#include "isl_map_private.h" #include "isl_seq.h" #include "isl_tab.h" /* * The implementation of parametric integer linear programming in this file * was inspired by the paper "Parametric Integer Programming" and the * report "Solving systems of affine (in)equalities" by Paul Feautrier * (and others). * * The strategy used for obtaining a feasible solution is different * from the one used in isl_tab.c. In particular, in isl_tab.c, * upon finding a constraint that is not yet satisfied, we pivot * in a row that increases the constant term of row holding the * constraint, making sure the sample solution remains feasible * for all the constraints it already satisfied. * Here, we always pivot in the row holding the constraint, * choosing a column that induces the lexicographically smallest * increment to the sample solution. * * By starting out from a sample value that is lexicographically * smaller than any integer point in the problem space, the first * feasible integer sample point we find will also be the lexicographically * smallest. If all variables can be assumed to be non-negative, * then the initial sample value may be chosen equal to zero. * However, we will not make this assumption. Instead, we apply * the "big parameter" trick. Any variable x is then not directly * used in the tableau, but instead it its represented by another * variable x' = M + x, where M is an arbitrarily large (positive) * value. x' is therefore always non-negative, whatever the value of x. * Taking as initial smaple value x' = 0 corresponds to x = -M, * which is always smaller than any possible value of x. * * We use the big parameter trick both in the main tableau and * the context tableau, each of course having its own big parameter. * Before doing any real work, we check if all the parameters * happen to be non-negative. If so, we drop the column corresponding * to M from the initial context tableau. */ /* isl_sol is an interface for constructing a solution to * a parametric integer linear programming problem. * Every time the algorithm reaches a state where a solution * can be read off from the tableau (including cases where the tableau * is empty), the function "add" is called on the isl_sol passed * to find_solutions_main. * * The context tableau is owned by isl_sol and is updated incrementally. * * There is currently only one implementation of this interface, * isl_sol_map, which simply collects the solutions in an isl_map * and (optionally) the parts of the context where there is no solution * in an isl_set. */ struct isl_sol { struct isl_tab *context_tab; struct isl_sol *(*add)(struct isl_sol *sol, struct isl_tab *tab); void (*free)(struct isl_sol *sol); }; static void sol_free(struct isl_sol *sol) { if (!sol) return; sol->free(sol); } struct isl_sol_map { struct isl_sol sol; struct isl_map *map; struct isl_set *empty; int max; }; static void sol_map_free(struct isl_sol_map *sol_map) { isl_tab_free(sol_map->sol.context_tab); isl_map_free(sol_map->map); isl_set_free(sol_map->empty); free(sol_map); } static void sol_map_free_wrap(struct isl_sol *sol) { sol_map_free((struct isl_sol_map *)sol); } static struct isl_sol_map *add_empty(struct isl_sol_map *sol) { struct isl_basic_set *bset; if (!sol->empty) return sol; sol->empty = isl_set_grow(sol->empty, 1); bset = isl_basic_set_copy(sol->sol.context_tab->bset); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); sol->empty = isl_set_add(sol->empty, bset); if (!sol->empty) goto error; return sol; error: sol_map_free(sol); return NULL; } /* Add the solution identified by the tableau and the context tableau. * * The layout of the variables is as follows. * tab->n_var is equal to the total number of variables in the input * map (including divs that were copied from the context) * + the number of extra divs constructed * Of these, the first tab->n_param and the last tab->n_div variables * correspond to the variables in the context, i.e., tab->n_param + tab->n_div = context_tab->n_var * tab->n_param is equal to the number of parameters and input * dimensions in the input map * tab->n_div is equal to the number of divs in the context * * If there is no solution, then the basic set corresponding to the * context tableau is added to the set "empty". * * Otherwise, a basic map is constructed with the same parameters * and divs as the context, the dimensions of the context as input * dimensions and a number of output dimensions that is equal to * the number of output dimensions in the input map. * The divs in the input map (if any) that do not correspond to any * div in the context do not appear in the solution. * The algorithm will make sure that they have an integer value, * but these values themselves are of no interest. * * The constraints and divs of the context are simply copied * fron context_tab->bset. * To extract the value of the output variables, it should be noted * that we always use a big parameter M and so the variable stored * in the tableau is not an output variable x itself, but * x' = M + x (in case of minimization) * or * x' = M - x (in case of maximization) * If x' appears in a column, then its optimal value is zero, * which means that the optimal value of x is an unbounded number * (-M for minimization and M for maximization). * We currently assume that the output dimensions in the original map * are bounded, so this cannot occur. * Similarly, when x' appears in a row, then the coefficient of M in that * row is necessarily 1. * If the row represents * d x' = c + d M + e(y) * then, in case of minimization, an equality * c + e(y) - d x' = 0 * is added, and in case of maximization, * c + e(y) + d x' = 0 */ static struct isl_sol_map *sol_map_add(struct isl_sol_map *sol, struct isl_tab *tab) { int i; struct isl_basic_map *bmap = NULL; struct isl_tab *context_tab; unsigned n_eq; unsigned n_ineq; unsigned nparam; unsigned total; unsigned n_div; unsigned n_out; unsigned off; if (!sol || !tab) goto error; if (tab->empty) return add_empty(sol); context_tab = sol->sol.context_tab; off = 2 + tab->M; n_out = isl_map_dim(sol->map, isl_dim_out); n_eq = context_tab->bset->n_eq + n_out; n_ineq = context_tab->bset->n_ineq; nparam = tab->n_param; total = isl_map_dim(sol->map, isl_dim_all); bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map), tab->n_div, n_eq, 2 * tab->n_div + n_ineq); if (!bmap) goto error; n_div = tab->n_div; if (tab->rational) ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL); for (i = 0; i < context_tab->bset->n_div; ++i) { int k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->div[k], context_tab->bset->div[i], 1 + 1 + nparam); isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam); isl_seq_cpy(bmap->div[k] + 1 + 1 + total, context_tab->bset->div[i] + 1 + 1 + nparam, i); } for (i = 0; i < context_tab->bset->n_eq; ++i) { int k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], context_tab->bset->eq[i], 1 + nparam); isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam); isl_seq_cpy(bmap->eq[k] + 1 + total, context_tab->bset->eq[i] + 1 + nparam, n_div); } for (i = 0; i < context_tab->bset->n_ineq; ++i) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], context_tab->bset->ineq[i], 1 + nparam); isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam); isl_seq_cpy(bmap->ineq[k] + 1 + total, context_tab->bset->ineq[i] + 1 + nparam, n_div); } for (i = tab->n_param; i < total; ++i) { int k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k] + 1, isl_basic_map_total_dim(bmap)); if (!tab->var[i].is_row) { /* no unbounded */ isl_assert(bmap->ctx, !tab->M, goto error); isl_int_set_si(bmap->eq[k][0], 0); if (sol->max) isl_int_set_si(bmap->eq[k][1 + i], 1); else isl_int_set_si(bmap->eq[k][1 + i], -1); } else { int row, j; row = tab->var[i].index; /* no unbounded */ if (tab->M) isl_assert(bmap->ctx, isl_int_eq(tab->mat->row[row][2], tab->mat->row[row][0]), goto error); isl_int_set(bmap->eq[k][0], tab->mat->row[row][1]); for (j = 0; j < tab->n_param; ++j) { int col; if (tab->var[j].is_row) continue; col = tab->var[j].index; isl_int_set(bmap->eq[k][1 + j], tab->mat->row[row][off + col]); } for (j = 0; j < tab->n_div; ++j) { int col; if (tab->var[tab->n_var - tab->n_div+j].is_row) continue; col = tab->var[tab->n_var - tab->n_div+j].index; isl_int_set(bmap->eq[k][1 + total + j], tab->mat->row[row][off + col]); } if (sol->max) isl_int_set(bmap->eq[k][1 + i], tab->mat->row[row][0]); else isl_int_neg(bmap->eq[k][1 + i], tab->mat->row[row][0]); } } bmap = isl_basic_map_gauss(bmap, NULL); bmap = isl_basic_map_normalize_constraints(bmap); bmap = isl_basic_map_finalize(bmap); sol->map = isl_map_grow(sol->map, 1); sol->map = isl_map_add(sol->map, bmap); if (!sol->map) goto error; return sol; error: isl_basic_map_free(bmap); sol_free(&sol->sol); return NULL; } static struct isl_sol *sol_map_add_wrap(struct isl_sol *sol, struct isl_tab *tab) { return (struct isl_sol *)sol_map_add((struct isl_sol_map *)sol, tab); } static struct isl_basic_set *isl_basic_set_add_ineq(struct isl_basic_set *bset, isl_int *ineq) { int k; bset = isl_basic_set_extend_constraints(bset, 0, 1); if (!bset) return NULL; k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_cpy(bset->ineq[k], ineq, 1 + isl_basic_set_total_dim(bset)); return bset; error: isl_basic_set_free(bset); return NULL; } static struct isl_basic_set *isl_basic_set_add_eq(struct isl_basic_set *bset, isl_int *eq) { int k; bset = isl_basic_set_extend_constraints(bset, 1, 0); if (!bset) return NULL; k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], eq, 1 + isl_basic_set_total_dim(bset)); return bset; error: isl_basic_set_free(bset); return NULL; } /* Store the "parametric constant" of row "row" of tableau "tab" in "line", * i.e., the constant term and the coefficients of all variables that * appear in the context tableau. * Note that the coefficient of the big parameter M is NOT copied. * The context tableau may not have a big parameter and even when it * does, it is a different big parameter. */ static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line) { int i; unsigned off = 2 + tab->M; isl_int_set(line[0], tab->mat->row[row][1]); for (i = 0; i < tab->n_param; ++i) { if (tab->var[i].is_row) isl_int_set_si(line[1 + i], 0); else { int col = tab->var[i].index; isl_int_set(line[1 + i], tab->mat->row[row][off + col]); } } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) isl_int_set_si(line[1 + tab->n_param + i], 0); else { int col = tab->var[tab->n_var - tab->n_div + i].index; isl_int_set(line[1 + tab->n_param + i], tab->mat->row[row][off + col]); } } } /* Check if rows "row1" and "row2" have identical "parametric constants", * as explained above. * In this case, we also insist that the coefficients of the big parameter * be the same as the values of the constants will only be the same * if these coefficients are also the same. */ static int identical_parameter_line(struct isl_tab *tab, int row1, int row2) { int i; unsigned off = 2 + tab->M; if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1])) return 0; if (tab->M && isl_int_ne(tab->mat->row[row1][2], tab->mat->row[row2][2])) return 0; for (i = 0; i < tab->n_param + tab->n_div; ++i) { int pos = i < tab->n_param ? i : tab->n_var - tab->n_div + i - tab->n_param; int col; if (tab->var[pos].is_row) continue; col = tab->var[pos].index; if (isl_int_ne(tab->mat->row[row1][off + col], tab->mat->row[row2][off + col])) return 0; } return 1; } /* Return an inequality that expresses that the "parametric constant" * should be non-negative. * This function is only called when the coefficient of the big parameter * is equal to zero. */ static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row) { struct isl_vec *ineq; ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div); if (!ineq) return NULL; get_row_parameter_line(tab, row, ineq->el); if (ineq) ineq = isl_vec_normalize(ineq); return ineq; } /* Return a integer division for use in a parametric cut based on the given row. * In particular, let the parametric constant of the row be * * \sum_i a_i y_i * * where y_0 = 1, but none of the y_i corresponds to the big parameter M. * The div returned is equal to * * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d) */ static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row) { struct isl_vec *div; div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div); if (!div) return NULL; isl_int_set(div->el[0], tab->mat->row[row][0]); get_row_parameter_line(tab, row, div->el + 1); div = isl_vec_normalize(div); isl_seq_neg(div->el + 1, div->el + 1, div->size - 1); isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1); return div; } /* Return a integer division for use in transferring an integrality constraint * to the context. * In particular, let the parametric constant of the row be * * \sum_i a_i y_i * * where y_0 = 1, but none of the y_i corresponds to the big parameter M. * The the returned div is equal to * * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d) */ static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row) { struct isl_vec *div; div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div); if (!div) return NULL; isl_int_set(div->el[0], tab->mat->row[row][0]); get_row_parameter_line(tab, row, div->el + 1); div = isl_vec_normalize(div); isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1); return div; } /* Construct and return an inequality that expresses an upper bound * on the given div. * In particular, if the div is given by * * d = floor(e/m) * * then the inequality expresses * * m d <= e */ static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div) { unsigned total; unsigned div_pos; struct isl_vec *ineq; total = isl_basic_set_total_dim(bset); div_pos = 1 + total - bset->n_div + div; ineq = isl_vec_alloc(bset->ctx, 1 + total); if (!ineq) return NULL; isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total); isl_int_neg(ineq->el[div_pos], bset->div[div][0]); return ineq; } /* Given a row in the tableau and a div that was created * using get_row_split_div and that been constrained to equality, i.e., * * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i * * replace the expression "\sum_i {a_i} y_i" in the row by d, * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d. * The coefficients of the non-parameters in the tableau have been * verified to be integral. We can therefore simply replace coefficient b * by floor(b). For the coefficients of the parameters we have * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have * floor(b) = b. */ static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div) { int col; unsigned off = 2 + tab->M; isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1, tab->mat->row[row][0], 1 + tab->M + tab->n_col); isl_int_set_si(tab->mat->row[row][0], 1); isl_assert(tab->mat->ctx, !tab->var[tab->n_var - tab->n_div + div].is_row, goto error); col = tab->var[tab->n_var - tab->n_div + div].index; isl_int_set_si(tab->mat->row[row][off + col], 1); return tab; error: isl_tab_free(tab); return NULL; } /* Check if the (parametric) constant of the given row is obviously * negative, meaning that we don't need to consult the context tableau. * If there is a big parameter and its coefficient is non-zero, * then this coefficient determines the outcome. * Otherwise, we check whether the constant is negative and * all non-zero coefficients of parameters are negative and * belong to non-negative parameters. */ static int is_obviously_neg(struct isl_tab *tab, int row) { int i; int col; unsigned off = 2 + tab->M; if (tab->M) { if (isl_int_is_pos(tab->mat->row[row][2])) return 0; if (isl_int_is_neg(tab->mat->row[row][2])) return 1; } if (isl_int_is_nonneg(tab->mat->row[row][1])) return 0; for (i = 0; i < tab->n_param; ++i) { /* Eliminated parameter */ if (tab->var[i].is_row) continue; col = tab->var[i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[i].is_nonneg) return 0; if (isl_int_is_pos(tab->mat->row[row][off + col])) return 0; } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) return 0; if (isl_int_is_pos(tab->mat->row[row][off + col])) return 0; } return 1; } /* Check if the (parametric) constant of the given row is obviously * non-negative, meaning that we don't need to consult the context tableau. * If there is a big parameter and its coefficient is non-zero, * then this coefficient determines the outcome. * Otherwise, we check whether the constant is non-negative and * all non-zero coefficients of parameters are positive and * belong to non-negative parameters. */ static int is_obviously_nonneg(struct isl_tab *tab, int row) { int i; int col; unsigned off = 2 + tab->M; if (tab->M) { if (isl_int_is_pos(tab->mat->row[row][2])) return 1; if (isl_int_is_neg(tab->mat->row[row][2])) return 0; } if (isl_int_is_neg(tab->mat->row[row][1])) return 0; for (i = 0; i < tab->n_param; ++i) { /* Eliminated parameter */ if (tab->var[i].is_row) continue; col = tab->var[i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[i].is_nonneg) return 0; if (isl_int_is_neg(tab->mat->row[row][off + col])) return 0; } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) return 0; if (isl_int_is_neg(tab->mat->row[row][off + col])) return 0; } return 1; } /* Given a row r and two columns, return the column that would * lead to the lexicographically smallest increment in the sample * solution when leaving the basis in favor of the row. * Pivoting with column c will increment the sample value by a non-negative * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c * corresponding to the non-parametric variables. * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v, * with all other entries in this virtual row equal to zero. * If variable v appears in a row, then a_{v,c} is the element in column c * of that row. * * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}. * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e., * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal * increment. Otherwise, it's c2. */ static int lexmin_col_pair(struct isl_tab *tab, int row, int col1, int col2, isl_int tmp) { int i; isl_int *tr; tr = tab->mat->row[row] + 2 + tab->M; for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { int s1, s2; isl_int *r; if (!tab->var[i].is_row) { if (tab->var[i].index == col1) return col2; if (tab->var[i].index == col2) return col1; continue; } if (tab->var[i].index == row) continue; r = tab->mat->row[tab->var[i].index] + 2 + tab->M; s1 = isl_int_sgn(r[col1]); s2 = isl_int_sgn(r[col2]); if (s1 == 0 && s2 == 0) continue; if (s1 < s2) return col1; if (s2 < s1) return col2; isl_int_mul(tmp, r[col2], tr[col1]); isl_int_submul(tmp, r[col1], tr[col2]); if (isl_int_is_pos(tmp)) return col1; if (isl_int_is_neg(tmp)) return col2; } return -1; } /* Given a row in the tableau, find and return the column that would * result in the lexicographically smallest, but positive, increment * in the sample point. * If there is no such column, then return tab->n_col. * If anything goes wrong, return -1. */ static int lexmin_pivot_col(struct isl_tab *tab, int row) { int j; int col = tab->n_col; isl_int *tr; isl_int tmp; tr = tab->mat->row[row] + 2 + tab->M; isl_int_init(tmp); for (j = tab->n_dead; j < tab->n_col; ++j) { if (tab->col_var[j] >= 0 && (tab->col_var[j] < tab->n_param || tab->col_var[j] >= tab->n_var - tab->n_div)) continue; if (!isl_int_is_pos(tr[j])) continue; if (col == tab->n_col) col = j; else col = lexmin_col_pair(tab, row, col, j, tmp); isl_assert(tab->mat->ctx, col >= 0, goto error); } isl_int_clear(tmp); return col; error: isl_int_clear(tmp); return -1; } /* Return the first known violated constraint, i.e., a non-negative * contraint that currently has an either obviously negative value * or a previously determined to be negative value. * * If any constraint has a negative coefficient for the big parameter, * if any, then we return one of these first. */ static int first_neg(struct isl_tab *tab) { int row; if (tab->M) for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (isl_int_is_neg(tab->mat->row[row][2])) return row; } for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (tab->row_sign) { if (tab->row_sign[row] == 0 && is_obviously_neg(tab, row)) tab->row_sign[row] = isl_tab_row_neg; if (tab->row_sign[row] != isl_tab_row_neg) continue; } else if (!is_obviously_neg(tab, row)) continue; return row; } return -1; } /* Resolve all known or obviously violated constraints through pivoting. * In particular, as long as we can find any violated constraint, we * look for a pivoting column that would result in the lexicographicallly * smallest increment in the sample point. If there is no such column * then the tableau is infeasible. */ static struct isl_tab *restore_lexmin(struct isl_tab *tab) { int row, col; if (!tab) return NULL; if (tab->empty) return tab; while ((row = first_neg(tab)) != -1) { col = lexmin_pivot_col(tab, row); if (col >= tab->n_col) return isl_tab_mark_empty(tab); if (col < 0) goto error; isl_tab_pivot(tab, row, col); } return tab; error: isl_tab_free(tab); return NULL; } /* Given a row that represents an equality, look for an appropriate * pivoting column. * In particular, if there are any non-zero coefficients among * the non-parameter variables, then we take the last of these * variables. Eliminating this variable in terms of the other * variables and/or parameters does not influence the property * that all column in the initial tableau are lexicographically * positive. The row corresponding to the eliminated variable * will only have non-zero entries below the diagonal of the * initial tableau. That is, we transform * * I I * 1 into a * I I * * If there is no such non-parameter variable, then we are dealing with * pure parameter equality and we pick any parameter with coefficient 1 or -1 * for elimination. This will ensure that the eliminated parameter * always has an integer value whenever all the other parameters are integral. * If there is no such parameter then we return -1. */ static int last_var_col_or_int_par_col(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; int i; for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) { int col; if (tab->var[i].is_row) continue; col = tab->var[i].index; if (col <= tab->n_dead) continue; if (!isl_int_is_zero(tab->mat->row[row][off + col])) return col; } for (i = tab->n_dead; i < tab->n_col; ++i) { if (isl_int_is_one(tab->mat->row[row][off + i])) return i; if (isl_int_is_negone(tab->mat->row[row][off + i])) return i; } return -1; } /* Add an equality that is known to be valid to the tableau. * We first check if we can eliminate a variable or a parameter. * If not, we add the equality as two inequalities. * In this case, the equality was a pure parameter equality and there * is no need to resolve any constraint violations. */ static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq) { int i; int r; if (!tab) return NULL; r = isl_tab_add_row(tab, eq); if (r < 0) goto error; r = tab->con[r].index; i = last_var_col_or_int_par_col(tab, r); if (i < 0) { tab->con[r].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]); isl_seq_neg(eq, eq, 1 + tab->n_var); r = isl_tab_add_row(tab, eq); if (r < 0) goto error; tab->con[r].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]); } else { isl_tab_pivot(tab, r, i); isl_tab_kill_col(tab, i); tab->n_eq++; tab = restore_lexmin(tab); } return tab; error: isl_tab_free(tab); return NULL; } /* Check if the given row is a pure constant. */ static int is_constant(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) == -1; } /* Add an equality that may or may not be valid to the tableau. * If the resulting row is a pure constant, then it must be zero. * Otherwise, the resulting tableau is empty. * * If the row is not a pure constant, then we add two inequalities, * each time checking that they can be satisfied. * In the end we try to use one of the two constraints to eliminate * a column. */ static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) { int r1, r2; int row; if (!tab) return NULL; if (tab->bset) { tab->bset = isl_basic_set_add_eq(tab->bset, eq); isl_tab_push(tab, isl_tab_undo_bset_eq); if (!tab->bset) goto error; } r1 = isl_tab_add_row(tab, eq); if (r1 < 0) goto error; tab->con[r1].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]); row = tab->con[r1].index; if (is_constant(tab, row)) { if (!isl_int_is_zero(tab->mat->row[row][1]) || (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) return isl_tab_mark_empty(tab); return tab; } tab = restore_lexmin(tab); if (!tab || tab->empty) return tab; isl_seq_neg(eq, eq, 1 + tab->n_var); r2 = isl_tab_add_row(tab, eq); if (r2 < 0) goto error; tab->con[r2].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]); tab = restore_lexmin(tab); if (!tab || tab->empty) return tab; if (!tab->con[r1].is_row) isl_tab_kill_col(tab, tab->con[r1].index); else if (!tab->con[r2].is_row) isl_tab_kill_col(tab, tab->con[r2].index); else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) { unsigned off = 2 + tab->M; int i; int row = tab->con[r1].index; i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead, tab->n_col - tab->n_dead); if (i != -1) { isl_tab_pivot(tab, row, tab->n_dead + i); isl_tab_kill_col(tab, tab->n_dead + i); } } return tab; error: isl_tab_free(tab); return NULL; } /* Add an inequality to the tableau, resolving violations using * restore_lexmin. */ static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq) { int r; if (!tab) return NULL; if (tab->bset) { tab->bset = isl_basic_set_add_ineq(tab->bset, ineq); isl_tab_push(tab, isl_tab_undo_bset_ineq); if (!tab->bset) goto error; } r = isl_tab_add_row(tab, ineq); if (r < 0) goto error; tab->con[r].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]); if (isl_tab_row_is_redundant(tab, tab->con[r].index)) { isl_tab_mark_redundant(tab, tab->con[r].index); return tab; } tab = restore_lexmin(tab); if (tab && !tab->empty && tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index)) isl_tab_mark_redundant(tab, tab->con[r].index); return tab; error: isl_tab_free(tab); return NULL; } /* Check if the coefficients of the parameters are all integral. */ static int integer_parameter(struct isl_tab *tab, int row) { int i; int col; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_param; ++i) { /* Eliminated parameter */ if (tab->var[i].is_row) continue; col = tab->var[i].index; if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], tab->mat->row[row][0])) return 0; } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], tab->mat->row[row][0])) return 0; } return 1; } /* Check if the coefficients of the non-parameter variables are all integral. */ static int integer_variable(struct isl_tab *tab, int row) { int i; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_col; ++i) { if (tab->col_var[i] >= 0 && (tab->col_var[i] < tab->n_param || tab->col_var[i] >= tab->n_var - tab->n_div)) continue; if (!isl_int_is_divisible_by(tab->mat->row[row][off + i], tab->mat->row[row][0])) return 0; } return 1; } /* Check if the constant term is integral. */ static int integer_constant(struct isl_tab *tab, int row) { return isl_int_is_divisible_by(tab->mat->row[row][1], tab->mat->row[row][0]); } #define I_CST 1 << 0 #define I_PAR 1 << 1 #define I_VAR 1 << 2 /* Check for first (non-parameter) variable that is non-integer and * therefore requires a cut. * For parametric tableaus, there are three parts in a row, * the constant, the coefficients of the parameters and the rest. * For each part, we check whether the coefficients in that part * are all integral and if so, set the corresponding flag in *f. * If the constant and the parameter part are integral, then the * current sample value is integral and no cut is required * (irrespective of whether the variable part is integral). */ static int first_non_integer(struct isl_tab *tab, int *f) { int i; for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { int flags = 0; int row; if (!tab->var[i].is_row) continue; row = tab->var[i].index; if (integer_constant(tab, row)) ISL_FL_SET(flags, I_CST); if (integer_parameter(tab, row)) ISL_FL_SET(flags, I_PAR); if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR)) continue; if (integer_variable(tab, row)) ISL_FL_SET(flags, I_VAR); *f = flags; return row; } return -1; } /* Add a (non-parametric) cut to cut away the non-integral sample * value of the given row. * * If the row is given by * * m r = f + \sum_i a_i y_i * * then the cut is * * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0 * * The big parameter, if any, is ignored, since it is assumed to be big * enough to be divisible by any integer. * If the tableau is actually a parametric tableau, then this function * is only called when all coefficients of the parameters are integral. * The cut therefore has zero coefficients for the parameters. * * The current value is known to be negative, so row_sign, if it * exists, is set accordingly. * * Return the row of the cut or -1. */ static int add_cut(struct isl_tab *tab, int row) { int i; int r; isl_int *r_row; unsigned off = 2 + tab->M; if (isl_tab_extend_cons(tab, 1) < 0) return -1; r = isl_tab_allocate_con(tab); if (r < 0) return -1; r_row = tab->mat->row[tab->con[r].index]; isl_int_set(r_row[0], tab->mat->row[row][0]); isl_int_neg(r_row[1], tab->mat->row[row][1]); isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); isl_int_neg(r_row[1], r_row[1]); if (tab->M) isl_int_set_si(r_row[2], 0); for (i = 0; i < tab->n_col; ++i) isl_int_fdiv_r(r_row[off + i], tab->mat->row[row][off + i], tab->mat->row[row][0]); tab->con[r].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]); if (tab->row_sign) tab->row_sign[tab->con[r].index] = isl_tab_row_neg; return tab->con[r].index; } /* Given a non-parametric tableau, add cuts until an integer * sample point is obtained or until the tableau is determined * to be integer infeasible. * As long as there is any non-integer value in the sample point, * we add an appropriate cut, if possible and resolve the violated * cut constraint using restore_lexmin. * If one of the corresponding rows is equal to an integral * combination of variables/constraints plus a non-integral constant, * then there is no way to obtain an integer point an we return * a tableau that is marked empty. */ static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab) { int row; int flags; if (!tab) return NULL; if (tab->empty) return tab; while ((row = first_non_integer(tab, &flags)) != -1) { if (ISL_FL_ISSET(flags, I_VAR)) return isl_tab_mark_empty(tab); row = add_cut(tab, row); if (row < 0) goto error; tab = restore_lexmin(tab); if (!tab || tab->empty) break; } return tab; error: isl_tab_free(tab); return NULL; } static struct isl_tab *drop_sample(struct isl_tab *tab, int s) { if (s != tab->n_outside) isl_mat_swap_rows(tab->samples, tab->n_outside, s); tab->n_outside++; isl_tab_push(tab, isl_tab_undo_drop_sample); return tab; } /* Check whether all the currently active samples also satisfy the inequality * "ineq" (treated as an equality if eq is set). * Remove those samples that do not. */ static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq) { int i; isl_int v; if (!tab) return NULL; isl_assert(tab->mat->ctx, tab->bset, goto error); isl_assert(tab->mat->ctx, tab->samples, goto error); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); isl_int_init(v); for (i = tab->n_outside; i < tab->n_sample; ++i) { int sgn; isl_seq_inner_product(ineq, tab->samples->row[i], 1 + tab->n_var, &v); sgn = isl_int_sgn(v); if (eq ? (sgn == 0) : (sgn >= 0)) continue; tab = drop_sample(tab, i); if (!tab) break; } isl_int_clear(v); return tab; error: isl_tab_free(tab); return NULL; } /* Check whether the sample value of the tableau is finite, * i.e., either the tableau does not use a big parameter, or * all values of the variables are equal to the big parameter plus * some constant. This constant is the actual sample value. */ static int sample_is_finite(struct isl_tab *tab) { int i; if (!tab->M) return 1; for (i = 0; i < tab->n_var; ++i) { int row; if (!tab->var[i].is_row) return 0; row = tab->var[i].index; if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2])) return 0; } return 1; } /* Check if the context tableau of sol has any integer points. * Returns -1 if an error occurred. * If an integer point can be found and if moreover it is finite, * then it is added to the list of sample values. * * This function is only called when none of the currently active sample * values satisfies the most recently added constraint. */ static int context_is_feasible(struct isl_sol *sol) { struct isl_tab_undo *snap; struct isl_tab *tab; int feasible; if (!sol || !sol->context_tab) return -1; snap = isl_tab_snap(sol->context_tab); isl_tab_push_basis(sol->context_tab); sol->context_tab = cut_to_integer_lexmin(sol->context_tab); if (!sol->context_tab) goto error; tab = sol->context_tab; if (!tab->empty && sample_is_finite(tab)) { struct isl_vec *sample; tab->samples = isl_mat_extend(tab->samples, tab->n_sample + 1, tab->samples->n_col); if (!tab->samples) goto error; sample = isl_tab_get_sample_value(tab); if (!sample) goto error; isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size); isl_vec_free(sample); tab->n_sample++; } feasible = !sol->context_tab->empty; if (isl_tab_rollback(sol->context_tab, snap) < 0) goto error; return feasible; error: isl_tab_free(sol->context_tab); sol->context_tab = NULL; return -1; } /* First check if any of the currently active sample values satisfies * the inequality "ineq" (an equality if eq is set). * If not, continue with check_integer_feasible. */ static int context_valid_sample_or_feasible(struct isl_sol *sol, isl_int *ineq, int eq) { int i; isl_int v; struct isl_tab *tab; if (!sol || !sol->context_tab) return -1; tab = sol->context_tab; isl_assert(tab->mat->ctx, tab->bset, return -1); isl_assert(tab->mat->ctx, tab->samples, return -1); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1); isl_int_init(v); for (i = tab->n_outside; i < tab->n_sample; ++i) { int sgn; isl_seq_inner_product(ineq, tab->samples->row[i], 1 + tab->n_var, &v); sgn = isl_int_sgn(v); if (eq ? (sgn == 0) : (sgn >= 0)) break; } isl_int_clear(v); if (i < tab->n_sample) return 1; return context_is_feasible(sol); } /* For a div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(m-1)) + m d >= 0 * * Note that the second constraint is the negation of * * f - m d >= m */ static struct isl_tab *add_div_constraints(struct isl_tab *tab, unsigned div) { unsigned total; unsigned div_pos; struct isl_vec *ineq; if (!tab) return NULL; total = isl_basic_set_total_dim(tab->bset); div_pos = 1 + total - tab->bset->n_div + div; ineq = ineq_for_div(tab->bset, div); if (!ineq) goto error; tab = add_lexmin_ineq(tab, ineq->el); isl_seq_neg(ineq->el, tab->bset->div[div] + 1, 1 + total); isl_int_set(ineq->el[div_pos], tab->bset->div[div][0]); isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); tab = add_lexmin_ineq(tab, ineq->el); isl_vec_free(ineq); return tab; error: isl_tab_free(tab); return NULL; } /* Add a div specified by "div" to both the main tableau and * the context tableau. In case of the main tableau, we only * need to add an extra div. In the context tableau, we also * need to express the meaning of the div. * Return the index of the div or -1 if anything went wrong. */ static int add_div(struct isl_tab *tab, struct isl_tab **context_tab, struct isl_vec *div) { int i; int r; int k; struct isl_mat *samples; if (isl_tab_extend_vars(*context_tab, 1) < 0) goto error; r = isl_tab_allocate_var(*context_tab); if (r < 0) goto error; (*context_tab)->var[r].is_nonneg = 1; (*context_tab)->var[r].frozen = 1; samples = isl_mat_extend((*context_tab)->samples, (*context_tab)->n_sample, 1 + (*context_tab)->n_var); (*context_tab)->samples = samples; if (!samples) goto error; for (i = (*context_tab)->n_outside; i < samples->n_row; ++i) { isl_seq_inner_product(div->el + 1, samples->row[i], div->size - 1, &samples->row[i][samples->n_col - 1]); isl_int_fdiv_q(samples->row[i][samples->n_col - 1], samples->row[i][samples->n_col - 1], div->el[0]); } (*context_tab)->bset = isl_basic_set_extend_dim((*context_tab)->bset, isl_basic_set_get_dim((*context_tab)->bset), 1, 0, 2); k = isl_basic_set_alloc_div((*context_tab)->bset); if (k < 0) goto error; isl_seq_cpy((*context_tab)->bset->div[k], div->el, div->size); isl_tab_push((*context_tab), isl_tab_undo_bset_div); *context_tab = add_div_constraints(*context_tab, k); if (!*context_tab) goto error; if (isl_tab_extend_vars(tab, 1) < 0) goto error; r = isl_tab_allocate_var(tab); if (r < 0) goto error; if (!(*context_tab)->M) tab->var[r].is_nonneg = 1; tab->var[r].frozen = 1; tab->n_div++; return tab->n_div - 1; error: isl_tab_free(*context_tab); *context_tab = NULL; return -1; } static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom) { int i; unsigned total = isl_basic_set_total_dim(tab->bset); for (i = 0; i < tab->bset->n_div; ++i) { if (isl_int_ne(tab->bset->div[i][0], denom)) continue; if (!isl_seq_eq(tab->bset->div[i] + 1, div, total)) continue; return i; } return -1; } /* Return the index of a div that corresponds to "div". * We first check if we already have such a div and if not, we create one. */ static int get_div(struct isl_tab *tab, struct isl_tab **context_tab, struct isl_vec *div) { int d; d = find_div(*context_tab, div->el + 1, div->el[0]); if (d != -1) return d; return add_div(tab, context_tab, div); } /* Add a parametric cut to cut away the non-integral sample value * of the give row. * Let a_i be the coefficients of the constant term and the parameters * and let b_i be the coefficients of the variables or constraints * in basis of the tableau. * Let q be the div q = floor(\sum_i {-a_i} y_i). * * The cut is expressed as * * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0 * * If q did not already exist in the context tableau, then it is added first. * If q is in a column of the main tableau then the "+ q" can be accomplished * by setting the corresponding entry to the denominator of the constraint. * If q happens to be in a row of the main tableau, then the corresponding * row needs to be added instead (taking care of the denominators). * Note that this is very unlikely, but perhaps not entirely impossible. * * The current value of the cut is known to be negative (or at least * non-positive), so row_sign is set accordingly. * * Return the row of the cut or -1. */ static int add_parametric_cut(struct isl_tab *tab, int row, struct isl_tab **context_tab) { struct isl_vec *div; int d; int i; int r; isl_int *r_row; int col; unsigned off = 2 + tab->M; if (!*context_tab) goto error; if (isl_tab_extend_cons(*context_tab, 3) < 0) goto error; div = get_row_parameter_div(tab, row); if (!div) return -1; d = get_div(tab, context_tab, div); if (d < 0) goto error; if (isl_tab_extend_cons(tab, 1) < 0) return -1; r = isl_tab_allocate_con(tab); if (r < 0) return -1; r_row = tab->mat->row[tab->con[r].index]; isl_int_set(r_row[0], tab->mat->row[row][0]); isl_int_neg(r_row[1], tab->mat->row[row][1]); isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); isl_int_neg(r_row[1], r_row[1]); if (tab->M) isl_int_set_si(r_row[2], 0); for (i = 0; i < tab->n_param; ++i) { if (tab->var[i].is_row) continue; col = tab->var[i].index; isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); isl_int_fdiv_r(r_row[off + col], r_row[off + col], tab->mat->row[row][0]); isl_int_neg(r_row[off + col], r_row[off + col]); } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); isl_int_fdiv_r(r_row[off + col], r_row[off + col], tab->mat->row[row][0]); isl_int_neg(r_row[off + col], r_row[off + col]); } for (i = 0; i < tab->n_col; ++i) { if (tab->col_var[i] >= 0 && (tab->col_var[i] < tab->n_param || tab->col_var[i] >= tab->n_var - tab->n_div)) continue; isl_int_fdiv_r(r_row[off + i], tab->mat->row[row][off + i], tab->mat->row[row][0]); } if (tab->var[tab->n_var - tab->n_div + d].is_row) { isl_int gcd; int d_row = tab->var[tab->n_var - tab->n_div + d].index; isl_int_init(gcd); isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]); isl_int_divexact(r_row[0], r_row[0], gcd); isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd); isl_seq_combine(r_row + 1, gcd, r_row + 1, r_row[0], tab->mat->row[d_row] + 1, off - 1 + tab->n_col); isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]); isl_int_clear(gcd); } else { col = tab->var[tab->n_var - tab->n_div + d].index; isl_int_set(r_row[off + col], tab->mat->row[row][0]); } tab->con[r].is_nonneg = 1; isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]); if (tab->row_sign) tab->row_sign[tab->con[r].index] = isl_tab_row_neg; isl_vec_free(div); return tab->con[r].index; error: isl_tab_free(*context_tab); *context_tab = NULL; return -1; } /* Construct a tableau for bmap that can be used for computing * the lexicographic minimum (or maximum) of bmap. * If not NULL, then dom is the domain where the minimum * should be computed. In this case, we set up a parametric * tableau with row signs (initialized to "unknown"). * If M is set, then the tableau will use a big parameter. * If max is set, then a maximum should be computed instead of a minimum. * This means that for each variable x, the tableau will contain the variable * x' = M - x, rather than x' = M + x. This in turn means that the coefficient * of the variables in all constraints are negated prior to adding them * to the tableau. */ static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap, struct isl_basic_set *dom, unsigned M, int max) { int i; struct isl_tab *tab; tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1, isl_basic_map_total_dim(bmap), M); if (!tab) return NULL; tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); if (dom) { tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div; tab->n_div = dom->n_div; tab->row_sign = isl_calloc_array(bmap->ctx, enum isl_tab_row_sign, tab->mat->n_row); if (!tab->row_sign) goto error; } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return isl_tab_mark_empty(tab); for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { tab->var[i].is_nonneg = 1; tab->var[i].frozen = 1; } for (i = 0; i < bmap->n_eq; ++i) { if (max) isl_seq_neg(bmap->eq[i] + 1 + tab->n_param, bmap->eq[i] + 1 + tab->n_param, tab->n_var - tab->n_param - tab->n_div); tab = add_lexmin_valid_eq(tab, bmap->eq[i]); if (max) isl_seq_neg(bmap->eq[i] + 1 + tab->n_param, bmap->eq[i] + 1 + tab->n_param, tab->n_var - tab->n_param - tab->n_div); if (!tab || tab->empty) return tab; } for (i = 0; i < bmap->n_ineq; ++i) { if (max) isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param, bmap->ineq[i] + 1 + tab->n_param, tab->n_var - tab->n_param - tab->n_div); tab = add_lexmin_ineq(tab, bmap->ineq[i]); if (max) isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param, bmap->ineq[i] + 1 + tab->n_param, tab->n_var - tab->n_param - tab->n_div); if (!tab || tab->empty) return tab; } return tab; error: isl_tab_free(tab); return NULL; } static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset) { struct isl_tab *tab; bset = isl_basic_set_cow(bset); if (!bset) return NULL; tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0); if (!tab) goto error; tab->bset = bset; tab->n_sample = 0; tab->n_outside = 0; tab->samples = isl_mat_alloc(bset->ctx, 1, 1 + tab->n_var); if (!tab->samples) goto error; return tab; error: isl_basic_set_free(bset); return NULL; } /* Construct an isl_sol_map structure for accumulating the solution. * If track_empty is set, then we also keep track of the parts * of the context where there is no solution. * If max is set, then we are solving a maximization, rather than * a minimization problem, which means that the variables in the * tableau have value "M - x" rather than "M + x". */ static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap, struct isl_basic_set *dom, int track_empty, int max) { struct isl_sol_map *sol_map; struct isl_tab *context_tab; int f; sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map); if (!sol_map) goto error; sol_map->max = max; sol_map->sol.add = &sol_map_add_wrap; sol_map->sol.free = &sol_map_free_wrap; sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1, ISL_MAP_DISJOINT); if (!sol_map->map) goto error; context_tab = context_tab_for_lexmin(isl_basic_set_copy(dom)); context_tab = restore_lexmin(context_tab); sol_map->sol.context_tab = context_tab; f = context_is_feasible(&sol_map->sol); if (f < 0) goto error; if (track_empty) { sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom), 1, ISL_SET_DISJOINT); if (!sol_map->empty) goto error; } isl_basic_set_free(dom); return sol_map; error: isl_basic_set_free(dom); sol_map_free(sol_map); return NULL; } /* For each variable in the context tableau, check if the variable can * only attain non-negative values. If so, mark the parameter as non-negative * in the main tableau. This allows for a more direct identification of some * cases of violated constraints. */ static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab, struct isl_tab *context_tab) { int i; struct isl_tab_undo *snap, *snap2; struct isl_vec *ineq = NULL; struct isl_tab_var *var; int n; if (context_tab->n_var == 0) return tab; ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var); if (!ineq) goto error; if (isl_tab_extend_cons(context_tab, 1) < 0) goto error; snap = isl_tab_snap(context_tab); isl_tab_push_basis(context_tab); snap2 = isl_tab_snap(context_tab); n = 0; isl_seq_clr(ineq->el, ineq->size); for (i = 0; i < context_tab->n_var; ++i) { isl_int_set_si(ineq->el[1 + i], 1); context_tab = isl_tab_add_ineq(context_tab, ineq->el); var = &context_tab->con[context_tab->n_con - 1]; if (!context_tab->empty && !isl_tab_min_at_most_neg_one(context_tab, var)) { int j = i; if (i >= tab->n_param) j = i - tab->n_param + tab->n_var - tab->n_div; tab->var[j].is_nonneg = 1; n++; } isl_int_set_si(ineq->el[1 + i], 0); if (isl_tab_rollback(context_tab, snap2) < 0) goto error; } if (isl_tab_rollback(context_tab, snap) < 0) goto error; if (n == context_tab->n_var) { context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1); context_tab->M = 0; } isl_vec_free(ineq); return tab; error: isl_vec_free(ineq); isl_tab_free(tab); return NULL; } /* Check whether all coefficients of (non-parameter) variables * are non-positive, meaning that no pivots can be performed on the row. */ static int is_critical(struct isl_tab *tab, int row) { int j; unsigned off = 2 + tab->M; for (j = tab->n_dead; j < tab->n_col; ++j) { if (tab->col_var[j] >= 0 && (tab->col_var[j] < tab->n_param || tab->col_var[j] >= tab->n_var - tab->n_div)) continue; if (isl_int_is_pos(tab->mat->row[row][off + j])) return 0; } return 1; } /* Check whether the inequality represented by vec is strict over the integers, * i.e., there are no integer values satisfying the constraint with * equality. This happens if the gcd of the coefficients is not a divisor * of the constant term. If so, scale the constraint down by the gcd * of the coefficients. */ static int is_strict(struct isl_vec *vec) { isl_int gcd; int strict = 0; isl_int_init(gcd); isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd); if (!isl_int_is_one(gcd)) { strict = !isl_int_is_divisible_by(vec->el[0], gcd); isl_int_fdiv_q(vec->el[0], vec->el[0], gcd); isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1); } isl_int_clear(gcd); return strict; } /* Determine the sign of the given row of the main tableau. * The result is one of * isl_tab_row_pos: always non-negative; no pivot needed * isl_tab_row_neg: always non-positive; pivot * isl_tab_row_any: can be both positive and negative; split * * We first handle some simple cases * - the row sign may be known already * - the row may be obviously non-negative * - the parametric constant may be equal to that of another row * for which we know the sign. This sign will be either "pos" or * "any". If it had been "neg" then we would have pivoted before. * * If none of these cases hold, we check the value of the row for each * of the currently active samples. Based on the signs of these values * we make an initial determination of the sign of the row. * * all zero -> unk(nown) * all non-negative -> pos * all non-positive -> neg * both negative and positive -> all * * If we end up with "all", we are done. * Otherwise, we perform a check for positive and/or negative * values as follows. * * samples neg unk pos * <0 ? Y N Y N * pos any pos * >0 ? Y N Y N * any neg any neg * * There is no special sign for "zero", because we can usually treat zero * as either non-negative or non-positive, whatever works out best. * However, if the row is "critical", meaning that pivoting is impossible * then we don't want to limp zero with the non-positive case, because * then we we would lose the solution for those values of the parameters * where the value of the row is zero. Instead, we treat 0 as non-negative * ensuring a split if the row can attain both zero and negative values. * The same happens when the original constraint was one that could not * be satisfied with equality by any integer values of the parameters. * In this case, we normalize the constraint, but then a value of zero * for the normalized constraint is actually a positive value for the * original constraint, so again we need to treat zero as non-negative. * In both these cases, we have the following decision tree instead: * * all non-negative -> pos * all negative -> neg * both negative and non-negative -> all * * samples neg pos * <0 ? Y N * any pos * >=0 ? Y N * any neg */ static int row_sign(struct isl_tab *tab, struct isl_sol *sol, int row) { int i; struct isl_tab_undo *snap = NULL; struct isl_vec *ineq = NULL; int res = isl_tab_row_unknown; int critical; int strict; int sgn; int row2; isl_int tmp; struct isl_tab *context_tab = sol->context_tab; if (tab->row_sign[row] != isl_tab_row_unknown) return tab->row_sign[row]; if (is_obviously_nonneg(tab, row)) return isl_tab_row_pos; for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) { if (tab->row_sign[row2] == isl_tab_row_unknown) continue; if (identical_parameter_line(tab, row, row2)) return tab->row_sign[row2]; } critical = is_critical(tab, row); isl_assert(tab->mat->ctx, context_tab->samples, goto error); isl_assert(tab->mat->ctx, context_tab->samples->n_col == 1 + context_tab->n_var, goto error); ineq = get_row_parameter_ineq(tab, row); if (!ineq) goto error; strict = is_strict(ineq); isl_int_init(tmp); for (i = context_tab->n_outside; i < context_tab->n_sample; ++i) { isl_seq_inner_product(context_tab->samples->row[i], ineq->el, ineq->size, &tmp); sgn = isl_int_sgn(tmp); if (sgn > 0 || (sgn == 0 && (critical || strict))) { if (res == isl_tab_row_unknown) res = isl_tab_row_pos; if (res == isl_tab_row_neg) res = isl_tab_row_any; } if (sgn < 0) { if (res == isl_tab_row_unknown) res = isl_tab_row_neg; if (res == isl_tab_row_pos) res = isl_tab_row_any; } if (res == isl_tab_row_any) break; } isl_int_clear(tmp); if (res != isl_tab_row_any) { if (isl_tab_extend_cons(context_tab, 1) < 0) goto error; snap = isl_tab_snap(context_tab); isl_tab_push_basis(context_tab); } if (res == isl_tab_row_unknown || res == isl_tab_row_pos) { /* test for negative values */ int feasible; isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); isl_tab_push_basis(context_tab); sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el); feasible = context_is_feasible(sol); if (feasible < 0) goto error; context_tab = sol->context_tab; if (!feasible) res = isl_tab_row_pos; else res = (res == isl_tab_row_unknown) ? isl_tab_row_neg : isl_tab_row_any; if (isl_tab_rollback(context_tab, snap) < 0) goto error; if (res == isl_tab_row_neg) { isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); } } if (res == isl_tab_row_neg) { /* test for positive values */ int feasible; if (!critical && !strict) isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); isl_tab_push_basis(context_tab); sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el); feasible = context_is_feasible(sol); if (feasible < 0) goto error; context_tab = sol->context_tab; if (feasible) res = isl_tab_row_any; if (isl_tab_rollback(context_tab, snap) < 0) goto error; } isl_vec_free(ineq); return res; error: isl_vec_free(ineq); return 0; } static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab); /* Find solutions for values of the parameters that satisfy the given * inequality. * * We currently take a snapshot of the context tableau that is reset * when we return from this function, while we make a copy of the main * tableau, leaving the original main tableau untouched. * These are fairly arbitrary choices. Making a copy also of the context * tableau would obviate the need to undo any changes made to it later, * while taking a snapshot of the main tableau could reduce memory usage. * If we were to switch to taking a snapshot of the main tableau, * we would have to keep in mind that we need to save the row signs * and that we need to do this before saving the current basis * such that the basis has been restore before we restore the row signs. */ static struct isl_sol *find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq) { struct isl_tab_undo *snap; snap = isl_tab_snap(sol->context_tab); isl_tab_push_basis(sol->context_tab); if (isl_tab_extend_cons(sol->context_tab, 1) < 0) goto error; tab = isl_tab_dup(tab); if (!tab) goto error; sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq); sol->context_tab = check_samples(sol->context_tab, ineq, 0); sol = find_solutions(sol, tab); isl_tab_rollback(sol->context_tab, snap); return sol; error: isl_tab_rollback(sol->context_tab, snap); sol_free(sol); return NULL; } /* Record the absence of solutions for those values of the parameters * that do not satisfy the given inequality with equality. */ static struct isl_sol *no_sol_in_strict(struct isl_sol *sol, struct isl_tab *tab, struct isl_vec *ineq) { int empty; int f; struct isl_tab_undo *snap; snap = isl_tab_snap(sol->context_tab); isl_tab_push_basis(sol->context_tab); if (isl_tab_extend_cons(sol->context_tab, 1) < 0) goto error; isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el); f = context_valid_sample_or_feasible(sol, ineq->el, 0); if (f < 0) goto error; empty = tab->empty; tab->empty = 1; sol = sol->add(sol, tab); tab->empty = empty; isl_int_add_ui(ineq->el[0], ineq->el[0], 1); if (isl_tab_rollback(sol->context_tab, snap) < 0) goto error; return sol; error: sol_free(sol); return NULL; } /* Given a main tableau where more than one row requires a split, * determine and return the "best" row to split on. * * Given two rows in the main tableau, if the inequality corresponding * to the first row is redundant with respect to that of the second row * in the current tableau, then it is better to split on the second row, * since in the positive part, both row will be positive. * (In the negative part a pivot will have to be performed and just about * anything can happen to the sign of the other row.) * * As a simple heuristic, we therefore select the row that makes the most * of the other rows redundant. * * Perhaps it would also be useful to look at the number of constraints * that conflict with any given constraint. */ static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) { struct isl_tab_undo *snap, *snap2; int split; int row; int best = -1; int best_r; if (isl_tab_extend_cons(context_tab, 2) < 0) return -1; snap = isl_tab_snap(context_tab); isl_tab_push_basis(context_tab); snap2 = isl_tab_snap(context_tab); for (split = tab->n_redundant; split < tab->n_row; ++split) { struct isl_tab_undo *snap3; struct isl_vec *ineq = NULL; int r = 0; if (!isl_tab_var_from_row(tab, split)->is_nonneg) continue; if (tab->row_sign[split] != isl_tab_row_any) continue; ineq = get_row_parameter_ineq(tab, split); if (!ineq) return -1; context_tab = isl_tab_add_ineq(context_tab, ineq->el); isl_vec_free(ineq); snap3 = isl_tab_snap(context_tab); for (row = tab->n_redundant; row < tab->n_row; ++row) { struct isl_tab_var *var; if (row == split) continue; if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (tab->row_sign[row] != isl_tab_row_any) continue; ineq = get_row_parameter_ineq(tab, row); if (!ineq) return -1; context_tab = isl_tab_add_ineq(context_tab, ineq->el); isl_vec_free(ineq); var = &context_tab->con[context_tab->n_con - 1]; if (!context_tab->empty && !isl_tab_min_at_most_neg_one(context_tab, var)) r++; if (isl_tab_rollback(context_tab, snap3) < 0) return -1; } if (best == -1 || r > best_r) { best = split; best_r = r; } if (isl_tab_rollback(context_tab, snap2) < 0) return -1; } if (isl_tab_rollback(context_tab, snap) < 0) return -1; return best; } /* Compute the lexicographic minimum of the set represented by the main * tableau "tab" within the context "sol->context_tab". * On entry the sample value of the main tableau is lexicographically * less than or equal to this lexicographic minimum. * Pivots are performed until a feasible point is found, which is then * necessarily equal to the minimum, or until the tableau is found to * be infeasible. Some pivots may need to be performed for only some * feasible values of the context tableau. If so, the context tableau * is split into a part where the pivot is needed and a part where it is not. * * Whenever we enter the main loop, the main tableau is such that no * "obvious" pivots need to be performed on it, where "obvious" means * that the given row can be seen to be negative without looking at * the context tableau. In particular, for non-parametric problems, * no pivots need to be performed on the main tableau. * The caller of find_solutions is responsible for making this property * hold prior to the first iteration of the loop, while restore_lexmin * is called before every other iteration. * * Inside the main loop, we first examine the signs of the rows of * the main tableau within the context of the context tableau. * If we find a row that is always non-positive for all values of * the parameters satisfying the context tableau and negative for at * least one value of the parameters, we perform the appropriate pivot * and start over. An exception is the case where no pivot can be * performed on the row. In this case, we require that the sign of * the row is negative for all values of the parameters (rather than just * non-positive). This special case is handled inside row_sign, which * will say that the row can have any sign if it determines that it can * attain both negative and zero values. * * If we can't find a row that always requires a pivot, but we can find * one or more rows that require a pivot for some values of the parameters * (i.e., the row can attain both positive and negative signs), then we split * the context tableau into two parts, one where we force the sign to be * non-negative and one where we force is to be negative. * The non-negative part is handled by a recursive call (through find_in_pos). * Upon returning from this call, we continue with the negative part and * perform the required pivot. * * If no such rows can be found, all rows are non-negative and we have * found a (rational) feasible point. If we only wanted a rational point * then we are done. * Otherwise, we check if all values of the sample point of the tableau * are integral for the variables. If so, we have found the minimal * integral point and we are done. * If the sample point is not integral, then we need to make a distinction * based on whether the constant term is non-integral or the coefficients * of the parameters. Furthermore, in order to decide how to handle * the non-integrality, we also need to know whether the coefficients * of the other columns in the tableau are integral. This leads * to the following table. The first two rows do not correspond * to a non-integral sample point and are only mentioned for completeness. * * constant parameters other * * int int int | * int int rat | -> no problem * * rat int int -> fail * * rat int rat -> cut * * int rat rat | * rat rat rat | -> parametric cut * * int rat int | * rat rat int | -> split context * * If the parametric constant is completely integral, then there is nothing * to be done. If the constant term is non-integral, but all the other * coefficient are integral, then there is nothing that can be done * and the tableau has no integral solution. * If, on the other hand, one or more of the other columns have rational * coeffcients, but the parameter coefficients are all integral, then * we can perform a regular (non-parametric) cut. * Finally, if there is any parameter coefficient that is non-integral, * then we need to involve the context tableau. There are two cases here. * If at least one other column has a rational coefficient, then we * can perform a parametric cut in the main tableau by adding a new * integer division in the context tableau. * If all other columns have integral coefficients, then we need to * enforce that the rational combination of parameters (c + \sum a_i y_i)/m * is always integral. We do this by introducing an integer division * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i. * Since q is expressed in the tableau as * c + \sum a_i y_i - m q >= 0 * -c - \sum a_i y_i + m q + m - 1 >= 0 * it is sufficient to add the inequality * -c - \sum a_i y_i + m q >= 0 * In the part of the context where this inequality does not hold, the * main tableau is marked as being empty. */ static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab) { struct isl_tab **context_tab; if (!tab || !sol) goto error; context_tab = &sol->context_tab; if (tab->empty) goto done; if ((*context_tab)->empty) goto done; for (; tab && !tab->empty; tab = restore_lexmin(tab)) { int flags; int row; int sgn; int split = -1; int n_split = 0; for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; sgn = row_sign(tab, sol, row); if (!sgn) goto error; tab->row_sign[row] = sgn; if (sgn == isl_tab_row_any) n_split++; if (sgn == isl_tab_row_any && split == -1) split = row; if (sgn == isl_tab_row_neg) break; } if (row < tab->n_row) continue; if (split != -1) { struct isl_vec *ineq; if (n_split != 1) split = best_split(tab, *context_tab); if (split < 0) goto error; ineq = get_row_parameter_ineq(tab, split); if (!ineq) goto error; is_strict(ineq); for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (tab->row_sign[row] == isl_tab_row_any) tab->row_sign[row] = isl_tab_row_unknown; } tab->row_sign[split] = isl_tab_row_pos; sol = find_in_pos(sol, tab, ineq->el); tab->row_sign[split] = isl_tab_row_neg; row = split; isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); *context_tab = add_lexmin_ineq(*context_tab, ineq->el); *context_tab = check_samples(*context_tab, ineq->el, 0); isl_vec_free(ineq); if (!sol) goto error; continue; } if (tab->rational) break; row = first_non_integer(tab, &flags); if (row < 0) break; if (ISL_FL_ISSET(flags, I_PAR)) { if (ISL_FL_ISSET(flags, I_VAR)) { tab = isl_tab_mark_empty(tab); break; } row = add_cut(tab, row); } else if (ISL_FL_ISSET(flags, I_VAR)) { struct isl_vec *div; struct isl_vec *ineq; int d; if (isl_tab_extend_cons(*context_tab, 3) < 0) goto error; div = get_row_split_div(tab, row); if (!div) goto error; d = get_div(tab, context_tab, div); isl_vec_free(div); if (d < 0) goto error; ineq = ineq_for_div((*context_tab)->bset, d); sol = no_sol_in_strict(sol, tab, ineq); isl_seq_neg(ineq->el, ineq->el, ineq->size); *context_tab = add_lexmin_ineq(*context_tab, ineq->el); *context_tab = check_samples(*context_tab, ineq->el, 0); isl_vec_free(ineq); if (!sol) goto error; tab = set_row_cst_to_div(tab, row, d); } else row = add_parametric_cut(tab, row, context_tab); if (row < 0) goto error; } done: sol = sol->add(sol, tab); isl_tab_free(tab); return sol; error: isl_tab_free(tab); sol_free(sol); return NULL; } /* Compute the lexicographic minimum of the set represented by the main * tableau "tab" within the context "sol->context_tab". * * As a preprocessing step, we first transfer all the purely parametric * equalities from the main tableau to the context tableau, i.e., * parameters that have been pivoted to a row. * These equalities are ignored by the main algorithm, because the * corresponding rows may not be marked as being non-negative. * In parts of the context where the added equality does not hold, * the main tableau is marked as being empty. */ static struct isl_sol *find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) { int row; for (row = tab->n_redundant; row < tab->n_row; ++row) { int p; struct isl_vec *eq; if (tab->row_var[row] < 0) continue; if (tab->row_var[row] >= tab->n_param && tab->row_var[row] < tab->n_var - tab->n_div) continue; if (tab->row_var[row] < tab->n_param) p = tab->row_var[row]; else p = tab->row_var[row] + tab->n_param - (tab->n_var - tab->n_div); if (isl_tab_extend_cons(sol->context_tab, 2) < 0) goto error; eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div); get_row_parameter_line(tab, row, eq->el); isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]); eq = isl_vec_normalize(eq); sol = no_sol_in_strict(sol, tab, eq); isl_seq_neg(eq->el, eq->el, eq->size); sol = no_sol_in_strict(sol, tab, eq); isl_seq_neg(eq->el, eq->el, eq->size); sol->context_tab = add_lexmin_eq(sol->context_tab, eq->el); context_valid_sample_or_feasible(sol, eq->el, 1); sol->context_tab = check_samples(sol->context_tab, eq->el, 1); isl_vec_free(eq); isl_tab_mark_redundant(tab, row); if (!sol->context_tab) goto error; if (sol->context_tab->empty) break; row = tab->n_redundant - 1; } return find_solutions(sol, tab); error: isl_tab_free(tab); sol_free(sol); return NULL; } static struct isl_sol_map *sol_map_find_solutions(struct isl_sol_map *sol_map, struct isl_tab *tab) { return (struct isl_sol_map *)find_solutions_main(&sol_map->sol, tab); } /* Check if integer division "div" of "dom" also occurs in "bmap". * If so, return its position within the divs. * If not, return -1. */ static int find_context_div(struct isl_basic_map *bmap, struct isl_basic_set *dom, unsigned div) { int i; unsigned b_dim = isl_dim_total(bmap->dim); unsigned d_dim = isl_dim_total(dom->dim); if (isl_int_is_zero(dom->div[div][0])) return -1; if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1) return -1; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim, (b_dim - d_dim) + bmap->n_div) != -1) continue; if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim)) return i; } return -1; } /* The correspondence between the variables in the main tableau, * the context tableau, and the input map and domain is as follows. * The first n_param and the last n_div variables of the main tableau * form the variables of the context tableau. * In the basic map, these n_param variables correspond to the * parameters and the input dimensions. In the domain, they correspond * to the parameters and the set dimensions. * The n_div variables correspond to the integer divisions in the domain. * To ensure that everything lines up, we may need to copy some of the * integer divisions of the domain to the map. These have to be placed * in the same order as those in the context and they have to be placed * after any other integer divisions that the map may have. * This function performs the required reordering. */ static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap, struct isl_basic_set *dom) { int i; int common = 0; int other; for (i = 0; i < dom->n_div; ++i) if (find_context_div(bmap, dom, i) != -1) common++; other = bmap->n_div - common; if (dom->n_div - common > 0) { bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), dom->n_div - common, 0, 0); if (!bmap) return NULL; } for (i = 0; i < dom->n_div; ++i) { int pos = find_context_div(bmap, dom, i); if (pos < 0) { pos = isl_basic_map_alloc_div(bmap); if (pos < 0) goto error; isl_int_set_si(bmap->div[pos][0], 0); } if (pos != other + i) isl_basic_map_swap_div(bmap, pos, other + i); } return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Compute the lexicographic minimum (or maximum if "max" is set) * of "bmap" over the domain "dom" and return the result as a map. * If "empty" is not NULL, then *empty is assigned a set that * contains those parts of the domain where there is no solution. * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL), * then we compute the rational optimum. Otherwise, we compute * the integral optimum. * * We perform some preprocessing. As the PILP solver does not * handle implicit equalities very well, we first make sure all * the equalities are explicitly available. * We also make sure the divs in the domain are properly order, * because they will be added one by one in the given order * during the construction of the solution map. */ struct isl_map *isl_tab_basic_map_partial_lexopt( struct isl_basic_map *bmap, struct isl_basic_set *dom, struct isl_set **empty, int max) { struct isl_tab *tab; struct isl_map *result = NULL; struct isl_sol_map *sol_map = NULL; if (empty) *empty = NULL; if (!bmap || !dom) goto error; isl_assert(bmap->ctx, isl_basic_map_compatible_domain(bmap, dom), goto error); bmap = isl_basic_map_detect_equalities(bmap); if (dom->n_div) { dom = isl_basic_set_order_divs(dom); bmap = align_context_divs(bmap, dom); } sol_map = sol_map_init(bmap, dom, !!empty, max); if (!sol_map) goto error; if (isl_basic_set_fast_is_empty(sol_map->sol.context_tab->bset)) /* nothing */; else if (isl_basic_map_fast_is_empty(bmap)) sol_map = add_empty(sol_map); else { tab = tab_for_lexmin(bmap, sol_map->sol.context_tab->bset, 1, max); tab = tab_detect_nonnegative_parameters(tab, sol_map->sol.context_tab); sol_map = sol_map_find_solutions(sol_map, tab); if (!sol_map) goto error; } result = isl_map_copy(sol_map->map); if (empty) *empty = isl_set_copy(sol_map->empty); sol_map_free(sol_map); isl_basic_map_free(bmap); return result; error: sol_map_free(sol_map); isl_basic_map_free(bmap); return NULL; }