/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the GNU LGPLv2.1 license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include "isl_set.h" #include "isl_tab.h" #include "isl_map_private.h" #include "isl_sample.h" #include "isl_scan.h" #include "isl_seq.h" #include "isl_ilp.h" #include /* The input of this program is the same as that of the "example" program * from the PipLib distribution, except that the "big parameter column" * should always be -1. * * Context constraints in PolyLib format * -1 * Problem constraints in PolyLib format * Optional list of options * * The options are * Maximize compute maximum instead of minimum * Rational compute rational optimum instead of integer optimum * Urs_parms don't assume parameters are non-negative * Urs_unknowns don't assume unknowns are non-negative */ struct pip_options { struct isl_options *isl; unsigned verify; }; struct isl_arg pip_options_arg[] = { ISL_ARG_CHILD(struct pip_options, isl, "isl", isl_options_arg, "isl options") ISL_ARG_BOOL(struct pip_options, verify, 'T', "verify", 0, NULL) ISL_ARG_END }; ISL_ARG_DEF(pip_options, struct pip_options, pip_options_arg) static struct isl_basic_set *to_parameter_domain(struct isl_basic_set *context) { struct isl_dim *param_dim; struct isl_basic_set *model; param_dim = isl_dim_set_alloc(context->ctx, isl_basic_set_n_dim(context), 0); model = isl_basic_set_empty(param_dim); context = isl_basic_set_from_underlying_set(context, model); return context; } static isl_basic_set *construct_cube(isl_basic_set *context) { int i; unsigned dim; int range; isl_int m, M; struct isl_basic_set *cube; struct isl_basic_set *interval; struct isl_basic_set_list *list; dim = isl_basic_set_total_dim(context); if (dim == 0) { struct isl_dim *dims; dims = isl_dim_set_alloc(context->ctx, 0, 0); return isl_basic_set_universe(dims); } if (dim >= 8) range = 4; else if (dim >= 5) range = 6; else range = 30; isl_int_init(m); isl_int_init(M); isl_int_set_si(m, -range); isl_int_set_si(M, range); interval = isl_basic_set_interval(context->ctx, m, M); list = isl_basic_set_list_alloc(context->ctx, dim); for (i = 0; i < dim; ++i) list = isl_basic_set_list_add(list, isl_basic_set_copy(interval)); isl_basic_set_free(interval); cube = isl_basic_set_product(list); isl_int_clear(m); isl_int_clear(M); return cube; } isl_basic_set *plug_in_parameters(isl_basic_set *bset, struct isl_vec *params) { int i; for (i = 0; i < params->size - 1; ++i) bset = isl_basic_set_fix(bset, isl_dim_param, i, params->el[1 + i]); bset = isl_basic_set_remove(bset, isl_dim_param, 0, params->size - 1); isl_vec_free(params); return bset; } isl_set *set_plug_in_parameters(isl_set *set, struct isl_vec *params) { int i; for (i = 0; i < params->size - 1; ++i) set = isl_set_fix(set, isl_dim_param, i, params->el[1 + i]); set = isl_set_remove(set, isl_dim_param, 0, params->size - 1); isl_vec_free(params); return set; } /* Compute the lexicographically minimal (or maximal if max is set) * element of bset for the given values of the parameters, by * successively solving an ilp problem in each direction. */ struct isl_vec *opt_at(struct isl_basic_set *bset, struct isl_vec *params, int max) { unsigned dim; struct isl_vec *opt; struct isl_vec *obj; int i; dim = isl_basic_set_dim(bset, isl_dim_set); bset = plug_in_parameters(bset, params); if (isl_basic_set_fast_is_empty(bset)) { opt = isl_vec_alloc(bset->ctx, 0); isl_basic_set_free(bset); return opt; } opt = isl_vec_alloc(bset->ctx, 1 + dim); assert(opt); obj = isl_vec_alloc(bset->ctx, 1 + dim); assert(obj); isl_int_set_si(opt->el[0], 1); isl_int_set_si(obj->el[0], 0); for (i = 0; i < dim; ++i) { enum isl_lp_result res; isl_seq_clr(obj->el + 1, dim); isl_int_set_si(obj->el[1 + i], 1); res = isl_basic_set_solve_ilp(bset, max, obj->el, &opt->el[1 + i], NULL); if (res == isl_lp_empty) goto empty; assert(res == isl_lp_ok); bset = isl_basic_set_fix(bset, isl_dim_set, i, opt->el[1 + i]); } isl_basic_set_free(bset); isl_vec_free(obj); return opt; empty: isl_vec_free(opt); opt = isl_vec_alloc(bset->ctx, 0); isl_basic_set_free(bset); isl_vec_free(obj); return opt; } struct isl_scan_pip { struct isl_scan_callback callback; isl_basic_set *bset; isl_set *sol; isl_set *empty; int stride; int n; int max; }; /* Check if the "manually" computed optimum of bset at the "sample" * values of the parameters agrees with the solution of pilp problem * represented by the pair (sol, empty). * In particular, if there is no solution for this value of the parameters, * then it should be an element of the parameter domain "empty". * Otherwise, the optimal solution, should be equal to the result of * plugging in the value of the parameters in "sol". */ static int scan_one(struct isl_scan_callback *callback, __isl_take isl_vec *sample) { struct isl_scan_pip *sp = (struct isl_scan_pip *)callback; struct isl_vec *opt; opt = opt_at(isl_basic_set_copy(sp->bset), isl_vec_copy(sample), sp->max); assert(opt); if (opt->size == 0) { isl_point *sample_pnt; sample_pnt = isl_point_alloc(isl_set_get_dim(sp->empty), sample); assert(isl_set_contains_point(sp->empty, sample_pnt)); isl_point_free(sample_pnt); isl_vec_free(opt); } else { isl_set *sol; isl_set *opt_set; opt_set = isl_set_from_basic_set(isl_basic_set_from_vec(opt)); sol = set_plug_in_parameters(isl_set_copy(sp->sol), sample); assert(isl_set_is_equal(opt_set, sol)); isl_set_free(sol); isl_set_free(opt_set); } if (!(sp->n++ % sp->stride)) { printf("o"); fflush(stdout); } return 0; } struct isl_scan_count { struct isl_scan_callback callback; int n; }; static int count_one(struct isl_scan_callback *callback, __isl_take isl_vec *sample) { struct isl_scan_count *sc = (struct isl_scan_count *)callback; isl_vec_free(sample); sc->n++; return 0; } static void check_solution(isl_basic_set *bset, isl_basic_set *context, isl_set *sol, isl_set *empty, int max) { isl_basic_set *cube; struct isl_scan_count sc; struct isl_scan_pip sp; int i; int r; context = isl_basic_set_underlying_set(context); cube = construct_cube(context); context = isl_basic_set_intersect(context, cube); sc.callback.add = count_one; sc.n = 0; r = isl_basic_set_scan(isl_basic_set_copy(context), &sc.callback); assert (r == 0); sp.callback.add = scan_one; sp.bset = bset; sp.sol = sol; sp.empty = empty; sp.n = 0; sp.stride = sc.n > 70 ? 1 + (sc.n + 1)/70 : 1; sp.max = max; for (i = 0; i < sc.n; i += sp.stride) printf("."); printf("\r"); fflush(stdout); r = isl_basic_set_scan(context, &sp.callback); assert(r == 0); printf("\n"); isl_basic_set_free(bset); } int main(int argc, char **argv) { struct isl_ctx *ctx; struct isl_basic_set *context, *bset, *copy, *context_copy; struct isl_set *set; struct isl_set *empty; int neg_one; char s[1024]; int urs_parms = 0; int urs_unknowns = 0; int max = 0; int rational = 0; int n; struct pip_options *options; options = pip_options_new_with_defaults(); assert(options); argc = pip_options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(pip_options_arg, options); context = isl_basic_set_read_from_file(ctx, stdin, 0); assert(context); n = fscanf(stdin, "%d", &neg_one); assert(n == 1); assert(neg_one == -1); bset = isl_basic_set_read_from_file(ctx, stdin, isl_basic_set_dim(context, isl_dim_set)); while (fgets(s, sizeof(s), stdin)) { if (strncasecmp(s, "Maximize", 8) == 0) max = 1; if (strncasecmp(s, "Rational", 8) == 0) { rational = 1; bset = isl_basic_set_set_rational(bset); } if (strncasecmp(s, "Urs_parms", 9) == 0) urs_parms = 1; if (strncasecmp(s, "Urs_unknowns", 12) == 0) urs_unknowns = 1; } if (!urs_parms) context = isl_basic_set_intersect(context, isl_basic_set_positive_orthant(isl_basic_set_get_dim(context))); context = to_parameter_domain(context); if (!urs_unknowns) bset = isl_basic_set_intersect(bset, isl_basic_set_positive_orthant(isl_basic_set_get_dim(bset))); if (options->verify) { copy = isl_basic_set_copy(bset); context_copy = isl_basic_set_copy(context); } if (max) set = isl_basic_set_partial_lexmax(bset, context, &empty); else set = isl_basic_set_partial_lexmin(bset, context, &empty); if (options->verify) { assert(!rational); check_solution(copy, context_copy, set, empty, max); } else { isl_set_print(set, stdout, 0, ISL_FORMAT_ISL); fprintf(stdout, "\n"); fprintf(stdout, "no solution: "); isl_set_print(empty, stdout, 0, ISL_FORMAT_ISL); fprintf(stdout, "\n"); } isl_set_free(set); isl_set_free(empty); isl_ctx_free(ctx); return 0; }