/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the GNU LGPLv2.1 license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include "isl_equalities.h" #include #include "isl_map_private.h" #include #include "isl_tab.h" #include #include static void swap_equality(struct isl_basic_map *bmap, int a, int b) { isl_int *t = bmap->eq[a]; bmap->eq[a] = bmap->eq[b]; bmap->eq[b] = t; } static void swap_inequality(struct isl_basic_map *bmap, int a, int b) { if (a != b) { isl_int *t = bmap->ineq[a]; bmap->ineq[a] = bmap->ineq[b]; bmap->ineq[b] = t; } } static void set_swap_inequality(struct isl_basic_set *bset, int a, int b) { swap_inequality((struct isl_basic_map *)bset, a, b); } static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem) { isl_seq_cpy(c, c + n, rem); isl_seq_clr(c + rem, n); } /* Drop n dimensions starting at first. * * In principle, this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ struct isl_basic_set *isl_basic_set_drop_dims( struct isl_basic_set *bset, unsigned first, unsigned n) { int i; if (!bset) goto error; isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error); if (n == 0 && !isl_dim_get_tuple_name(bset->dim, isl_dim_set)) return bset; bset = isl_basic_set_cow(bset); if (!bset) return NULL; for (i = 0; i < bset->n_eq; ++i) constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n, (bset->dim->n_out-first-n)+bset->extra); for (i = 0; i < bset->n_ineq; ++i) constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n, (bset->dim->n_out-first-n)+bset->extra); for (i = 0; i < bset->n_div; ++i) constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n, (bset->dim->n_out-first-n)+bset->extra); bset->dim = isl_dim_drop_outputs(bset->dim, first, n); if (!bset->dim) goto error; ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED); bset = isl_basic_set_simplify(bset); return isl_basic_set_finalize(bset); error: isl_basic_set_free(bset); return NULL; } struct isl_set *isl_set_drop_dims( struct isl_set *set, unsigned first, unsigned n) { int i; if (!set) goto error; isl_assert(set->ctx, first + n <= set->dim->n_out, goto error); if (n == 0 && !isl_dim_get_tuple_name(set->dim, isl_dim_set)) return set; set = isl_set_cow(set); if (!set) goto error; set->dim = isl_dim_drop_outputs(set->dim, first, n); if (!set->dim) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n); if (!set->p[i]) goto error; } ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); return NULL; } /* Move "n" divs starting at "first" to the end of the list of divs. */ static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap, unsigned first, unsigned n) { isl_int **div; int i; if (first + n == bmap->n_div) return bmap; div = isl_alloc_array(bmap->ctx, isl_int *, n); if (!div) goto error; for (i = 0; i < n; ++i) div[i] = bmap->div[first + i]; for (i = 0; i < bmap->n_div - first - n; ++i) bmap->div[first + i] = bmap->div[first + n + i]; for (i = 0; i < n; ++i) bmap->div[bmap->n_div - n + i] = div[i]; free(div); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Drop "n" dimensions of type "type" starting at "first". * * In principle, this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; unsigned offset; unsigned left; if (!bmap) goto error; dim = isl_basic_map_dim(bmap, type); isl_assert(bmap->ctx, first + n <= dim, goto error); if (n == 0 && !isl_dim_get_tuple_name(bmap->dim, type)) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; offset = isl_basic_map_offset(bmap, type) + first; left = isl_basic_map_total_dim(bmap) - (offset - 1) - n; for (i = 0; i < bmap->n_eq; ++i) constraint_drop_vars(bmap->eq[i]+offset, n, left); for (i = 0; i < bmap->n_ineq; ++i) constraint_drop_vars(bmap->ineq[i]+offset, n, left); for (i = 0; i < bmap->n_div; ++i) constraint_drop_vars(bmap->div[i]+1+offset, n, left); if (type == isl_dim_div) { bmap = move_divs_last(bmap, first, n); if (!bmap) goto error; isl_basic_map_free_div(bmap, n); } else bmap->dim = isl_dim_drop(bmap->dim, type, first, n); if (!bmap->dim) goto error; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset, type, first, n); } struct isl_basic_map *isl_basic_map_drop_inputs( struct isl_basic_map *bmap, unsigned first, unsigned n) { return isl_basic_map_drop(bmap, isl_dim_in, first, n); } struct isl_map *isl_map_drop(struct isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) goto error; isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error); if (n == 0 && !isl_dim_get_tuple_name(map->dim, type)) return map; map = isl_map_cow(map); if (!map) goto error; map->dim = isl_dim_drop(map->dim, type, first, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop(map->p[i], type, first, n); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_drop(struct isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_set *)isl_map_drop((isl_map *)set, type, first, n); } struct isl_map *isl_map_drop_inputs( struct isl_map *map, unsigned first, unsigned n) { return isl_map_drop(map, isl_dim_in, first, n); } /* * We don't cow, as the div is assumed to be redundant. */ static struct isl_basic_map *isl_basic_map_drop_div( struct isl_basic_map *bmap, unsigned div) { int i; unsigned pos; if (!bmap) goto error; pos = 1 + isl_dim_total(bmap->dim) + div; isl_assert(bmap->ctx, div < bmap->n_div, goto error); for (i = 0; i < bmap->n_eq; ++i) constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1); for (i = 0; i < bmap->n_ineq; ++i) { if (!isl_int_is_zero(bmap->ineq[i][pos])) { isl_basic_map_drop_inequality(bmap, i); --i; continue; } constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1); } for (i = 0; i < bmap->n_div; ++i) constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1); if (div != bmap->n_div - 1) { int j; isl_int *t = bmap->div[div]; for (j = div; j < bmap->n_div - 1; ++j) bmap->div[j] = bmap->div[j+1]; bmap->div[bmap->n_div - 1] = t; } ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); isl_basic_map_free_div(bmap, 1); return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_normalize_constraints( struct isl_basic_map *bmap) { int i; isl_int gcd; unsigned total = isl_basic_map_total_dim(bmap); if (!bmap) return NULL; isl_int_init(gcd); for (i = bmap->n_eq - 1; i >= 0; --i) { isl_seq_gcd(bmap->eq[i]+1, total, &gcd); if (isl_int_is_zero(gcd)) { if (!isl_int_is_zero(bmap->eq[i][0])) { bmap = isl_basic_map_set_to_empty(bmap); break; } isl_basic_map_drop_equality(bmap, i); continue; } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) isl_int_gcd(gcd, gcd, bmap->eq[i][0]); if (isl_int_is_one(gcd)) continue; if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) { bmap = isl_basic_map_set_to_empty(bmap); break; } isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total); } for (i = bmap->n_ineq - 1; i >= 0; --i) { isl_seq_gcd(bmap->ineq[i]+1, total, &gcd); if (isl_int_is_zero(gcd)) { if (isl_int_is_neg(bmap->ineq[i][0])) { bmap = isl_basic_map_set_to_empty(bmap); break; } isl_basic_map_drop_inequality(bmap, i); continue; } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) isl_int_gcd(gcd, gcd, bmap->ineq[i][0]); if (isl_int_is_one(gcd)) continue; isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd); isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total); } isl_int_clear(gcd); return bmap; } struct isl_basic_set *isl_basic_set_normalize_constraints( struct isl_basic_set *bset) { return (struct isl_basic_set *)isl_basic_map_normalize_constraints( (struct isl_basic_map *)bset); } /* Assumes divs have been ordered if keep_divs is set. */ static void eliminate_var_using_equality(struct isl_basic_map *bmap, unsigned pos, isl_int *eq, int keep_divs, int *progress) { unsigned total; int k; int last_div; total = isl_basic_map_total_dim(bmap); last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim), bmap->n_div); for (k = 0; k < bmap->n_eq; ++k) { if (bmap->eq[k] == eq) continue; if (isl_int_is_zero(bmap->eq[k][1+pos])) continue; if (progress) *progress = 1; isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL); isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total); } for (k = 0; k < bmap->n_ineq; ++k) { if (isl_int_is_zero(bmap->ineq[k][1+pos])) continue; if (progress) *progress = 1; isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL); isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } for (k = 0; k < bmap->n_div; ++k) { if (isl_int_is_zero(bmap->div[k][0])) continue; if (isl_int_is_zero(bmap->div[k][1+1+pos])) continue; if (progress) *progress = 1; /* We need to be careful about circular definitions, * so for now we just remove the definition of div k * if the equality contains any divs. * If keep_divs is set, then the divs have been ordered * and we can keep the definition as long as the result * is still ordered. */ if (last_div == -1 || (keep_divs && last_div < k)) isl_seq_elim(bmap->div[k]+1, eq, 1+pos, 1+total, &bmap->div[k][0]); else isl_seq_clr(bmap->div[k], 1 + total); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } } /* Assumes divs have been ordered if keep_divs is set. */ static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq, unsigned div, int keep_divs) { unsigned pos = isl_dim_total(bmap->dim) + div; eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL); isl_basic_map_drop_div(bmap, div); } /* Check if elimination of div "div" using equality "eq" would not * result in a div depending on a later div. */ static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq, unsigned div) { int k; int last_div; unsigned pos = isl_dim_total(bmap->dim) + div; last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim), bmap->n_div); if (last_div < 0 || last_div <= div) return 1; for (k = 0; k <= last_div; ++k) { if (isl_int_is_zero(bmap->div[k][0])) return 1; if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos])) return 0; } return 1; } /* Elimininate divs based on equalities */ static struct isl_basic_map *eliminate_divs_eq( struct isl_basic_map *bmap, int *progress) { int d; int i; int modified = 0; unsigned off; bmap = isl_basic_map_order_divs(bmap); if (!bmap) return NULL; off = 1 + isl_dim_total(bmap->dim); for (d = bmap->n_div - 1; d >= 0 ; --d) { for (i = 0; i < bmap->n_eq; ++i) { if (!isl_int_is_one(bmap->eq[i][off + d]) && !isl_int_is_negone(bmap->eq[i][off + d])) continue; if (!ok_to_eliminate_div(bmap, bmap->eq[i], d)) continue; modified = 1; *progress = 1; eliminate_div(bmap, bmap->eq[i], d, 1); isl_basic_map_drop_equality(bmap, i); break; } } if (modified) return eliminate_divs_eq(bmap, progress); return bmap; } /* Elimininate divs based on inequalities */ static struct isl_basic_map *eliminate_divs_ineq( struct isl_basic_map *bmap, int *progress) { int d; int i; unsigned off; struct isl_ctx *ctx; if (!bmap) return NULL; ctx = bmap->ctx; off = 1 + isl_dim_total(bmap->dim); for (d = bmap->n_div - 1; d >= 0 ; --d) { for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][off + d])) break; if (i < bmap->n_eq) continue; for (i = 0; i < bmap->n_ineq; ++i) if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one)) break; if (i < bmap->n_ineq) continue; *progress = 1; bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1); if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) break; bmap = isl_basic_map_drop_div(bmap, d); if (!bmap) break; } return bmap; } struct isl_basic_map *isl_basic_map_gauss( struct isl_basic_map *bmap, int *progress) { int k; int done; int last_var; unsigned total_var; unsigned total; bmap = isl_basic_map_order_divs(bmap); if (!bmap) return NULL; total = isl_basic_map_total_dim(bmap); total_var = total - bmap->n_div; last_var = total - 1; for (done = 0; done < bmap->n_eq; ++done) { for (; last_var >= 0; --last_var) { for (k = done; k < bmap->n_eq; ++k) if (!isl_int_is_zero(bmap->eq[k][1+last_var])) break; if (k < bmap->n_eq) break; } if (last_var < 0) break; if (k != done) swap_equality(bmap, k, done); if (isl_int_is_neg(bmap->eq[done][1+last_var])) isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total); eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1, progress); if (last_var >= total_var && isl_int_is_zero(bmap->div[last_var - total_var][0])) { unsigned div = last_var - total_var; isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total); isl_int_set_si(bmap->div[div][1+1+last_var], 0); isl_int_set(bmap->div[div][0], bmap->eq[done][1+last_var]); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } } if (done == bmap->n_eq) return bmap; for (k = done; k < bmap->n_eq; ++k) { if (isl_int_is_zero(bmap->eq[k][0])) continue; return isl_basic_map_set_to_empty(bmap); } isl_basic_map_free_equality(bmap, bmap->n_eq-done); return bmap; } struct isl_basic_set *isl_basic_set_gauss( struct isl_basic_set *bset, int *progress) { return (struct isl_basic_set*)isl_basic_map_gauss( (struct isl_basic_map *)bset, progress); } static unsigned int round_up(unsigned int v) { int old_v = v; while (v) { old_v = v; v ^= v & -v; } return old_v << 1; } static int hash_index(isl_int ***index, unsigned int size, int bits, struct isl_basic_map *bmap, int k) { int h; unsigned total = isl_basic_map_total_dim(bmap); uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits); for (h = hash; index[h]; h = (h+1) % size) if (&bmap->ineq[k] != index[h] && isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total)) break; return h; } static int set_hash_index(isl_int ***index, unsigned int size, int bits, struct isl_basic_set *bset, int k) { return hash_index(index, size, bits, (struct isl_basic_map *)bset, k); } /* If we can eliminate more than one div, then we need to make * sure we do it from last div to first div, in order not to * change the position of the other divs that still need to * be removed. */ static struct isl_basic_map *remove_duplicate_divs( struct isl_basic_map *bmap, int *progress) { unsigned int size; int *index; int *elim_for; int k, l, h; int bits; struct isl_blk eq; unsigned total_var; unsigned total; struct isl_ctx *ctx; if (!bmap || bmap->n_div <= 1) return bmap; total_var = isl_dim_total(bmap->dim); total = total_var + bmap->n_div; ctx = bmap->ctx; for (k = bmap->n_div - 1; k >= 0; --k) if (!isl_int_is_zero(bmap->div[k][0])) break; if (k <= 0) return bmap; elim_for = isl_calloc_array(ctx, int, bmap->n_div); size = round_up(4 * bmap->n_div / 3 - 1); bits = ffs(size) - 1; index = isl_calloc_array(ctx, int, size); if (!index) return bmap; eq = isl_blk_alloc(ctx, 1+total); if (isl_blk_is_error(eq)) goto out; isl_seq_clr(eq.data, 1+total); index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1; for (--k; k >= 0; --k) { uint32_t hash; if (isl_int_is_zero(bmap->div[k][0])) continue; hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits); for (h = hash; index[h]; h = (h+1) % size) if (isl_seq_eq(bmap->div[k], bmap->div[index[h]-1], 2+total)) break; if (index[h]) { *progress = 1; l = index[h] - 1; elim_for[l] = k + 1; } index[h] = k+1; } for (l = bmap->n_div - 1; l >= 0; --l) { if (!elim_for[l]) continue; k = elim_for[l] - 1; isl_int_set_si(eq.data[1+total_var+k], -1); isl_int_set_si(eq.data[1+total_var+l], 1); eliminate_div(bmap, eq.data, l, 0); isl_int_set_si(eq.data[1+total_var+k], 0); isl_int_set_si(eq.data[1+total_var+l], 0); } isl_blk_free(ctx, eq); out: free(index); free(elim_for); return bmap; } static int n_pure_div_eq(struct isl_basic_map *bmap) { int i, j; unsigned total; total = isl_dim_total(bmap->dim); for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) { while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j])) --j; if (j < 0) break; if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1) return 0; } return i; } /* Normalize divs that appear in equalities. * * In particular, we assume that bmap contains some equalities * of the form * * a x = m * e_i * * and we want to replace the set of e_i by a minimal set and * such that the new e_i have a canonical representation in terms * of the vector x. * If any of the equalities involves more than one divs, then * we currently simply bail out. * * Let us first additionally assume that all equalities involve * a div. The equalities then express modulo constraints on the * remaining variables and we can use "parameter compression" * to find a minimal set of constraints. The result is a transformation * * x = T(x') = x_0 + G x' * * with G a lower-triangular matrix with all elements below the diagonal * non-negative and smaller than the diagonal element on the same row. * We first normalize x_0 by making the same property hold in the affine * T matrix. * The rows i of G with a 1 on the diagonal do not impose any modulo * constraint and simply express x_i = x'_i. * For each of the remaining rows i, we introduce a div and a corresponding * equality. In particular * * g_ii e_j = x_i - g_i(x') * * where each x'_k is replaced either by x_k (if g_kk = 1) or the * corresponding div (if g_kk != 1). * * If there are any equalities not involving any div, then we * first apply a variable compression on the variables x: * * x = C x'' x'' = C_2 x * * and perform the above parameter compression on A C instead of on A. * The resulting compression is then of the form * * x'' = T(x') = x_0 + G x' * * and in constructing the new divs and the corresponding equalities, * we have to replace each x'', i.e., the x'_k with (g_kk = 1), * by the corresponding row from C_2. */ static struct isl_basic_map *normalize_divs( struct isl_basic_map *bmap, int *progress) { int i, j, k; int total; int div_eq; struct isl_mat *B; struct isl_vec *d; struct isl_mat *T = NULL; struct isl_mat *C = NULL; struct isl_mat *C2 = NULL; isl_int v; int *pos; int dropped, needed; if (!bmap) return NULL; if (bmap->n_div == 0) return bmap; if (bmap->n_eq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS)) return bmap; total = isl_dim_total(bmap->dim); div_eq = n_pure_div_eq(bmap); if (div_eq == 0) return bmap; if (div_eq < bmap->n_eq) { B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq, bmap->n_eq - div_eq, 0, 1 + total); C = isl_mat_variable_compression(B, &C2); if (!C || !C2) goto error; if (C->n_col == 0) { bmap = isl_basic_map_set_to_empty(bmap); isl_mat_free(C); isl_mat_free(C2); goto done; } } d = isl_vec_alloc(bmap->ctx, div_eq); if (!d) goto error; for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) { while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j])) --j; isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]); } B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total); if (C) { B = isl_mat_product(B, C); C = NULL; } T = isl_mat_parameter_compression(B, d); if (!T) goto error; if (T->n_col == 0) { bmap = isl_basic_map_set_to_empty(bmap); isl_mat_free(C2); isl_mat_free(T); goto done; } isl_int_init(v); for (i = 0; i < T->n_row - 1; ++i) { isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]); if (isl_int_is_zero(v)) continue; isl_mat_col_submul(T, 0, v, 1 + i); } isl_int_clear(v); pos = isl_alloc_array(bmap->ctx, int, T->n_row); if (!pos) goto error; /* We have to be careful because dropping equalities may reorder them */ dropped = 0; for (j = bmap->n_div - 1; j >= 0; --j) { for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][1 + total + j])) break; if (i < bmap->n_eq) { bmap = isl_basic_map_drop_div(bmap, j); isl_basic_map_drop_equality(bmap, i); ++dropped; } } pos[0] = 0; needed = 0; for (i = 1; i < T->n_row; ++i) { if (isl_int_is_one(T->row[i][i])) pos[i] = i; else needed++; } if (needed > dropped) { bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), needed, needed, 0); if (!bmap) goto error; } for (i = 1; i < T->n_row; ++i) { if (isl_int_is_one(T->row[i][i])) continue; k = isl_basic_map_alloc_div(bmap); pos[i] = 1 + total + k; isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div); isl_int_set(bmap->div[k][0], T->row[i][i]); if (C2) isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total); else isl_int_set_si(bmap->div[k][1 + i], 1); for (j = 0; j < i; ++j) { if (isl_int_is_zero(T->row[i][j])) continue; if (pos[j] < T->n_row && C2) isl_seq_submul(bmap->div[k] + 1, T->row[i][j], C2->row[pos[j]], 1 + total); else isl_int_neg(bmap->div[k][1 + pos[j]], T->row[i][j]); } j = isl_basic_map_alloc_equality(bmap); isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div); isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]); } free(pos); isl_mat_free(C2); isl_mat_free(T); if (progress) *progress = 1; done: ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); return bmap; error: isl_mat_free(C); isl_mat_free(C2); isl_mat_free(T); return bmap; } static struct isl_basic_map *set_div_from_lower_bound( struct isl_basic_map *bmap, int div, int ineq) { unsigned total = 1 + isl_dim_total(bmap->dim); isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div); isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]); isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); isl_int_set_si(bmap->div[div][1 + total + div], 0); return bmap; } /* Check whether it is ok to define a div based on an inequality. * To avoid the introduction of circular definitions of divs, we * do not allow such a definition if the resulting expression would refer to * any other undefined divs or if any known div is defined in * terms of the unknown div. */ static int ok_to_set_div_from_bound(struct isl_basic_map *bmap, int div, int ineq) { int j; unsigned total = 1 + isl_dim_total(bmap->dim); /* Not defined in terms of unknown divs */ for (j = 0; j < bmap->n_div; ++j) { if (div == j) continue; if (isl_int_is_zero(bmap->ineq[ineq][total + j])) continue; if (isl_int_is_zero(bmap->div[j][0])) return 0; } /* No other div defined in terms of this one => avoid loops */ for (j = 0; j < bmap->n_div; ++j) { if (div == j) continue; if (isl_int_is_zero(bmap->div[j][0])) continue; if (!isl_int_is_zero(bmap->div[j][1 + total + div])) return 0; } return 1; } /* Given two constraints "k" and "l" that are opposite to each other, * except for the constant term, check if we can use them * to obtain an expression for one of the hitherto unknown divs. * "sum" is the sum of the constant terms of the constraints. * If this sum is strictly smaller than the coefficient of one * of the divs, then this pair can be used define the div. * To avoid the introduction of circular definitions of divs, we * do not use the pair if the resulting expression would refer to * any other undefined divs or if any known div is defined in * terms of the unknown div. */ static struct isl_basic_map *check_for_div_constraints( struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress) { int i; unsigned total = 1 + isl_dim_total(bmap->dim); for (i = 0; i < bmap->n_div; ++i) { if (!isl_int_is_zero(bmap->div[i][0])) continue; if (isl_int_is_zero(bmap->ineq[k][total + i])) continue; if (isl_int_abs_ge(sum, bmap->ineq[k][total + i])) continue; if (!ok_to_set_div_from_bound(bmap, i, k)) break; if (isl_int_is_pos(bmap->ineq[k][total + i])) bmap = set_div_from_lower_bound(bmap, i, k); else bmap = set_div_from_lower_bound(bmap, i, l); if (progress) *progress = 1; break; } return bmap; } static struct isl_basic_map *remove_duplicate_constraints( struct isl_basic_map *bmap, int *progress, int detect_divs) { unsigned int size; isl_int ***index; int k, l, h; int bits; unsigned total = isl_basic_map_total_dim(bmap); isl_int sum; if (!bmap || bmap->n_ineq <= 1) return bmap; size = round_up(4 * (bmap->n_ineq+1) / 3 - 1); bits = ffs(size) - 1; index = isl_calloc_array(ctx, isl_int **, size); if (!index) return bmap; index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0]; for (k = 1; k < bmap->n_ineq; ++k) { h = hash_index(index, size, bits, bmap, k); if (!index[h]) { index[h] = &bmap->ineq[k]; continue; } if (progress) *progress = 1; l = index[h] - &bmap->ineq[0]; if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0])) swap_inequality(bmap, k, l); isl_basic_map_drop_inequality(bmap, k); --k; } isl_int_init(sum); for (k = 0; k < bmap->n_ineq-1; ++k) { isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total); h = hash_index(index, size, bits, bmap, k); isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total); if (!index[h]) continue; l = index[h] - &bmap->ineq[0]; isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]); if (isl_int_is_pos(sum)) { if (detect_divs) bmap = check_for_div_constraints(bmap, k, l, sum, progress); continue; } if (isl_int_is_zero(sum)) { /* We need to break out of the loop after these * changes since the contents of the hash * will no longer be valid. * Plus, we probably we want to regauss first. */ if (progress) *progress = 1; isl_basic_map_drop_inequality(bmap, l); isl_basic_map_inequality_to_equality(bmap, k); } else bmap = isl_basic_map_set_to_empty(bmap); break; } isl_int_clear(sum); free(index); return bmap; } struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap) { int progress = 1; if (!bmap) return NULL; while (progress) { progress = 0; bmap = isl_basic_map_normalize_constraints(bmap); bmap = remove_duplicate_divs(bmap, &progress); bmap = eliminate_divs_eq(bmap, &progress); bmap = eliminate_divs_ineq(bmap, &progress); bmap = isl_basic_map_gauss(bmap, &progress); /* requires equalities in normal form */ bmap = normalize_divs(bmap, &progress); bmap = remove_duplicate_constraints(bmap, &progress, 1); } return bmap; } struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_simplify((struct isl_basic_map *)bset); } int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap, isl_int *constraint, unsigned div) { unsigned pos; if (!bmap) return -1; pos = 1 + isl_dim_total(bmap->dim) + div; if (isl_int_eq(constraint[pos], bmap->div[div][0])) { int neg; isl_int_sub(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1); neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos); isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); if (!neg) return 0; if (isl_seq_first_non_zero(constraint+pos+1, bmap->n_div-div-1) != -1) return 0; } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) { if (!isl_seq_eq(constraint, bmap->div[div]+1, pos)) return 0; if (isl_seq_first_non_zero(constraint+pos+1, bmap->n_div-div-1) != -1) return 0; } else return 0; return 1; } /* If the only constraints a div d=floor(f/m) * appears in are its two defining constraints * * f - m d >=0 * -(f - (m - 1)) + m d >= 0 * * then it can safely be removed. */ static int div_is_redundant(struct isl_basic_map *bmap, int div) { int i; unsigned pos = 1 + isl_dim_total(bmap->dim) + div; for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][pos])) return 0; for (i = 0; i < bmap->n_ineq; ++i) { if (isl_int_is_zero(bmap->ineq[i][pos])) continue; if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div)) return 0; } for (i = 0; i < bmap->n_div; ++i) if (!isl_int_is_zero(bmap->div[i][1+pos])) return 0; return 1; } /* * Remove divs that don't occur in any of the constraints or other divs. * These can arise when dropping some of the variables in a quast * returned by piplib. */ static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap) { int i; if (!bmap) return NULL; for (i = bmap->n_div-1; i >= 0; --i) { if (!div_is_redundant(bmap, i)) continue; bmap = isl_basic_map_drop_div(bmap, i); } return bmap; } struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap) { bmap = remove_redundant_divs(bmap); if (!bmap) return NULL; ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); return bmap; } struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_finalize((struct isl_basic_map *)bset); } struct isl_set *isl_set_finalize(struct isl_set *set) { int i; if (!set) return NULL; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_finalize(set->p[i]); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } struct isl_map *isl_map_finalize(struct isl_map *map) { int i; if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_finalize(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } /* Remove definition of any div that is defined in terms of the given variable. * The div itself is not removed. Functions such as * eliminate_divs_ineq depend on the other divs remaining in place. */ static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap, int pos) { int i; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_int_is_zero(bmap->div[i][1+1+pos])) continue; isl_int_set_si(bmap->div[i][0], 0); } return bmap; } /* Eliminate the specified variables from the constraints using * Fourier-Motzkin. The variables themselves are not removed. */ struct isl_basic_map *isl_basic_map_eliminate_vars( struct isl_basic_map *bmap, unsigned pos, unsigned n) { int d; int i, j, k; unsigned total; if (n == 0) return bmap; if (!bmap) return NULL; total = isl_basic_map_total_dim(bmap); bmap = isl_basic_map_cow(bmap); for (d = pos + n - 1; d >= 0 && d >= pos; --d) bmap = remove_dependent_vars(bmap, d); for (d = pos + n - 1; d >= 0 && d >= total - bmap->n_div && d >= pos; --d) isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total); for (d = pos + n - 1; d >= 0 && d >= pos; --d) { int n_lower, n_upper; if (!bmap) return NULL; for (i = 0; i < bmap->n_eq; ++i) { if (isl_int_is_zero(bmap->eq[i][1+d])) continue; eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL); isl_basic_map_drop_equality(bmap, i); break; } if (i < bmap->n_eq) continue; n_lower = 0; n_upper = 0; for (i = 0; i < bmap->n_ineq; ++i) { if (isl_int_is_pos(bmap->ineq[i][1+d])) n_lower++; else if (isl_int_is_neg(bmap->ineq[i][1+d])) n_upper++; } bmap = isl_basic_map_extend_constraints(bmap, 0, n_lower * n_upper); if (!bmap) goto error; for (i = bmap->n_ineq - 1; i >= 0; --i) { int last; if (isl_int_is_zero(bmap->ineq[i][1+d])) continue; last = -1; for (j = 0; j < i; ++j) { if (isl_int_is_zero(bmap->ineq[j][1+d])) continue; last = j; if (isl_int_sgn(bmap->ineq[i][1+d]) == isl_int_sgn(bmap->ineq[j][1+d])) continue; k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], bmap->ineq[i], 1+total); isl_seq_elim(bmap->ineq[k], bmap->ineq[j], 1+d, 1+total, NULL); } isl_basic_map_drop_inequality(bmap, i); i = last + 1; } if (n_lower > 0 && n_upper > 0) { bmap = isl_basic_map_normalize_constraints(bmap); bmap = remove_duplicate_constraints(bmap, NULL, 0); bmap = isl_basic_map_gauss(bmap, NULL); bmap = isl_basic_map_remove_redundancies(bmap); if (!bmap) goto error; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) break; } } ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_eliminate_vars( struct isl_basic_set *bset, unsigned pos, unsigned n) { return (struct isl_basic_set *)isl_basic_map_eliminate_vars( (struct isl_basic_map *)bset, pos, n); } /* Don't assume equalities are in order, because align_divs * may have changed the order of the divs. */ static void compute_elimination_index(struct isl_basic_map *bmap, int *elim) { int d, i; unsigned total; total = isl_dim_total(bmap->dim); for (d = 0; d < total; ++d) elim[d] = -1; for (i = 0; i < bmap->n_eq; ++i) { for (d = total - 1; d >= 0; --d) { if (isl_int_is_zero(bmap->eq[i][1+d])) continue; elim[d] = i; break; } } } static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim) { compute_elimination_index((struct isl_basic_map *)bset, elim); } static int reduced_using_equalities(isl_int *dst, isl_int *src, struct isl_basic_map *bmap, int *elim) { int d; int copied = 0; unsigned total; total = isl_dim_total(bmap->dim); for (d = total - 1; d >= 0; --d) { if (isl_int_is_zero(src[1+d])) continue; if (elim[d] == -1) continue; if (!copied) { isl_seq_cpy(dst, src, 1 + total); copied = 1; } isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL); } return copied; } static int set_reduced_using_equalities(isl_int *dst, isl_int *src, struct isl_basic_set *bset, int *elim) { return reduced_using_equalities(dst, src, (struct isl_basic_map *)bset, elim); } static struct isl_basic_set *isl_basic_set_reduce_using_equalities( struct isl_basic_set *bset, struct isl_basic_set *context) { int i; int *elim; if (!bset || !context) goto error; if (context->n_eq == 0) { isl_basic_set_free(context); return bset; } bset = isl_basic_set_cow(bset); if (!bset) goto error; elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset)); if (!elim) goto error; set_compute_elimination_index(context, elim); for (i = 0; i < bset->n_eq; ++i) set_reduced_using_equalities(bset->eq[i], bset->eq[i], context, elim); for (i = 0; i < bset->n_ineq; ++i) set_reduced_using_equalities(bset->ineq[i], bset->ineq[i], context, elim); isl_basic_set_free(context); free(elim); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); return bset; error: isl_basic_set_free(bset); isl_basic_set_free(context); return NULL; } static struct isl_basic_set *remove_shifted_constraints( struct isl_basic_set *bset, struct isl_basic_set *context) { unsigned int size; isl_int ***index; int bits; int k, h, l; if (!bset) return NULL; size = round_up(4 * (context->n_ineq+1) / 3 - 1); bits = ffs(size) - 1; index = isl_calloc_array(ctx, isl_int **, size); if (!index) return bset; for (k = 0; k < context->n_ineq; ++k) { h = set_hash_index(index, size, bits, context, k); index[h] = &context->ineq[k]; } for (k = 0; k < bset->n_ineq; ++k) { h = set_hash_index(index, size, bits, bset, k); if (!index[h]) continue; l = index[h] - &context->ineq[0]; if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0])) continue; bset = isl_basic_set_cow(bset); if (!bset) goto error; isl_basic_set_drop_inequality(bset, k); --k; } free(index); return bset; error: free(index); return bset; } /* Tighten (decrease) the constant terms of the inequalities based * on the equalities, without removing any integer points. * For example, if there is an equality * * i = 3 * j * * and an inequality * * i >= 1 * * then we want to replace the inequality by * * i >= 3 * * We do this by computing a variable compression and translating * the constraints to the compressed space. * If any constraint has coefficients (except the contant term) * with a common factor "f", then we can replace the constant term "c" * by * * f * floor(c/f) * * That is, we add * * f * floor(c/f) - c = -fract(c/f) * * and we can add the same value to the original constraint. * * In the example, the compressed space only contains "j", * and the inequality translates to * * 3 * j - 1 >= 0 * * We add -fract(-1/3) = -2 to the original constraint to obtain * * i - 3 >= 0 */ static struct isl_basic_set *normalize_constraints_in_compressed_space( struct isl_basic_set *bset) { int i; unsigned total; struct isl_mat *B, *C; isl_int gcd; if (!bset) return NULL; if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL)) return bset; if (!bset->n_ineq) return bset; bset = isl_basic_set_cow(bset); if (!bset) return NULL; total = isl_basic_set_total_dim(bset); B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total); C = isl_mat_variable_compression(B, NULL); if (!C) return bset; if (C->n_col == 0) { isl_mat_free(C); return isl_basic_set_set_to_empty(bset); } B = isl_mat_sub_alloc(bset->ctx, bset->ineq, 0, bset->n_ineq, 0, 1 + total); C = isl_mat_product(B, C); if (!C) return bset; isl_int_init(gcd); for (i = 0; i < bset->n_ineq; ++i) { isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd); if (isl_int_is_one(gcd)) continue; isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd); isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]); } isl_int_clear(gcd); isl_mat_free(C); return bset; } /* Remove all information from bset that is redundant in the context * of context. Both bset and context are assumed to be full-dimensional. * * We first * remove the inequalities from "bset" * that are obviously redundant with respect to some inequality in "context". * * If there are any inequalities left, we construct a tableau for * the context and then add the inequalities of "bset". * Before adding these inequalities, we freeze all constraints such that * they won't be considered redundant in terms of the constraints of "bset". * Then we detect all redundant constraints (among the * constraints that weren't frozen), first by checking for redundancy in the * the tableau and then by checking if replacing a constraint by its negation * would lead to an empty set. This last step is fairly expensive * and could be optimized by more reuse of the tableau. * Finally, we update bset according to the results. */ static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) { int i, k; isl_basic_set *combined = NULL; struct isl_tab *tab = NULL; unsigned context_ineq; unsigned total; if (!bset || !context) goto error; if (isl_basic_set_is_universe(bset)) { isl_basic_set_free(context); return bset; } if (isl_basic_set_is_universe(context)) { isl_basic_set_free(context); return bset; } bset = remove_shifted_constraints(bset, context); if (!bset) goto error; if (bset->n_ineq == 0) goto done; context_ineq = context->n_ineq; combined = isl_basic_set_cow(isl_basic_set_copy(context)); combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq); tab = isl_tab_from_basic_set(combined); for (i = 0; i < context_ineq; ++i) if (isl_tab_freeze_constraint(tab, i) < 0) goto error; tab = isl_tab_extend(tab, bset->n_ineq); for (i = 0; i < bset->n_ineq; ++i) if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0) goto error; bset = isl_basic_set_add_constraints(combined, bset, 0); combined = NULL; if (!bset) goto error; if (isl_tab_detect_redundant(tab) < 0) goto error; total = isl_basic_set_total_dim(bset); for (i = context_ineq; i < bset->n_ineq; ++i) { int is_empty; if (tab->con[i].is_redundant) continue; tab->con[i].is_redundant = 1; combined = isl_basic_set_dup(bset); combined = isl_basic_set_update_from_tab(combined, tab); combined = isl_basic_set_extend_constraints(combined, 0, 1); k = isl_basic_set_alloc_inequality(combined); if (k < 0) goto error; isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total); isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1); is_empty = isl_basic_set_is_empty(combined); if (is_empty < 0) goto error; isl_basic_set_free(combined); combined = NULL; if (!is_empty) tab->con[i].is_redundant = 0; } for (i = 0; i < context_ineq; ++i) tab->con[i].is_redundant = 1; bset = isl_basic_set_update_from_tab(bset, tab); if (bset) { ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); } isl_tab_free(tab); done: bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); isl_basic_set_free(context); return bset; error: isl_tab_free(tab); isl_basic_set_free(combined); isl_basic_set_free(context); isl_basic_set_free(bset); return NULL; } /* Remove all information from bset that is redundant in the context * of context. In particular, equalities that are linear combinations * of those in context are removed. Then the inequalities that are * redundant in the context of the equalities and inequalities of * context are removed. * * We first compute the integer affine hull of the intersection, * compute the gist inside this affine hull and then add back * those equalities that are not implied by the context. */ static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) { isl_mat *eq; isl_mat *T, *T2; isl_basic_set *aff; isl_basic_set *aff_context; unsigned total; if (!bset || !context) goto error; bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context)); if (isl_basic_set_fast_is_empty(bset)) { isl_basic_set_free(context); return bset; } aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset)); if (!aff) goto error; if (isl_basic_set_fast_is_empty(aff)) { isl_basic_set_free(aff); isl_basic_set_free(context); return bset; } if (aff->n_eq == 0) { isl_basic_set_free(aff); return uset_gist_full(bset, context); } total = isl_basic_set_total_dim(bset); eq = isl_mat_sub_alloc(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total); eq = isl_mat_cow(eq); T = isl_mat_variable_compression(eq, &T2); if (T && T->n_col == 0) { isl_mat_free(T); isl_mat_free(T2); isl_basic_set_free(context); isl_basic_set_free(aff); return isl_basic_set_set_to_empty(bset); } aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context)); bset = isl_basic_set_preimage(bset, isl_mat_copy(T)); context = isl_basic_set_preimage(context, T); bset = uset_gist_full(bset, context); bset = isl_basic_set_preimage(bset, T2); bset = isl_basic_set_intersect(bset, aff); bset = isl_basic_set_reduce_using_equalities(bset, aff_context); if (bset) { ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); } return bset; error: isl_basic_set_free(bset); isl_basic_set_free(context); return NULL; } /* Normalize the divs in "bmap" in the context of the equalities in "context". * We simply add the equalities in context to bmap and then do a regular * div normalizations. Better results can be obtained by normalizing * only the divs in bmap than do not also appear in context. * We need to be careful to reduce the divs using the equalities * so that later calls to isl_basic_map_overlying_set wouldn't introduce * spurious constraints. */ static struct isl_basic_map *normalize_divs_in_context( struct isl_basic_map *bmap, struct isl_basic_map *context) { int i; unsigned total_context; int div_eq; div_eq = n_pure_div_eq(bmap); if (div_eq == 0) return bmap; if (context->n_div > 0) bmap = isl_basic_map_align_divs(bmap, context); total_context = isl_basic_map_total_dim(context); bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0); for (i = 0; i < context->n_eq; ++i) { int k; k = isl_basic_map_alloc_equality(bmap); isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context); isl_seq_clr(bmap->eq[k] + 1 + total_context, isl_basic_map_total_dim(bmap) - total_context); } bmap = isl_basic_map_gauss(bmap, NULL); bmap = normalize_divs(bmap, NULL); bmap = isl_basic_map_gauss(bmap, NULL); return bmap; } struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap, struct isl_basic_map *context) { struct isl_basic_set *bset; if (!bmap || !context) goto error; if (isl_basic_map_is_universe(bmap)) { isl_basic_map_free(context); return bmap; } if (isl_basic_map_fast_is_empty(context)) { struct isl_dim *dim = isl_dim_copy(bmap->dim); isl_basic_map_free(context); isl_basic_map_free(bmap); return isl_basic_map_universe(dim); } if (isl_basic_map_fast_is_empty(bmap)) { isl_basic_map_free(context); return bmap; } bmap = isl_basic_map_remove_redundancies(bmap); context = isl_basic_map_remove_redundancies(context); if (context->n_eq) bmap = normalize_divs_in_context(bmap, context); context = isl_basic_map_align_divs(context, bmap); bmap = isl_basic_map_align_divs(bmap, context); bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)), isl_basic_map_underlying_set(context)); return isl_basic_map_overlying_set(bset, bmap); error: isl_basic_map_free(bmap); isl_basic_map_free(context); return NULL; } /* * Assumes context has no implicit divs. */ __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *context) { int i; if (!map || !context) goto error;; if (isl_basic_map_fast_is_empty(context)) { struct isl_dim *dim = isl_dim_copy(map->dim); isl_basic_map_free(context); isl_map_free(map); return isl_map_universe(dim); } context = isl_basic_map_remove_redundancies(context); map = isl_map_cow(map); if (!map || !context) goto error;; isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error); map = isl_map_compute_divs(map); for (i = 0; i < map->n; ++i) context = isl_basic_map_align_divs(context, map->p[i]); for (i = map->n - 1; i >= 0; --i) { map->p[i] = isl_basic_map_gist(map->p[i], isl_basic_map_copy(context)); if (!map->p[i]) goto error; if (isl_basic_map_fast_is_empty(map->p[i])) { isl_basic_map_free(map->p[i]); if (i != map->n - 1) map->p[i] = map->p[map->n - 1]; map->n--; } } isl_basic_map_free(context); ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); isl_basic_map_free(context); return NULL; } __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, __isl_take isl_map *context) { context = isl_map_compute_divs(context); return isl_map_gist_basic_map(map, isl_map_simple_hull(context)); } struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset, struct isl_basic_set *context) { return (struct isl_basic_set *)isl_basic_map_gist( (struct isl_basic_map *)bset, (struct isl_basic_map *)context); } __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *context) { return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set, (struct isl_basic_map *)context); } __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, __isl_take isl_set *context) { return (struct isl_set *)isl_map_gist((struct isl_map *)set, (struct isl_map *)context); } /* Quick check to see if two basic maps are disjoint. * In particular, we reduce the equalities and inequalities of * one basic map in the context of the equalities of the other * basic map and check if we get a contradiction. */ int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { struct isl_vec *v = NULL; int *elim = NULL; unsigned total; int i; if (!bmap1 || !bmap2) return -1; isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim), return -1); if (bmap1->n_div || bmap2->n_div) return 0; if (!bmap1->n_eq && !bmap2->n_eq) return 0; total = isl_dim_total(bmap1->dim); if (total == 0) return 0; v = isl_vec_alloc(bmap1->ctx, 1 + total); if (!v) goto error; elim = isl_alloc_array(bmap1->ctx, int, total); if (!elim) goto error; compute_elimination_index(bmap1, elim); for (i = 0; i < bmap2->n_eq; ++i) { int reduced; reduced = reduced_using_equalities(v->block.data, bmap2->eq[i], bmap1, elim); if (reduced && !isl_int_is_zero(v->block.data[0]) && isl_seq_first_non_zero(v->block.data + 1, total) == -1) goto disjoint; } for (i = 0; i < bmap2->n_ineq; ++i) { int reduced; reduced = reduced_using_equalities(v->block.data, bmap2->ineq[i], bmap1, elim); if (reduced && isl_int_is_neg(v->block.data[0]) && isl_seq_first_non_zero(v->block.data + 1, total) == -1) goto disjoint; } compute_elimination_index(bmap2, elim); for (i = 0; i < bmap1->n_ineq; ++i) { int reduced; reduced = reduced_using_equalities(v->block.data, bmap1->ineq[i], bmap2, elim); if (reduced && isl_int_is_neg(v->block.data[0]) && isl_seq_first_non_zero(v->block.data + 1, total) == -1) goto disjoint; } isl_vec_free(v); free(elim); return 0; disjoint: isl_vec_free(v); free(elim); return 1; error: isl_vec_free(v); free(elim); return -1; } int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1, (struct isl_basic_map *)bset2); } int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2) { int i, j; if (!map1 || !map2) return -1; if (isl_map_fast_is_equal(map1, map2)) return 0; for (i = 0; i < map1->n; ++i) { for (j = 0; j < map2->n; ++j) { int d = isl_basic_map_fast_is_disjoint(map1->p[i], map2->p[j]); if (d != 1) return d; } } return 1; } int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2) { return isl_map_fast_is_disjoint((struct isl_map *)set1, (struct isl_map *)set2); } /* Check if we can combine a given div with lower bound l and upper * bound u with some other div and if so return that other div. * Otherwise return -1. * * We first check that * - the bounds are opposites of each other (except for the constant * term) * - the bounds do not reference any other div * - no div is defined in terms of this div * * Let m be the size of the range allowed on the div by the bounds. * That is, the bounds are of the form * * e <= a <= e + m - 1 * * with e some expression in the other variables. * We look for another div b such that no third div is defined in terms * of this second div b and such that in any constraint that contains * a (except for the given lower and upper bound), also contains b * with a coefficient that is m times that of b. * That is, all constraints (execpt for the lower and upper bound) * are of the form * * e + f (a + m b) >= 0 * * If so, we return b so that "a + m b" can be replaced by * a single div "c = a + m b". */ static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs, unsigned div, unsigned l, unsigned u) { int i, j; unsigned dim; int coalesce = -1; if (bmap->n_div <= 1) return -1; dim = isl_dim_total(bmap->dim); if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1) return -1; if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1, bmap->n_div - div - 1) != -1) return -1; if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1, dim + bmap->n_div)) return -1; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div])) return -1; } isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); if (isl_int_is_neg(bmap->ineq[l][0])) { isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_set_to_empty(bmap); isl_basic_map_free(bmap); return -1; } isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); for (i = 0; i < bmap->n_div; ++i) { if (i == div) continue; if (!pairs[i]) continue; for (j = 0; j < bmap->n_div; ++j) { if (isl_int_is_zero(bmap->div[j][0])) continue; if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i])) break; } if (j < bmap->n_div) continue; for (j = 0; j < bmap->n_ineq; ++j) { int valid; if (j == l || j == u) continue; if (isl_int_is_zero(bmap->ineq[j][1 + dim + div])) continue; if (isl_int_is_zero(bmap->ineq[j][1 + dim + i])) break; isl_int_mul(bmap->ineq[j][1 + dim + div], bmap->ineq[j][1 + dim + div], bmap->ineq[l][0]); valid = isl_int_eq(bmap->ineq[j][1 + dim + div], bmap->ineq[j][1 + dim + i]); isl_int_divexact(bmap->ineq[j][1 + dim + div], bmap->ineq[j][1 + dim + div], bmap->ineq[l][0]); if (!valid) break; } if (j < bmap->n_ineq) continue; coalesce = i; break; } isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); return coalesce; } /* Given a lower and an upper bound on div i, construct an inequality * that when nonnegative ensures that this pair of bounds always allows * for an integer value of the given div. * The lower bound is inequality l, while the upper bound is inequality u. * The constructed inequality is stored in ineq. * g, fl, fu are temporary scalars. * * Let the upper bound be * * -n_u a + e_u >= 0 * * and the lower bound * * n_l a + e_l >= 0 * * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l). * We have * * - f_u e_l <= f_u f_l g a <= f_l e_u * * Since all variables are integer valued, this is equivalent to * * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1) * * If this interval is at least f_u f_l g, then it contains at least * one integer value for a. * That is, the test constraint is * * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g */ static void construct_test_ineq(struct isl_basic_map *bmap, int i, int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu) { unsigned dim; dim = isl_dim_total(bmap->dim); isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]); isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g); isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g); isl_int_neg(fu, fu); isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l], 1 + dim + bmap->n_div); isl_int_add(ineq[0], ineq[0], fl); isl_int_add(ineq[0], ineq[0], fu); isl_int_sub_ui(ineq[0], ineq[0], 1); isl_int_mul(g, g, fl); isl_int_mul(g, g, fu); isl_int_sub(ineq[0], ineq[0], g); } /* Remove more kinds of divs that are not strictly needed. * In particular, if all pairs of lower and upper bounds on a div * are such that they allow at least one integer value of the div, * the we can eliminate the div using Fourier-Motzkin without * introducing any spurious solutions. */ static struct isl_basic_map *drop_more_redundant_divs( struct isl_basic_map *bmap, int *pairs, int n) { struct isl_tab *tab = NULL; struct isl_vec *vec = NULL; unsigned dim; int remove = -1; isl_int g, fl, fu; isl_int_init(g); isl_int_init(fl); isl_int_init(fu); if (!bmap) goto error; dim = isl_dim_total(bmap->dim); vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div); if (!vec) goto error; tab = isl_tab_from_basic_map(bmap); while (n > 0) { int i, l, u; int best = -1; enum isl_lp_result res; for (i = 0; i < bmap->n_div; ++i) { if (!pairs[i]) continue; if (best >= 0 && pairs[best] <= pairs[i]) continue; best = i; } i = best; for (l = 0; l < bmap->n_ineq; ++l) { if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i])) continue; for (u = 0; u < bmap->n_ineq; ++u) { if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i])) continue; construct_test_ineq(bmap, i, l, u, vec->el, g, fl, fu); res = isl_tab_min(tab, vec->el, bmap->ctx->one, &g, NULL, 0); if (res == isl_lp_error) goto error; if (res == isl_lp_empty) { bmap = isl_basic_map_set_to_empty(bmap); break; } if (res != isl_lp_ok || isl_int_is_neg(g)) break; } if (u < bmap->n_ineq) break; } if (l == bmap->n_ineq) { remove = i; break; } pairs[i] = 0; --n; } isl_tab_free(tab); isl_vec_free(vec); isl_int_clear(g); isl_int_clear(fl); isl_int_clear(fu); free(pairs); if (remove < 0) return bmap; bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1); return isl_basic_map_drop_redundant_divs(bmap); error: free(pairs); isl_basic_map_free(bmap); isl_tab_free(tab); isl_vec_free(vec); isl_int_clear(g); isl_int_clear(fl); isl_int_clear(fu); return NULL; } /* Given a pair of divs div1 and div2 such that, expect for the lower bound l * and the upper bound u, div1 always occurs together with div2 in the form * (div1 + m div2), where m is the constant range on the variable div1 * allowed by l and u, replace the pair div1 and div2 by a single * div that is equal to div1 + m div2. * * The new div will appear in the location that contains div2. * We need to modify all constraints that contain * div2 = (div - div1) / m * (If a constraint does not contain div2, it will also not contain div1.) * If the constraint also contains div1, then we know they appear * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div, * i.e., the coefficient of div is f. * * Otherwise, we first need to introduce div1 into the constraint. * Let the l be * * div1 + f >=0 * * and u * * -div1 + f' >= 0 * * A lower bound on div2 * * n div2 + t >= 0 * * can be replaced by * * (n * (m div 2 + div1) + m t + n f)/g >= 0 * * with g = gcd(m,n). * An upper bound * * -n div2 + t >= 0 * * can be replaced by * * (-n * (m div2 + div1) + m t + n f')/g >= 0 * * These constraint are those that we would obtain from eliminating * div1 using Fourier-Motzkin. * * After all constraints have been modified, we drop the lower and upper * bound and then drop div1. */ static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap, unsigned div1, unsigned div2, unsigned l, unsigned u) { isl_int a; isl_int b; isl_int m; unsigned dim, total; int i; dim = isl_dim_total(bmap->dim); total = 1 + dim + bmap->n_div; isl_int_init(a); isl_int_init(b); isl_int_init(m); isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]); isl_int_add_ui(m, m, 1); for (i = 0; i < bmap->n_ineq; ++i) { if (i == l || i == u) continue; if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2])) continue; if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) { isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]); isl_int_divexact(a, m, b); isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b); if (isl_int_is_pos(b)) { isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i], b, bmap->ineq[l], total); } else { isl_int_neg(b, b); isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i], b, bmap->ineq[u], total); } } isl_int_set(bmap->ineq[i][1 + dim + div2], bmap->ineq[i][1 + dim + div1]); isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0); } isl_int_clear(a); isl_int_clear(b); isl_int_clear(m); if (l > u) { isl_basic_map_drop_inequality(bmap, l); isl_basic_map_drop_inequality(bmap, u); } else { isl_basic_map_drop_inequality(bmap, u); isl_basic_map_drop_inequality(bmap, l); } bmap = isl_basic_map_drop_div(bmap, div1); return bmap; } /* First check if we can coalesce any pair of divs and * then continue with dropping more redundant divs. * * We loop over all pairs of lower and upper bounds on a div * with coefficient 1 and -1, respectively, check if there * is any other div "c" with which we can coalesce the div * and if so, perform the coalescing. */ static struct isl_basic_map *coalesce_or_drop_more_redundant_divs( struct isl_basic_map *bmap, int *pairs, int n) { int i, l, u; unsigned dim; dim = isl_dim_total(bmap->dim); for (i = 0; i < bmap->n_div; ++i) { if (!pairs[i]) continue; for (l = 0; l < bmap->n_ineq; ++l) { if (!isl_int_is_one(bmap->ineq[l][1 + dim + i])) continue; for (u = 0; u < bmap->n_ineq; ++u) { int c; if (!isl_int_is_negone(bmap->ineq[u][1+dim+i])) continue; c = div_find_coalesce(bmap, pairs, i, l, u); if (c < 0) continue; free(pairs); bmap = coalesce_divs(bmap, i, c, l, u); return isl_basic_map_drop_redundant_divs(bmap); } } } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; return drop_more_redundant_divs(bmap, pairs, n); } /* Remove divs that are not strictly needed. * In particular, if a div only occurs positively (or negatively) * in constraints, then it can simply be dropped. * Also, if a div occurs only occurs in two constraints and if moreover * those two constraints are opposite to each other, except for the constant * term and if the sum of the constant terms is such that for any value * of the other values, there is always at least one integer value of the * div, i.e., if one plus this sum is greater than or equal to * the (absolute value) of the coefficent of the div in the constraints, * then we can also simply drop the div. * * If any divs are left after these simple checks then we move on * to more complicated cases in drop_more_redundant_divs. */ struct isl_basic_map *isl_basic_map_drop_redundant_divs( struct isl_basic_map *bmap) { int i, j; unsigned off; int *pairs = NULL; int n = 0; if (!bmap) goto error; off = isl_dim_total(bmap->dim); pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div); if (!pairs) goto error; for (i = 0; i < bmap->n_div; ++i) { int pos, neg; int last_pos, last_neg; int redundant; int defined; defined = !isl_int_is_zero(bmap->div[i][0]); for (j = 0; j < bmap->n_eq; ++j) if (!isl_int_is_zero(bmap->eq[j][1 + off + i])) break; if (j < bmap->n_eq) continue; ++n; pos = neg = 0; for (j = 0; j < bmap->n_ineq; ++j) { if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) { last_pos = j; ++pos; } if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) { last_neg = j; ++neg; } } pairs[i] = pos * neg; if (pairs[i] == 0) { for (j = bmap->n_ineq - 1; j >= 0; --j) if (!isl_int_is_zero(bmap->ineq[j][1+off+i])) isl_basic_map_drop_inequality(bmap, j); bmap = isl_basic_map_drop_div(bmap, i); free(pairs); return isl_basic_map_drop_redundant_divs(bmap); } if (pairs[i] != 1) continue; if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1, bmap->ineq[last_neg] + 1, off + bmap->n_div)) continue; isl_int_add(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); isl_int_add_ui(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], 1); redundant = isl_int_ge(bmap->ineq[last_pos][0], bmap->ineq[last_pos][1+off+i]); isl_int_sub_ui(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], 1); isl_int_sub(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); if (!redundant) { if (defined || !ok_to_set_div_from_bound(bmap, i, last_pos)) { pairs[i] = 0; --n; continue; } bmap = set_div_from_lower_bound(bmap, i, last_pos); bmap = isl_basic_map_simplify(bmap); free(pairs); return isl_basic_map_drop_redundant_divs(bmap); } if (last_pos > last_neg) { isl_basic_map_drop_inequality(bmap, last_pos); isl_basic_map_drop_inequality(bmap, last_neg); } else { isl_basic_map_drop_inequality(bmap, last_neg); isl_basic_map_drop_inequality(bmap, last_pos); } bmap = isl_basic_map_drop_div(bmap, i); free(pairs); return isl_basic_map_drop_redundant_divs(bmap); } if (n > 0) return coalesce_or_drop_more_redundant_divs(bmap, pairs, n); free(pairs); return bmap; error: free(pairs); isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_drop_redundant_divs( struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset); } struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map) { int i; if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set) { return (struct isl_set *) isl_map_drop_redundant_divs((struct isl_map *)set); }