Fine-grained Control over AST Generation

Besides specifying the constraints on the parameters,
an C<isl_ast_build> object can be used to control
various aspects of the AST generation process.
The most prominent way of control is through ``options'',
which can be set using the following function.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_options(
		__isl_take isl_ast_build *control,
		__isl_take isl_union_map *options);

The options are encoded in an <isl_union_map>.
The domain of this union relation refers to the schedule domain,
i.e., the range of the schedule passed to C<isl_ast_build_ast_from_schedule>.
In the case of nested AST generation (see L</"Nested AST Generation">),
the domain of C<options> should refer to the extra piece of the schedule.
That is, it should be equal to the range of the wrapped relation in the
range of the schedule.
The range of the options can consist of elements in one or more spaces,
the names of which determine the effect of the option.
The values of the range typically also refer to the schedule dimension
to which the option applies.  In case of nested AST generation
(see L</"Nested AST Generation">), these values refer to the position
of the schedule dimension within the innermost AST generation.
The constraints on the domain elements of
the option should only refer to this dimension and earlier dimensions.
We consider the following spaces.

=over

=item C<separation_class>

This space is a wrapped relation between two one dimensional spaces.
The input space represents the schedule dimension to which the option
applies and the output space represents the separation class.
While constructing a loop corresponding to the specified schedule
dimension(s), the AST generator will try to generate separate loops
for domain elements that are assigned different classes.
If only some of the elements are assigned a class, then those elements
that are not assigned any class will be treated as belonging to a class
that is separate from the explicitly assigned classes.
The typical use case for this option is to separate full tiles from
partial tiles.
The other options, described below, are applied after the separation
into classes.

As an example, consider the separation into full and partial tiles
of a tiling of a triangular domain.
Take, for example, the domain

	{ A[i,j] : 0 <= i,j and i + j <= 100 }

and a tiling into tiles of 10 by 10.  The input to the AST generator
is then the schedule

	{ A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
						i + j <= 100 }

Without any options, the following AST is generated

	for (int c0 = 0; c0 <= 10; c0 += 1)
	  for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	    for (int c2 = 10 * c0;
		 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
		 c2 += 1)
	      for (int c3 = 10 * c1;
		   c3 <= min(10 * c1 + 9, -c2 + 100);
		   c3 += 1)
		A(c2, c3);

Separation into full and partial tiles can be obtained by assigning
a class, say C<0>, to the full tiles.  The full tiles are represented by those
values of the first and second schedule dimensions for which there are
values of the third and fourth dimensions to cover an entire tile.
That is, we need to specify the following option

	{ [a,b,c,d] -> separation_class[[0]->[0]] :
		exists b': 0 <= 10a,10b' and
			   10a+9+10b'+9 <= 100;
	  [a,b,c,d] -> separation_class[[1]->[0]] :
		0 <= 10a,10b and 10a+9+10b+9 <= 100 }

which simplifies to

	{ [a, b, c, d] -> separation_class[[1] -> [0]] :
		a >= 0 and b >= 0 and b <= 8 - a;
	  [a, b, c, d] -> separation_class[[0] -> [0]] :
		a >= 0 and a <= 8 }

With this option, the generated AST is as follows

	{
	  for (int c0 = 0; c0 <= 8; c0 += 1) {
	    for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= 10 * c0 + 9; c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= 10 * c1 + 9; c3 += 1)
		  A(c2, c3);
	    for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
		   c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= min(-c2 + 100, 10 * c1 + 9);
		     c3 += 1)
		  A(c2, c3);
	  }
	  for (int c0 = 9; c0 <= 10; c0 += 1)
	    for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
		   c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= min(10 * c1 + 9, -c2 + 100);
		     c3 += 1)
		  A(c2, c3);
	}

=item C<separate>

This is a single-dimensional space representing the schedule dimension(s)
to which ``separation'' should be applied.  Separation tries to split
a loop into several pieces if this can avoid the generation of guards
inside the loop.
See also the C<atomic> option.

=item C<atomic>

This is a single-dimensional space representing the schedule dimension(s)
for which the domains should be considered ``atomic''.  That is, the
AST generator will make sure that any given domain space will only appear
in a single loop at the specified level.

Consider the following schedule

	{ a[i] -> [i] : 0 <= i < 10;
	  b[i] -> [i+1] : 0 <= i < 10 }

If the following option is specified

	{ [i] -> separate[x] }

then the following AST will be generated

	{
	  a(0);
	  for (int c0 = 1; c0 <= 9; c0 += 1) {
	    a(c0);
	    b(c0 - 1);
	  }
	  b(9);
	}

If, on the other hand, the following option is specified

	{ [i] -> atomic[x] }

then the following AST will be generated

	for (int c0 = 0; c0 <= 10; c0 += 1) {
	  if (c0 <= 9)
	    a(c0);
	  if (c0 >= 1)
	    b(c0 - 1);
	}

If neither C<atomic> nor C<separate> is specified, then the AST generator
may produce either of these two results or some intermediate form.

=item C<unroll>

This is a single-dimensional space representing the schedule dimension(s)
that should be I<completely> unrolled.
To obtain a partial unrolling, the user should apply an additional
strip-mining to the schedule and fully unroll the inner loop.

=back

Additional control is available through the following functions.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_iterators(
		__isl_take isl_ast_build *control,
		__isl_take isl_id_list *iterators);

The function C<isl_ast_build_set_iterators> allows the user to
specify a list of iterator C<isl_id>s to be used as iterators.
If the input schedule is injective, then
the number of elements in this list should be as large as the dimension
of the schedule space, but no direct correspondence should be assumed
between dimensions and elements.
If the input schedule is not injective, then an additional number
of C<isl_id>s equal to the largest dimension of the input domains
may be required.
If the number of provided C<isl_id>s is insufficient, then additional
names are automatically generated.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_create_leaf(
		__isl_take isl_ast_build *control,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_build *build,
			void *user), void *user);

The
C<isl_ast_build_set_create_leaf> function allows for the
specification of a callback that should be called whenever the AST
generator arrives at an element of the schedule domain.
The callback should return an AST node that should be inserted
at the corresponding position of the AST.  The default action (when
the callback is not set) is to continue generating parts of the AST to scan
all the domain elements associated to the schedule domain element
and to insert user nodes, ``calling'' the domain element, for each of them.
The C<build> argument contains the current state of the C<isl_ast_build>.
To ease nested AST generation (see L</"Nested AST Generation">),
all control information that is
specific to the current AST generation such as the options and
the callbacks has been removed from this C<isl_ast_build>.
The callback would typically return the result of a nested
AST generation or a
user defined node created using the following function.

	#include <isl/ast.h>
	__isl_give isl_ast_node *isl_ast_node_alloc_user(
		__isl_take isl_ast_expr *expr);

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_at_each_domain(
		__isl_take isl_ast_build *build,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_node *node,
			__isl_keep isl_ast_build *build,
			void *user), void *user);
	__isl_give isl_ast_build *
	isl_ast_build_set_before_each_for(
		__isl_take isl_ast_build *build,
		__isl_give isl_id *(*fn)(
			__isl_keep isl_ast_build *build,
			void *user), void *user);
	__isl_give isl_ast_build *
	isl_ast_build_set_after_each_for(
		__isl_take isl_ast_build *build,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_node *node,
			__isl_keep isl_ast_build *build,
			void *user), void *user);

The callback set by C<isl_ast_build_set_at_each_domain> will
be called for each domain AST node.
The callbacks set by C<isl_ast_build_set_before_each_for>
and C<isl_ast_build_set_after_each_for> will be called
for each for AST node.  The first will be called in depth-first
pre-order, while the second will be called in depth-first post-order.
Since C<isl_ast_build_set_before_each_for> is called before the for
node is actually constructed, it is only passed an C<isl_ast_build>.
The returned C<isl_id> will be added as an annotation (using
C<isl_ast_node_set_annotation>) to the constructed for node.
In particular, if the user has also specified an C<after_each_for>
callback, then the annotation can be retrieved from the node passed to
that callback using C<isl_ast_node_get_annotation>.
All callbacks should C<NULL> on failure.
The given C<isl_ast_build> can be used to create new
C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
or C<isl_ast_build_call_from_pw_multi_aff>.

=head3 Nested AST Generation

C<isl> allows the user to create an AST within the context
of another AST.  These nested ASTs are created using the
same C<isl_ast_build_ast_from_schedule> function that is used to create the
outer AST.  The C<build> argument should be an C<isl_ast_build>
passed to a callback set by
C<isl_ast_build_set_create_leaf>.
The space of the range of the C<schedule> argument should refer
to this build.  In particular, the space should be a wrapped
relation and the domain of this wrapped relation should be the
same as that of the range of the schedule returned by
C<isl_ast_build_get_schedule> below.
In practice, the new schedule is typically
created by calling C<isl_union_map_range_product> on the old schedule
and some extra piece of the schedule.
The space of the schedule domain is also available from
the C<isl_ast_build>.

	#include <isl/ast_build.h>
	__isl_give isl_union_map *isl_ast_build_get_schedule(
		__isl_keep isl_ast_build *build);
	__isl_give isl_space *isl_ast_build_get_schedule_space(
		__isl_keep isl_ast_build *build);
	__isl_give isl_ast_build *isl_ast_build_restrict(
		__isl_take isl_ast_build *build,
		__isl_take isl_set *set);

The C<isl_ast_build_get_schedule> function returns a (partial)
schedule for the domains elements for which part of the AST still needs to
be generated in the current build.
In particular, the domain elements are mapped to those iterations of the loops
enclosing the current point of the AST generation inside which
the domain elements are executed.
No direct correspondence between
the input schedule and this schedule should be assumed.
The space obtained from C<isl_ast_build_get_schedule_space> can be used
to create a set for C<isl_ast_build_restrict> to intersect
with the current build.  In particular, the set passed to
C<isl_ast_build_restrict> can have additional parameters.
The ids of the set dimensions in the space returned by
C<isl_ast_build_get_schedule_space> correspond to the
iterators of the already generated loops.
The user should not rely on the ids of the output dimensions
of the relations in the union relation returned by
C<isl_ast_build_get_schedule> having any particular value.

=head1 Applications

Although C<isl> is mainly meant to be used as a library,
it also contains some basic applications that use some
of the functionality of C<isl>.
The input may be specified in either the L<isl format>
or the L<PolyLib format>.

=head2 C<isl_polyhedron_sample>

C<isl_polyhedron_sample> takes a polyhedron as input and prints
an integer element of the polyhedron, if there is any.
The first column in the output is the denominator and is always
equal to 1.  If the polyhedron contains no integer points,
then a vector of length zero is printed.

=head2 C<isl_pip>

C<isl_pip> takes the same input as the C<example> program
from the C<piplib> distribution, i.e., a set of constraints
on the parameters, a line containing only -1 and finally a set
of constraints on a parametric polyhedron.
The coefficients of the parameters appear in the last columns
(but before the final constant column).
The output is the lexicographic minimum of the parametric polyhedron.
As C<isl> currently does not have its own output format, the output
is just a dump of the internal state.

=head2 C<isl_polyhedron_minimize>

C<isl_polyhedron_minimize> computes the minimum of some linear
or affine objective function over the integer points in a polyhedron.
If an affine objective function
is given, then the constant should appear in the last column.

=head2 C<isl_polytope_scan>

Given a polytope, C<isl_polytope_scan> prints
all integer points in the polytope.

=head2 C<isl_codegen>

Given a schedule, a context set and an options relation,
C<isl_codegen> prints out an AST that scans the domain elements
of the schedule in the order of their image(s) taking into account
the constraints in the context set.