/*****************************************************************************\ Scaler.cpp : Implimentation for the Scaler class Copyright (c) 1996 - 2001, Hewlett-Packard Co. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of Hewlett-Packard nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PATENT INFRINGEMENT; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \*****************************************************************************/ #include "CommonDefinitions.h" #include "Processor.h" #include "Scaler.h" #define MAX_OUTPUT_RASTERS 32 Scaler::Scaler(unsigned int inputwidth, unsigned int numerator, unsigned int denominator, bool bVIP, unsigned int BytesPerPixel, unsigned int iNumInks) { iInputWidth = inputwidth; rowremainder = remainder; NumInks = iNumInks; vip = bVIP; ScaleFactor= (float)numerator / (float)denominator; if (ScaleFactor > (float)MAX_OUTPUT_RASTERS) // { constructor_error = INDEX_OUT_OF_RANGE; return; } int factor = (int)ScaleFactor; float rem = ScaleFactor - (float)factor; rem *= 1000; remainder = (int)rem; iOutputWidth = (int) (((float)iInputWidth / (float)denominator) * (float)numerator); iOutputWidth++; // safety measure to protect against roundoff error if (numerator == denominator) scaling = false; else scaling = true; // ScaleBound=max number of output rows per input row; // i.e., if scale=4.28, then sometimes 5 rows will come out int ScaleBound = int(ScaleFactor); if (ScaleFactor > (float) ScaleBound) ScaleBound++; // allocate a buffer for one output row int RSBuffSize = (int) (((float)(BytesPerPixel*iOutputWidth)) * ScaleBound ); pOutputBuffer[COLORTYPE_COLOR] = (BYTE *) new BYTE[RSBuffSize]; if (pOutputBuffer[COLORTYPE_COLOR] == NULL) { constructor_error = ALLOCMEM_ERROR; return; } int BlackBuffSize = (int) (((float) (iOutputWidth)) * ScaleBound ); pOutputBuffer[COLORTYPE_BLACK] = (BYTE*) new BYTE[BlackBuffSize]; if (pOutputBuffer[COLORTYPE_BLACK] == NULL) { constructor_error = ALLOCMEM_ERROR; return; } if (ScaleFactor < 2.0) ReplicateOnly = true; else ReplicateOnly = false; if (ScaleFactor > (float) factor) fractional = true; else fractional = false; } Scaler::~Scaler () { for (int i = COLORTYPE_COLOR; i < MAX_COLORTYPE; i++) { if (pOutputBuffer[i]) { delete [] pOutputBuffer[i]; pOutputBuffer[i] = NULL; } } } unsigned int Scaler::GetMaxOutputWidth() { if (myplane == COLORTYPE_COLOR) { return (iOutputWidth-1)*NUMBER_PLANES; // we padded it in case of roundoff error } else { return (iOutputWidth-1); // we padded it in case of roundoff error } } bool Scaler::Process(RASTERDATA* raster_in) { iRastersDelivered=0; if (raster_in == NULL || (raster_in->rasterdata[COLORTYPE_COLOR] == NULL && raster_in->rasterdata[COLORTYPE_BLACK] == NULL)) { rowremainder=remainder; return false; } if (!scaling) { // just copy both to output buffer for (int i = COLORTYPE_COLOR; i < MAX_COLORTYPE; i++) { if (raster_in->rasterdata[i]) { memcpy(pOutputBuffer[i], raster_in->rasterdata[i], raster_in->rastersize[i]); } } iRastersReady = 1; return true; } if (myplane == COLORTYPE_COLOR) { if (raster_in->rasterdata[COLORTYPE_BLACK]) { memcpy(pOutputBuffer[COLORTYPE_BLACK], raster_in->rasterdata[COLORTYPE_BLACK], raster_in->rastersize[COLORTYPE_BLACK]); } } if (myplane == COLORTYPE_BLACK) { if (raster_in->rasterdata[COLORTYPE_COLOR]) { memcpy(pOutputBuffer[COLORTYPE_COLOR], raster_in->rasterdata[COLORTYPE_COLOR], raster_in->rastersize[COLORTYPE_COLOR]); } } // multiply row unsigned int ifactor = (unsigned int) (int) ScaleFactor; unsigned int targptr=0; unsigned int sourceptr=0; unsigned int rem = remainder; if (myplane == COLORTYPE_COLOR || myplane == COLORTYPE_BOTH) { if (raster_in->rasterdata[COLORTYPE_COLOR]) { if (vip) // RGB values interleaved { unsigned int width = iInputWidth*3; for (unsigned int i=0; i < width; i += 3) { unsigned int factor = ifactor; if (rem >= 1000) { factor++; rem -= 1000; } for (unsigned int j=0; j < factor; j++) { pOutputBuffer[COLORTYPE_COLOR][targptr++] = raster_in->rasterdata[COLORTYPE_COLOR][i]; pOutputBuffer[COLORTYPE_COLOR][targptr++] = raster_in->rasterdata[COLORTYPE_COLOR][i+1]; pOutputBuffer[COLORTYPE_COLOR][targptr++] = raster_in->rasterdata[COLORTYPE_COLOR][i+2]; } rem += remainder; } } else // KCMY values NOT interleaved // iInputWidth = bytes per plane for (unsigned int i=0; i < NumInks; i++) // loop over planes { unsigned int planecount=0; // count output bytes for this plane unsigned int src=0; // count input bytes for this plane while ((planecount < iOutputWidth-1) && (src < iInputWidth)) { unsigned int factor = ifactor; if (rem >= 1000) { factor++; rem -= 1000; } for (unsigned int j=0; (j < factor) && (planecount < iOutputWidth-1); j++) { pOutputBuffer[COLORTYPE_COLOR][targptr++] = raster_in->rasterdata[COLORTYPE_COLOR][sourceptr]; planecount++; } rem += remainder; sourceptr++; src++; } while (planecount < iOutputWidth-1) // fill out odd bytes so all planes are equal { pOutputBuffer[COLORTYPE_COLOR][targptr++] = raster_in->rasterdata[COLORTYPE_COLOR][sourceptr-1]; planecount++; } } } } ifactor = (unsigned int) (int) ScaleFactor; targptr=0; sourceptr=0; rem = remainder; if (myplane == COLORTYPE_BLACK || myplane == COLORTYPE_BOTH) { if (raster_in->rasterdata[COLORTYPE_BLACK]) { // K values NOT interleaved // iInputWidth = bytes per plane unsigned int planecount=0; // count output bytes for this plane unsigned int src=0; // count input bytes for this plane while ((planecount < iOutputWidth-1) && (src < iInputWidth)) { unsigned int factor = ifactor; if (rem >= 1000) { factor++; rem -= 1000; } for (unsigned int j=0; (j < factor) && (planecount < iOutputWidth-1); j++) { pOutputBuffer[COLORTYPE_BLACK][targptr++] = raster_in->rasterdata[COLORTYPE_BLACK][sourceptr]; planecount++; } rem += remainder; sourceptr++; src++; } while (planecount < iOutputWidth-1) // fill out odd bytes so all planes are equal { pOutputBuffer[COLORTYPE_BLACK][targptr++] = raster_in->rasterdata[COLORTYPE_BLACK][sourceptr-1]; planecount++; } } } unsigned int factor = ifactor; if (rowremainder >= 1000) { factor++; rowremainder -= 1000; } if (myplane == COLORTYPE_BLACK && raster_in->rasterdata[COLORTYPE_COLOR]) iRastersReady = 1; else iRastersReady=factor; iRastersDelivered=0; rowremainder += remainder; return true; } bool Scaler::NextOutputRaster(RASTERDATA &next_raster) { if (iRastersReady == 0) return false; if (myplane == COLORTYPE_BLACK) { if (raster.rasterdata[COLORTYPE_BLACK] == NULL) iRastersReady = 1; } if (myplane == COLORTYPE_COLOR) { iRastersReady--; iRastersDelivered++; } bool bval = false; if (raster.rastersize[COLORTYPE_BLACK] > 0) { next_raster.rastersize[COLORTYPE_BLACK] = raster.rastersize[COLORTYPE_BLACK]; next_raster.rasterdata[COLORTYPE_BLACK] = pOutputBuffer[COLORTYPE_BLACK]; bval = true; } else { next_raster.rastersize[COLORTYPE_BLACK] = 0; next_raster.rasterdata[COLORTYPE_BLACK] = NULL; } if (raster.rastersize[COLORTYPE_COLOR] > 0) { next_raster.rastersize[COLORTYPE_COLOR] = raster.rastersize[COLORTYPE_COLOR]; next_raster.rasterdata[COLORTYPE_COLOR] = pOutputBuffer[COLORTYPE_COLOR]; bval = true; } else { next_raster.rastersize[COLORTYPE_COLOR] = 0; next_raster.rasterdata[COLORTYPE_COLOR] = NULL; } return bval; }